n b
Electr® 8biljty

Electron. J. Probab. 27 (2022), article no. 152, 1-45.
ISSN: 1083-6489 https://doi.org/10.1214/22-EJP878

Wavelet methods to study the pointwise regularity of
the generalized Rosenblatt process*’

Lara Daw?* Laurent Loosveldt?

Abstract

We identify three types of pointwise behaviour in the regularity of the (generalized)
Rosenblatt process. This extends to a non Gaussian setting previous results known
for the (fractional) Brownian motion. On this purpose, fine bounds on the increments
of the Rosenblatt process are needed. Our analysis is essentially based on various
wavelet methods.
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1 Introduction

Precise study of path behaviour, and in particular regularity, of stochastic processes
is a classical research field, initiated in the 1920s by the works of Wiener [47]. It
lies in between probability and (harmonic) analysis and a common strategy is to mix
probabilistic arguments with analytical tools. Pioneer works concerned Brownian motion.
Among them, one can cite Paley and Wiener’s expansion [48] using Fourier series, Lévy’s
representation [30] obtained with some techniques of interpolation theory or, more
recently, Kahane’s expansion [25] in the Schauder basis.

In the last decades, the emergence of wavelet analysis allowed to obtain series
expansions for many stochastic processes. Let ¢v : R — R be a smooth function
satisfying the admissibility condition [35]
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where zZ is the Fourier transform of . As such it generates an orthonormal basis of
L?(R). More precisely, any function f € L?(R) can be decomposed as

f=20 2 (@ k), (1.2)
JEZ keZ
where
=2 [ Ju@e—)d 1.3)
R

It is noteworthy that the expansion (1.2) holds true in many function spaces. We refer to
the seminal books [15, 35, 34] for more details and proofs of these facts. Multifractal
analysis has demonstrated the efficiency of wavelet methods to study uniform and
pointwise Holder regularity of functions both from a theoretical [9, 10, 13, 20, 21, 23]
and a practical point of view [2, 3, 11, 16, 19, 22, 37, 45, 46].

Now, let us consider a probability space ({2, A, P) and a real-valued stochastic process
X definitionined on it. If, for all w €  the sample path ¢t — X (¢,w) belongs to L*(R),
one can apply expansion (1.2) to it. This way, one definitionines a sequence of random
wavelet coefficients (c; r(w));kez. For instance, if X = By is the fractional Brownian
motion of Hurst index H € (0,1) and if ¢ is a sufficiently regular wavelet, one has [36, 22]

By =Y. > 27 by 10(2 - —k) + R, (1.4)
jeN keZ

where (R(t,-))er+ is a process with alsmost surely C* sample paths, (§; 1) en,kez is a se-
quence of independent A (0, 1) random variables and v 1/, is a fractional antiderivative
of v, see Section 2 for a precise definitioninition.

In [18], Esser and Loosveldt undertook a systematic study of Gaussian wavelet series.
Thanks to (1.4), it applies in particular to the fractional Brownian motion and leads to
the following theorem.

Theorem 1.1. For all H € (0,1), there exists an event Qg of probability 1 satisfying the
following assertions for all w € Q0 and every non-empty interval I of R.

e For almost everyte I,

B - B
0 < limsup |Bu(t,w) 1(s,W)|

s—t [t —s|Hq/loglog |t — s|~1

Such points are called ordinary points.

< 400.

e There exists a dense set of points t € I such that

Byt - B
0 < lim sup |Bu(t, ) u(s )| < 400.

s—t |t —s|HA/log|t — 5|71

Such points are called rapid points.

e There exists a dense set of points t € I such that

0 < limsup |Bu(t,w) = B (s,w)|
s—t |t - S|H

< +0.

Such points are called slow points.

Note that Theorem 1.1 extends some well-known results of Kahane concerning the
Brownian motion [25]. The “ordinary”, “rapid” and “slow” terminology is inspired
by them. Let us justify it. From a measure-theoretical point of view, the modulus of
continuity  — |z|¥4/loglog |x|~! is the most frequent among the points of sample paths.
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Thus, it is natural to refer it to ordinary. Now, |z|%+/loglog|z|~! = o(|z|"+/log|z|~1)
if + — 0% and thus points for which x — |z|#/log|z|~! is the pointwise modulus of
continuity are refereed to rapid. On the other side, points for which x — |z|¥ is the
pointwise modulus of continuity are referred to slow because |z| = o(|z|# 4/loglog |z|~1)
ifz — 0",

Now, let us turn to the stochastic process we will deal with in this paper. The Rosen-
blatt process appears naturally as a limit of normalized sums of long-range dependent
random variables [17]. Like the fractional Brownian motion, it belongs to the class of
Hermite processes, fractional Brownian motion being of order 1 while Rosenblatt process
is of order 2. Both are selfsimilar stochastic processes with stationary increments and
are characterized by a parameter H, called the Hurst exponent. However, unlike the
fractional Brownian motion, the Rosenblatt process is not Gaussian. Does it make a big
difference regarding ordinary, rapid and slow points? In other words, can Theorem 1.1
be extended to cover the non Gaussian Rosenblatt process?

For the last fifteen years the Rosenblatt process has received a significantly increasing
interest in both theoretical and practical lines of research. Due to its self-similarity, its
applications are numerous across a multitude of fields, including internet traffic [12] and
turbulence [40, 28]. From a statistical point of view, estimating the value of the Hurst
index H is important for practical applications and various estimators exist, see [8, 43].
Also, from a mathematical point of view the Rosenblatt process has received a lot of
interest since its inception in [39]. Its distribution, still not known in explicit form, was
studied first in [1] and more recently in [33] and [44].

In this paper, we even consider a generalization of the Rosenblatt process, as def-
initionined and studied in [32]. It depends on two parameters Hi, Hs € (%, 1) which
are such that H; + Hy > g The generalized Rosenblatt process {Rp, m,(t,)}ter, is
definitionined as a double Wiener-It6 integral of a kernel function Ky, g, with respect
to a given Brownian motion. More precisely, consider a standard two-sided Brownian
motion B, and set

/
RHth(t, ) = f ) KHth(t,xl,xg) dB(Q?l)dB(.’BQ), (15)
R

where SIP@ denotes integration over R? excluding the diagonal. The kernel function
in (1.5) is expressed, for all (¢, 21,72) on Ry x R?, by

1 ¢ o .
Koty (8,21,22) = I‘(Hl—é)F(Hg_%)L(S_xl)+l (s —wa)} s,

where I' stands for the usual Gamma Euler function, and where for (z,«) € R2, ¢ =
r%1[0, 1) Note that the (standard) Rosenblatt process is the process {Rpy u(t,)}ter,
for H € (3/4,1). The generalized Rosenblatt process { R, m,(t,)}+cr, is non-Gaussian,
belongs to the second Wiener chaos, and has the following basic properties:

(1) Continuity: the trajectories of the Rosenblatt process Ry, g, are continuous.

(2) Stationary increments: Rp, g, has stationary increments; that is, the distribu-
tion of the process {Ru, u,(t +s,-) — Ruy 1, (S, -)}teR+ does not depend on s > 0.

(3) Self-similarity: Ry, g, is self-similar with exponent H; + H, — 1; that is, the
processes {Rp, m,(ct, ) }ier, and {27 1Ry b (2, ~)}te]R+ have the same distri-
bution for all ¢ > 0.

In [6], Ayache and Esmili presented a wavelet-type representation of the generalized
Rosenblatt process, very similar to the one given in [36] for fractional Brownian motion,
except for the use of integrals of two-dimensional wavelet bases. This representation
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is the starting point of this paper. It is one of our key tools to prove the following
Theorem 1.2 which is the main result of this paper.

Theorem 1.2. Forall Hy, H; € (3,1) such that H, + Hy > 3, there exists an event Qy, i,
of probability 1 satisfying the following assertions for all w € Qg, p, and every non-empty
interval I of R.

e For almost everyte I,

|RH1,H2 (taw) - RHl,H2 (s’w)|

0<li < +0o0. 1.6
P [t — s|Hi+H2=1]oglog |t — 5|1 (1.6)
Such points are called ordinary points.
e There exists a dense set of points t € I such that
. |Ru, 1, (L, w) — R, 1, (s, w)|
0 < lims L2 L2 < 4o00. 1.7
P [t — s|HitH2=1]og |t — s|~! (1.7)
Such points are called rapid points.
e There exists a dense set of points t € I such that
R t, - R 9
lim sup RETAGE)) 11,1 (5, )| < +00. (1.8)

|t _ S|H1+H2—1

s—t
Such points are called slow points.

Theorem 1.2 shows in particular that slow, ordinary and rapid points are not specific
to Gaussian processes.

Remark 1.3. Let us compare Theorems 1.1 and 1.2. If X denotes both the fractional
Brownian motion or the generalized Rosenblatt process, we see that the asymptotic
behaviour of | X (¢,w) — X (s,w)| is always comparable to a modulus of continuity of the
form |t — s|*0(|t — s|), with « corresponding to the self-similarity exponent of X and 6
a potential logarithmic correction. For the ordinary points, 6 is an iterated logarithm.
More precisely, for the fractional Brownian motion, we have 0(|t — s|) = 4/loglog |t — s|~!
while, for the generalized Rosenblatt process, 6(|t — s|) = loglog |t — s|~!. The same
feature appears for the rapid points: in the case of the fractional Brownian motion
we have 0(|t — s|) = 4/log |t — s|~! and for the generalized Rosenblatt process we have
O(|t — s|) = log|t — s|~!. Therefore, the only difference between the corresponding
logarithmic corrections is the square root that is used for the fractional Brownian motion
and not for the generalized Rosenblatt process. It comes from the estimates that can
be done on the tails of the distribution of random variables in various Wiener chaoses,
see Theorems 3.14 and 3.15 below. Concerning the slow points, there is no logarithmic
correction, # = 1 in both case. Unfortunately, contrary to the fractional Brownian motion,
we did not manage to show the positiveness of the limit in (1.8). In fact, we would
need to find an almost-sure uniform lower modulus of continuity for the generalized
Rosenblatt process and to be able to judge its optimality, which seems to be a difficult
task. This is discussed in details in Remark 5.1 below.

Our strategy to prove Theorem 1.2 is as follows. First, in Section 3 we derive
upper-bounds for the oscillations |Ry, m,(t,w) — Ru, m,(s,w)| that are sharp enough to
imply the finiteness of the limits (1.6), (1.7) and (1.8). This is done by means of the
wavelet-type expansion given in [6], see Theorem 3.3 below. Then, in Section 4, we
give lower bounds for the so-called wavelet-leaders, see Section 2, of the generalized
Rosenblatt process on a given compactly supported wavelet basis. This will prove the
positiveness of the limits (1.6), (1.7). In particular, we use different bases depending
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on whether we deal with the finiteness of the limits in Theorem 1.2 or with their strict
positiveness. This is very different from [18] where the authors always work with the
same wavelet. The reason is that the expression (3.3) in Theorem 3.3 below is not a
wavelet series: it involves additional quantities. Therefore, standard arguments linking
wavelet coefficients and regularity of the associated functions can no longer be used.

There is a priori no obstacles to extend our results in Section 4 to any Hermite
process. On the contrary, extending the results of Section 3 does not seem obvious at all.
This is because a wavelet-type expansion of arbitrary Hermite process is still missing but
also because our strategy relies on arguments which are specific to the two-dimensional
feature of the Rosenblatt process, see Lemma 2.1 for instance.

Notations used through this paper are rather standard except, maybe, that if s, ¢ are
two real numbers, S[57 ;) stands for Sz if s <tand — Sz = {, otherwise.

2 Some important facts involving wavelets

In this section, we gather all the facts concerning wavelets that we will strongly use
all along this article. First, an immediate but important consequence of the admissibility
condition (1.1) is that, if the wavelet ¢ € Ll(R), its first moment always vanishes, i.e.

f Y(z)dr = 0. (2.1)
R

This condition is met for all the wavelets we consider in this paper.

First, while dealing with the upper bounds for the limits in Theorem 1.2, we will use a
wavelet-type expansion of the generalized Rosenblatt process. It is given in [6] by means
of Meyer wavelet: ¢ belongs to the Schwartz class S(R), and its Fourier transform
is compactly supported, see [29]. In particular, for all H € (1/2,1), ¢y, the fractional
antiderivative 15;1 of order H — 1/2 of 1 is well-definitionined by means of its Fourier
transform as

$r(0) =0 and ¢p () = (i€)"F-2(¢), V€ # 0. (2.2)

It also belongs to the Schwartz class S(R), see [4, 6, 41] for instance. Moreover, some
standard facts from distribution theory [41, 4] give us the explicit formula

Yu(t) = 7) J}R(t — x)ffgw(x) dx.

From (2.2), we see that supp(zzf\i) = supp(zZ) which is the key fact to establish the
following lemma, gathering facts already proved in [6].
Lemma 2.1. Let Hy, H € (3,1). If (ji1, j2, k1, ko) € Z* are such that |j, — j2| > 1, then the
integral I'"* = (. ¢y, (21 — k1)vm, (222 — ko) dz vanishes. Moreover, for all L > 0,

Ji,J2 ’
there exists a constant C, > 0 such that for all (j, k1, ko) € Z>, we have

. . il — s 2—J
IG5 = 2 mee (h 2’“”%111(5)%2(26)%‘ SO %Y
k1, ko —j ik —k2)E T T VT 277
|Ij,j7 | =12 ]Re 1—FR2 le (§)¢Hz(£) df < CLm (2.4)
. . . — —— 2*]-
I],Clyk2 _ 27]J‘ —i(2k1—k2)& 2 , d ‘ <C ) 2.5
|55l € U (26)01,(6) d8| < Crgg—r )

When dealing with the lower bounds for the limits in Theorem 1.2, we use Daubechies
compactly supported wavelets [14]. Note that, if supp(¥) < [—N, N], for a positive
integer N, then, for all (j, k) € IN x Z, by an obvious change of variable, the wavelet
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coefficient (1.3) can be written c¢; ) = SYN f (%) ¥(z) dz. But now, using the first

vanishing moment property (2.1) of ¥, for all £ € R, one can write

¢k = f_NN <f (x; k) - f(t)) V() dx. (2.6)

Since the value of this integral does not depend on ¢, equality (2.6) somehow means
that one can freely choose ¢, according to the context in which we use the wavelet
coefficients.

Since ¥ is compactly supported, ¥ (27 - —k) is localized around the dyadic interval
Ajk = |4, 55L) and it is therefore common to index wavelets with these intervals. For
simplicity, we sometimes omit any references to the indices j and k for such intervals by
writing A = A ;, and k = s()\). Then V¥, stands for the translated and dilated wavelet
W (27 . —k), where k = s()\) and 277 is the side length of the dyadic interval \. Similarly, c,
is the quantity c; ;. The notation A; stands for the set of dyadic intervals A of R with side
length 277. The unique dyadic interval from A; containing the point ¢, € R is denoted
Aj(to). The set of dyadic intervals is A := UjenA;. Two dyadic intervals A and )\ are
adjacent if there exist j € IN such that A, )’ € A; and dist(A, \') = 0. The set of dyadic
intervals adjacent to A is denoted by 3. In this setting, one definitionines the wavelet
leader [21] of a function at ¢y and of scale j by

d:(tg) = max sup |c,]. 2.7)
3(to) A€3; (to) A’g%| 3
Note that the dependence on t; only comes from the dyadic intervals involved in (2.7).
Then, if supp(¥) < [—N, N|, from (2.6), with ¢ = ¢;, one can write

d;(to) < 2N - osup [f(s) = fQto)lllvh] oo (2.8)
s€(to—2-7 (N +2),to+2—7 (N+2))

When we study stochastic processes, the wavelet leaders are random variables
d;(t,w). Inequality (2.8) with some easy computations implies that in order to obtain
the positiveness of the limit (1.6), it suffices to show that for all w € Qg f, and all open
intervals I < R, for almost every ¢ € I,

0 < limsup d;(t, )

. . 2.9
o 2T log () @9

Similarly, to prove the positiveness of the limit (1.7), we just have to show that for all
w € Qp, u, and all open intervals I < R™, there exists a dense set of points ¢ € I such

that
d]' (t7 w)

ST (2.10)

0 < limsup

Jj—+©

Remark 2.2. Let us mention that wavelet leaders can not be used to prove the finiteness

of the limits in Theorem 1.2 because they do not precisely characterize the pointwise
regularity, see for instance [27, 31] for more details.

3 Upper bounds for oscillations

Starting from now and until the end of the paper, we fix Hi, H, € (3,1) such that
H{ + Hy > % In this section, we show the finiteness of the limits (1.6), (1.7) and (1.8).
Concerning the rapid points, we will in fact show a stronger result, obtaining an almost
sure uniform modulus of continuity for the generalized Rosenblatt process.

We use a wavelet-type expansion of the generalized Rosenblatt process. It relies on
the following random variables.
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Definition 3.1. For all (ji, jo, k1, k2) € Z*, let sflljfj be the random variable defined by

Jitiz o/

272 (Lo (2w — k) (2229 — ko) dB(x1)dB(z2).
Remark 3.2. For all (ji, j2, k1, k2) € Z*, we have ([6, Proposition 2.3])

ghike — (29 fRz/)(Zjlx - kﬁdB(a:)) (2 wa(szx - k2)dB(x)> (3.1)

for j; # js or ky # ko, and
v 2
i = (2 | vera- k1>dB<x>) -1 (3.2)

for j; = jo and ky = k. Using the fact that (29/2)(27-—k)); x)ez2 forms an orthonormal ba-
sis of L?(R), and elementary properties of Wiener integral, we know that (27/2 Sp (272 —
k)dB(z))j, k)ezz is a family of iid A/(0,1) random variables. So the random variables

K1,k K
gjihz and ¢ 17 s
The following theorem, proved in [6], gives the wavelet-type expansion we use in this

section.

are independent as long as {(j1, k1), (42, k2)} n {(J1, k1), (45, k%) } =

Theorem 3.3. Let i) be the Meyer wavelet and I be any compact interval of R . Almost
surely, the random series

Z 9d1(1—H1)+j2(1—H2) jll,jk;f Vu, 23133 — k1)Ym, (zjo — ko) dx (3.3)
(J1,J2,k1,k2)eZ4

converges uniformly to Ry, g, on the interval I.

Remark 3.4. Any open interval in R can be written as a countable union of dyadic
intervals (A x)jen,kez. Then, to prove Theorem 1.2, it is sufficient to show that, for all
j €N,k € Z, there exist an event (); ;. of probability 1 such that, for all w € ; ;, almost
every t € \;; is ordinary and there exist ¢, € A; , which is rapid and ¢, € A;; which is
slow. For notational simplicity, we will only do the proofs in full details for Ay o = [0, 1).
In fact, after dilatation and translation, our proofs hold true for any arbitrary dyadic
interval.

3.1 Rapid points
Let us first focus on rapid points. we prove that z — |z|f1+#2~1]og |z|~! is almost
surely a uniform modulus of continuity for Ry, m,.
Proposition 3.5. There exists an event ()., of probability 1 such that for all w € Qpgp
there exists Cr(w) > 0 such that, for allt,s € (0,1), we have
|RH1,H2 (tv UJ) - RH1,H2 (s,w)| < CR(w)|t - S|H1+H2_1 log |t - S|_1. (3.4)

Let us set, for all s,t € (0,1) and (j1, jo, k1, ko) € Z2,
Blal = | V@ = kv, (e — k) da.
t,s

All along this section, if s,¢ € (0, 1) are given, n always refers to the unique positive
integer such that 277! < |t — s| < 27™. Our proof consists in writing

ki ko pki,k
|Rr, w5 (t, ) — Rey 1, (s,7)| = Z 91 (1=H1)9j2(1-Hz) ¢ e iRt s]| (3.5)
(41:2,k1,k2)eZ*

and splitting the sum in the right-hand side into subsums determined according to the
position of j; and j» with respect to n. To bound from above some of these subsums the
following lemma is key.
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Lemma 3.6. [6, Lemma 2.4.] There exist an event Q* of probability 1 and a positive
random variable C; with finite moment of any order, such that, for all w € Q* and for
each (j17j27k17k2) € Z4/

(W) < Ch(w)V/1og(3 + |1 ] + [ki)/1og(3 + |2l + [kal). (3.6)

|5J1,]2

In view of Lemma 3.6, we set L% = \/log(3 + [j1] + [k1])4/log(3 + [ja + [k2[). As a
first step, Lemmata 3.7 to 3.12 are devoted to bound some deterministic series whose
general term is 2j1(1_H1)2j2(1_H2)L511’f22 |Ijk11j’zz [t,s]].

This first lemma will be useful to bound the subsums in the right-hand side of (3.5)

for j; < n and j» < n.

Lemma 3.7. There exists a deterministic constant C' > 0 such that, for all t,s € (0, 1),
we have

3 5T g

J1<n je<n (ki,ko)€Z?

J1,J2

Ihkery s]‘ < C|t — s H2"1og |t — 5|71,

Proof. Let us start by considering, for all (j;,j2) € Z2, the series

Rj g, + t— Z flljkj J [V, (27 — k1)Ym, (2722 — k)| dz and
(kl,kz)eZz

R gt Z Lfll Jk;WHl (27t — k1), (22t — ko).

(kl,kQ)EZz

The fast decay of the fractional antiderivatives of ¢ allows us to write, for all H € {H;, Ho}
and forall x e R

[ ()| < C(1+ [=]) ™ (3.7)

Moreover, according to [6, Lemma 4.2] for all L > 1 there exists C' > 0 such that, for all

jeZandxe R
1 3+ +k‘
Z V3Ies@B+ 1+ k) ) Aoa@ T 1+ 27a]). (3.8)

(3+ |27z — k|)E

keZ

Therefore, if K is any compact set of Ry, if M = supy, forall t € K, we have

t
Rz ()] < CJ Viog(3 + [j1] + 271 [z[)A/log(3 + |jo| + 272 x]) dx
0

< OMA/log(3 + |j1| + 271 M)~/log(3 + |ja| + 272 M).

The same arguments can be applied to R’;, ;,, which means that both series converge
uniformly on any compact set of R, . From this, we can use mean value theorem: for all
(j1,72) € Z? there is £(j1, j2) € [s,t] such that

1-H 1—H- k1,k2 | 7k1,k
971( 1)972( z)le s Ijl,j; [t, S]‘
(k:l,kQ)eZz
k1,k J1 j2
<t —s Z Ly W, (27 € — k1 )bm, (2726 — ko). (3.9)
(k1,k2)€Z?

Now, we use the fast decay of the fractional antiderivatives of ) (3.7) and inequality (3.8)
to bound (3.9) from above: for all ji, j» < n,

Z lel ;;2|le (2j1£ _ kl)ng(th _ k2)|

(k‘l k2)€Z2
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<0<Z wog<3+|j1+|k1>> (Z wog<3+lj2l+k2l>)

k1EZ (34 [271¢ = ka[)* kzeZ (3 4+ |272€ — ko|)*

< C/log(3 + [j1] + 271 [€])y/1og(3 + [72] + 272]¢])
< Cy/log(3 + |ji] + 271 )1/log(3 + [j2| + 272),

as £ € (0,1). Let us then remark that

127D Jlog (3 + 1] + 271)

Ji<n
n—1
=3 2O flog B 1+ 20) + 3 200 H) flog(3 4 [j1] + 27)
J1<0 J1=0
n—1
<C+ Y, 200710 /log(3 + [j1] + 21) < €20/, (3.10)
71=0

as 1 — H; > 0. The same can be applied to the sum over j, and we finally get

Z 2 2 2j1(1*H1)2j2(1*H2)L§?11:]’?22

J1<n je<n (ki,k2)€Z?
SClt—s| D) > 20 U=H7202H2) flog(3 + [y ] + 271)4/log(3 + [2] + 272)
Ji<njz<n

< Ot — s|2nC—Hi=Ho)y < Ot — |t H2=1 o0 |t — 5|71, O

1,k
L5 [t 8] ‘

Lemmata 3.10 and 3.11 will help finding an upper bound for the subsums in the
right-hand side of (3.5) with j; < n < js or jo < n < j; as well as the ones where
n < j1 < jo and n < jo < j1. Let us define the following partition of Z, which determines
the relative positions of [k22772, (kg + 1)2772) and [s, t].

Definition 3.8. For all j, € IN, we set

75 (t,s) = {ky € Z : kp2792 < min{t, s}},
75,(t,s) ={k2 € Z : k22772 > max{t, s}},
and Zj,[t, s] = Z\(Z;,(t,s) v Z7,(t,5)).

Remark 3.9. Note that we have #7Z;,[t,s] < 2/27" + 1.

Let us also observe that for all a,b > 0,
log(3 + a + b) < log(3 + a)log(3 + b). (3.11)

Lemma 3.10. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
and j; < jo, the quantities

ik | koK
Z lel7j22 Ijll,j; [t,S]‘ (3.12)
kleszEZfQ(t,s)
> L |n [tvs]’ (3.13)

k1€Z kgeZJ?Q (t,s)

are bounded from above by Cy/log(3 + |j1] + 271)4/log(3 + [ja| + 272)2772.
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Proof. Let us bound (3.12), the proof for (3.13) being similar. From the fast decay of the
fractional antiderivatives of ¥ (3.7), inequalities (3.8) and (3.11) for j; < js, we have

(3'12)<CJ <Z \/log(3+j1|+|k‘1|)> Z \/1og (3 + |g2| + |k2]) i
[s,t k1 eZ

(3+|2j1$—k1|)4 ko €Z< (t.9) (3+‘2J2JZ‘—]€2D

< C/log(3 + [j1] + 271)y/log(3 + |j2| + 272)

J V/1og(3 + 2722 — ksl)
() ke (1,9) (3 + [2022 — kao|)*

dx.

For all z € [s,t] the mapping y — 2 + 2722 — 272 min{s, ¢t} + y) 2 is decreasing and thus

f V/1og(3 + 2722 — ko)
, dx
[ (3 + [2722 — ko)4

St ko€ (t,9)
dx

Y e
[5.,t] kgE%(t,s) (3 + 202 — k2)3

40
= [s.4] S (3 + 2722 — 27> min{s, t} + m)?

+OO
J f , drdy <0272, (3.14)
[s,t]

(2 + 2922 — 292 min{s, t} + y)3

This bound leads to (3.12) < Cy/log(3 + |j1] + 271)4/log(3 + |ja| + 22)2772. O

Lemma 3.11. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
and j1 < jo, the quantities

min{s,t} ) A
Z Z L.];ll szQ J Y, (2" — k)Y, (2720 — ko) do

k1€Z ka€Zy, [t,s] —©

+00
Sk [ v ke ) de

k1€Z koeZy, [t,s] max{s,t}

are bounded from above by C+/log(3 + [j1| + 272)4/log(3 + |jo| + 272)2772.

Proof. Let us assume that s < ¢, the argument for ¢t < s being similar. As j; > 7;, we
have, by inequality (3.8),

B+ 291z — k)4 (3 + [2722 — ko)t

J( \/log(3+|j1|+|k1|)> Z ViogB + [+ [Ra) | -
k1€Z

ko€Zj,

° . . log(3 + |j2| + [ka|)
SCLJ Vlog(3 + [j1] + 271 |x]) Z v , T | dx
— bt O 12T = ke)

’ - log(3 + |jo| + |k
o[ VegarhrmE | Y, YeO Bk,
—0o0

i B 2Rr =Rt

For all ky € Zj,[t, s],

| < 272, we have, using (3.11),

log(3 + |1 + 272|z|) < log(3 + |1 + 272) log(3 + |272x — k»|) and
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log(3 + |j2| + |k2|) <log(3 + 72 + 272) log(3 + |22z — ky|).

Thus, it only remains us to deal with

J\g Z dx
~ — 3"
ity B — R

But, for all z < s and ky € Zj,[t,s],
method as in (3.14), we get

23 — ko| = ko — 2722 and then, using the same
s dx ,
f Y e <027 (3.15)
— 3
—0 ka€Zi [t,5] (3 + ko 27256)
which finally leads to

k1,k2
IR DR 2

k1€Z kQEZJQ [t s

< O/log(3 + | 1] + 272)4/log(3 + jo + 272)2772, (3.16)

J‘S le (2j1x - kl)"/)HQ (2j2$ - kg) dx

We get in the same way,

k1,k2
DI D A

k1€Z k2€Zj, [t,s]

< O\/1og(3 + [ju] + 272)/log (3 + jo + 272)2772. .

+00 ) )
f VY, (27w — k1)Yn, (2722 — ko) dx
t

Next Lemma will be used to bound the subsums of (3.5) with j; <n < jsorj. <n <
Ji-
Lemma 3.12. There exists a deterministic constant C' > 0 such that, for allt,s € (0,1),
the quantities

=n k1,k k k
R=>"[t, s] := 2 Z Z 9i1(1—H1)gj2(1—Hz) th];‘ ]11]22[ s]|

j1<n jo=n (ky,ko)€Z2
><n o j1(1—H1) j2(17H2 ki1,k2 | rk1,k2
R [t75] T Z Z Z 2 2 ]1J2 ‘Ijl Jo [? ]|
=2n jo<n (ki,ko)€Z?

are bounded from above by C|t — s|f1tH2"1og |t — 5|71,

Proof. As R<>"[t,s] and R®<"[t, s] can clearly be treated symmetrically, we restrict our
attention to R<>"[t, s|. One sees that

Z Z Z 931(1=H1)9ja(1—- Hz)Lfl,thjhjkz[t s]
1,J2 " J1,J2 ’

Ji<njz2=n (k}l ]CQ)GZz

1 1 2 k1,k2 7k1,k
=2, 0, ), UTIRROTIILERI 6] (3.17)
Ji<n ja=n ki€Z k2€Z< (t,s)
DD IED Vil A S R (3.18)
ji<nja=nk,€Z k:ZGZj>2 (t,s)
LN T YN pempemiblin g @

Ji<n j2=n ki€Z ky€Zj, [t,s]
For (3.17), we use Lemma 3.10 to get

317 < C ) 200D Jlog(3+ 1] + 271) Y 2792H2flog (3 + [ja] + 272).

Jji<n j2=n
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The sum over over j; is bounded just as in (3.10) while, for the sum over j;, we have

D1 2722 flog(3 + [jaf +272) < Y] 277212 /log (3 + 272+1)

Jj2=n Jj2=n

< C2 M2 /. (3.20)

We bound (3.18) in exactly the same way.
For (3.19), let us again assume s < t, then we write

Ijklljfzz t,s] J VY, ( th — k)Y, (23295 — ko) dw

- f Vu, (212 — ky )om, (2720 — ko) da

+o0
— Y, (290w — k)b, (2722 — ko) da. (3.21)

t

Since j; < n and j5 > n, recalling Lemma 2.1, the sum
> L f Vi, (2 — k)vm, (22 — k) de,
k1€Z k2€Z]2 [t s

vanishes except maybe when (ji,j2) = (n — 1,n). In this case, note that #7Z,[¢,s] < 2
and, for all ks € Zy[t, s], |k2| < 2™ . Then, by Lemma 2.1 and inequality (3.8), we get

k1,ko
2, 2 Lt

K1€7Z ko€Zn [t,5]

k1,ko
In—l,n

\/log(3 +n—1+ |k1|)\/log(3 +n+ |kof

<Cc2™"
Z (3+ ‘21{?1 —/{32|)4

K1€7Z ko€Zin [t,5]

k
<c2 ) \/10g(3+n—1+|22|) log(3 + n + |ka])
ko€Zy, [t,s]

<C2™"n

Now, using Lemma 3.11, we also get

ST S onHgn0 ) ke j i, (10 — kb, (P — k) da

J1<n j2=nki1€Z ko€Zj, [t,s]

< 313 2Otz flog(3 1 [ji| + 22)y/log(3 + |ja] + 272)

Ji<njz=n

< D0 DT anO=HgmR e flog(3 + |1 ]) log(3 + 27+)

J1<0j22n

n—1

+ Y 2 P2 flog(3 4 272 +T)\log (3 + 2+

J1=0j22=2n

< C2n(1—H1—H2)n (322)

The series

2 Z Z Z 271 (1=H1)9j>(1-Hz) Lflljkff Vi, (27w — k1 )Yop, (2722 — ks) da

Ji<n je2=nki€Z ka€Zj, [t,s]

is bounded in exactly the same way and the conclusion follows. O
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It remains us to bound the subsums of (3.5) with j; > n and j; > n. For this, let us
define some random variables associated with dyadic intervals.

Definition 3.13. If )\ is a dyadic interval of scale n, we define, for all j > n, the
indexation sets

D g1 R g2
0N\) = {(kV KO 12 K@) 4.0 = r 2
S]()‘) T {(k 7K 7k 7K )EZ . 9J ’ 2 ’ 2 ’ 2 €>\}7

S :={(k(l),K(l),k(Q),K@))eZ4- O g @) g2

i I TR TR TR

)

D KD 2 K@)
2 o 1) @) 1.2 g2 4.
S]()\)_{(k 7K ak aK )EZ . 2]7 2] ’2j+1’2j+le

and consider the random variables, for (k") K1) k(2 K®) e 59()),

Ok K@ k1,ks rhk
P 1,~2 1,h2
2 2 DI i (3.23)
kKO <k <K E2) <ko<K(2)

 for (K, KM, k2, K®)) e ST(\),

1k K(2)
’ . ki,ka 1k1,k2
j2k<1>,K<n = ) DI (3.24)

KO <k <KD k@) <k, <K ()

and, for (KM, KM ) K®) e SJZ(A)'

2 k(2 g2
’ ki,k2 7k1.k
) = el M (3.25)
j KD K@) 7,J+175,5+1

kO <k <K k@) <k <K (2)
The idea behind the definition of these random variables is, as [t —s| < 277, s € 3\, (%)
and thus any sum of the form

Z Z 52?714,]62]]‘]6,1@’]62 (3.26)

k1 EZj [t,s] ko€Z.y [t,s]

for ¢ € {j,j + 1} can be written as the sum of random variables (3.23), (3.24) or (3.25)
for some (k") K k) K() belonging to at most two S£(A) (£ € {0,1,2}) with X € A, (2).
Indeed,

« if ¢ and s both belong to A, (¢) then we only need to rewrite (3.26) in the form (3.23),
(3.24) or (3.25) for (KM, KM, k@) K@) e SE A (1));

» if s € A with A € 3\, (¢)\\,(¢) then we need to consider a first sum indexed by a
quadruple of Sf()\n (t)) and a second indexed by a quadruple of Sf()\).

The reason why we decide to put X instead of 3 in the definition of the sets Sf()x) is
that if, for all n € IN and for all A € A,, and j > n, we define the random variable

L k@ K3
jZk(1)7K(1)
¢ k(2),K(2)
jka,K(l)
we want =;(\) to be independent of =;(\’) as long as A n A’ = (. Moreover, from
the definitions of the random variables (3.24), (3.23) and (3.25), the remarks below

Theorem 3.3 and the explicit expressions (2.3), (2.4) and (2.5), the law of Ej()\) does not
depend on A € A,, but only on j — n.

—_

Z;(A) = max sup
(0,12} (1) K1) k() K(2)eSE(N))

, (3.27)

L2()
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Let us remind the reader that the first order Wiener chaos (with respect to Brownian
motion B) is the closed linear subspace of L%(f2) consisting of random variables of
type ( f(z)dB(z), for f € L*(R). The second order Wiener chaos is the closed linear
subspace of L?(2) consisting of random variables of type S]’R2 f(z,y)dB(z)dB(y), for
f € L?(R?). Fractional Brownian motion belongs to first order Wiener chaos while the
(generalized) Rosenblatt process belongs to the second order Wiener chaos. The key
results to estimate the random variables Z; are [24, Theorem 6.7 and Theorem 6.12]
that we recall here.

Theorem 3.14. There exists a strictly positive universal deterministic constant C' such
that, for every random variable X belonging to the second order Wiener chaos and for
each real number y > 2, one has P(|X| > y| X|12(q)) < exp(—Cy).

Theorem 3.15. If X is a random variable belonging to the second order Wiener chaos,
there exist a,b,yo > 0 such that, for all y > yo, one has exp(—ay) < P(|X]| = y) <
exp(—by).

Remark 3.16. As stated in [24], the constants a,b in Theorem 3.15 are not universal
and depend on the law of X. Note that b can be recovered from Theorem 3.14 and thus
is universal on the unit sphere in L?(Q).

Lemma 3.17. There exists a deterministic constant C' > 0 such that, for all n € NN,
A€y, j=n,Le{0,1,2} and (KM, KW k3 K®)e 54()), we have

¢ k(2),K(2)
j k(1) K1)

J

<0277
L2(Q)

Proof. Following an idea from [6, Lemma 2.21], we write

¢ k(2),K(2) ¢ k(2),K(2)
< 2|

jka,K(l) = GLEMW K1)
R

L2(Q)  Ref<,>,=}

L2 (Q)

¢ k<2),K(2)
where Z is the subsum of (3.24), (3.23) or (3.25) in which k;Rk,. By doing so,
JLED KM

fll jkz * and 5?} jkf appearing in this subsum are
? 1°J2
uncorrelated except when (ki, k2) = (k{,%k}). Then from Lemma 2.1, we have for £ =0

(the argument being the same for { = 1 or ¢ = 2), for all R € {<, >, =},

we make sure that two random variables ¢

2

g k1,k2\27/ rk1,k2\2
DI B N R
R L2(Q) ED <k <K E2) ko <K (2) kb REo
2727
< e 11 7 Nao-°
N (3 + [k — ka|)®

kD) <k <KQ) koeZ
Since #{k; € Z : k) <k < KM} <297, we conclude that

Ok @ K3
jLdE() K1)

<0277, (3.28)
L2(Q) 0

Lemma 3.18. There exist an event ) of probability 1 and a positive random variable Cs
with finite moment of any order such that, on 2

VnelN, YAC[0,1], Ae A, Vi =n, 5;(A\) < Co(j—n+ n. (3.29)
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Proof. Let us take 6 > 0 and consider, for all n € IN the event
A, = {VA<[0,1, e A,,Vj=n,Z;(N\) <0 —n+1)n}.
If AS stands for the complementary set of 4,, in (), we have, of course,
P(A;) =PEA<[0,1],A e A, : 3j=ns. t. Ej(A) = 60(j —n+ 1)n).

But, forall A = [0,1], A€ Ay, j = n, £€ {0,1,2} and (K, KM k() K@) e 5%()) we have,
by Theorem 3.14, if 6 > 2

¢ k‘,(2>,K(2)
k(D) K@)

=0 —n+1n|< CXp(*ée(j —n+1)n).

O—k@ K3
B K1)

L2(Q)
As, forall j = n, #55(\) <240~ and #{A = [0,1] : Ae A, } = 2", we get

P(AS) < C2" Z 24—m) exp(—éﬁ(j —n+1)n)
j=n

<C2" exp(—éﬁn) Z 24u=m) exp(—é@(j —n))

ji=n

for a deterministic constant C > 0. Therefore, if we take § > 41og(2)/C, the conclusion
follows from the Borel-Cantelli Lemma. O

Lemma 3.19. Let Q* and ) be the events of probability 1 given by Lemmata 3.6 and 3.18
respectively. There exists a positive random variable C'; with finite moment of any order
such that, on Q* N Q, for allt,s € (0,1) the random variable

2 Z Z 971(1=H1)9j2(1—Hz) kl»k2_rk1’k2[t 5] (3.30)

.71 »J2 T J1,J2
ji=znja2>n (kl,kz)EZQ
is bounded from above by Cs|t — s|fitH2=1]og |t — 5|71,

Proof. We start by splitting the sums in (3.30) in two parts:

Z Z Z 2J1(1 H1)2J2(1 HZ)EI;fvj]z?]ilei?[t S] and
=zn j2=ji1 (k1,k2)eZ?

Z D1 D anlrhg(t) kel ke o], (3.31)

J1,J2 " J1,J2
J2=n j1>7j2 (kl,k2)€Z2

We only focus on the first sums, as the argument is symmetric in j; and j;. As in
Lemma 3.12 we write

T XN e
€i1.d2 Livng
2n j2=J1 (k1,k2)€Z? T

S a2 PORURGRLts) e

=10 j22]j1 k1€Z ko€ Z7 (t,5)

+ Z Z E Z 971(1=H1)9j2(1—Hz) ;Clj’?[jklhj’?[t 5] (3.33)

=n j22j1 k1€Z ko€Z7 (t,5)
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- Z oD D an(Hogn(-t) ke phukzy o) (3.34)

=n j22]1 k1€Z ko€Zj, [t,s]

To bound (3.32), we use inequality (3.6) and Lemma 3.10 to get

3.32)| <CCy Y| D 20 MIgmi2 e Jlog(3 + [jy| + 271)y/log(3 + [ja] + 272)

Jji=zn j2=j1

<CCy Y] 2n (=) ) < ooyt Hay,

jiz=n

by applying twice inequality (3.20). The sum (3.33) is bounded in exactly the same way.
To bound (3.34), we use once again the equality (3.21). First we have, by inequal-
ity (3.6) and Lemma 3.11,

Z 2 Z 2 271 (1=H1)9j2(1=Hz) ;?f;f Vi, (272 — k1 )Y, (2772 — ko) dx

2n j22j1 k1€Z ko€Zj, [t,s]
<CCy Y, D 227 flog (3 + 1] + 272)4/log(3 + || + 272)
Ji=nj2271

< 00 2nI—Hi—Ha) (3.35)

We bound

I ET % acmpemd j Vi, (270 — ), (2P — ko) do

2n j22j1 k1€Z ko€Zj, [t,s]

in the same way.
It only remains to find an estimate for

j1(1—H1)9ja(1—Ha) k1,k2 7k1,k2
DD I I I 2 e
J15n ja> g1 ki€Z kaeZ, [t,5]

and thus, recalling Lemma 2.1, we reduce the problem to first bound, for j > n and
¢ {j,j+ 1}, the sums

Z Z 65127k21‘;€27k27 (336)
k1€Z5 (t,5) ka€Z[t,s]

Z Z 6?’1€7k21‘i2’k2a (337)
k1€Z7 (t,5) k2€Zy[t,s]

Z Z géclp,kzljklﬂ,kz (3.38)

k1€Z;(t,s] ko€Zy[t,s]

on Q* ~ €. Let us consider (3.36) with ¢ = j, the argument for £ = j + 1 and (3.37) being
similar. Using again Lemmata 2.1 and 3.6, we have on Q* n Q, since for all k; € Z,[t, 5],
|ko| <27, forj =n

277 - -
}C1€Z<(t S) ’CQEZ 1 2

<cc )] Z i«/logi&—k]—i—lkl

k1€Z5 (t,5) kacZ;[ (3 + k2 —

271\/j .
<cc ) Z . Vi —/log(3 + j + |k1])

k1€Z5 (t,s) m= 0 (3 + 27 mins, 1} +m — ki)
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Y
<CC 9=J ‘ d T
lkeZ<t ) \/f (2 + 29 min{s,t} +y — k1)* 0g(3+ 7 + [ka])
1 S

i . 10g(3+j+|k1|)
cocans Y LEBITRD
k1€Z5 (t,5) (2 + 29 min{s, t} — k1)

< C’C127j\ﬁ\/log(3 + j + 2/ min{s, t}) < CC1277;. (3.39)

It follows that

Jj+1
j(Q—Hl—HQ) kl k2 k17k2 n(l—Hl—Hg)
Z 2 ) IJ v < CCq2 n
j=n l=3 k1€Z5 (t,5) ka€Z[t,s]
and, similarly,
j+1
j(2—H1—H>) ki,ko 7k1,k2 n(1—H;—H>s)
D2 eIyt < 002 n.
j=n l=j k‘1€Zj>(t,S) kgEZ@[t,S]

The bound for (3.38) is obtained using (3.29) and (3.28) which lead to

Jj+1
S0 _ ki1,ks 7k1,k
spenm$ 55 g
j=n =3 k1€Zj[t,s] ka€Zy[t,s]
< CCy Z 2j(%_H1_H2)2_%(j —n+1)n

j=n
< CCy2"G—Hi—Ho—%y
= CCy2n =ity

as % < Hy + Hs.
Putting all of these together we get that (3.30) is bounded from above by

C max{Cy, Co}|t — |1 tH2"Log |t — 5|7*
on Q* Q. O
We now prove the main result of this subsection.

Proof of Proposition 3.5. Let us consider w in the event Q* n Q of probability 1, where
O* and 2 are given by Lemmata 3.6 and 3.18 respectively.
If t,s € (0,1), we write

|RH1,H2 (t7w) - RH1,H2 (s7w)|

D I Y s FACL UL

Jji<n ja2<n (k17k2)6Z2

ki,k ki,k
PPN G pe O U]

Jji<n jz=n (k‘l,kz)EZz

+ Z Z Z 971(1=H1)9ja(1—- Hz)gécll,]k;( )ngll,g?[t S]

=n ja<n (kl,kz)EZZ

+ Z Z Z 971 (1—H1)9j2(1- HZ)efll,gk;( )]Jklljl?[t’s] .

=n j2=n (ky,k2)€Z?

EJP 27 (2022), paper 152. https://www.imstat.org/ejp
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The first sum is bounded from above by Lemmata 3.6 and 3.7, the second and the third
one are bounded from above by Lemmata 3.6 and 3.12 and the last one is bounded from
above by Lemma 3.19. O

Remark 3.20. Starting from now and until the end of this section, one can focus on the
process

+00 400

j1(1—H1)oj2(1—Haz) ~k1,k2 vhi,kapn |
Ryom(t) =3 2 D, 2 2 €t ia L ia 105°]
J1=0 ja= O(kl kQ)EZz

because almost surely, it is the most irregular part of Ry, r,. Indeed, using different
estimates obtained in this subsection, one can see that, almost surely, there exists a
constant C' > 0 such that, for all s,¢ € (0, 1),

k1 ko 7ke,k
Z Z Z 91 (1—H1)gja(1—Hz) o ]11j22Ij11j22[t sl <Ot — s,

71<052<0 (ky,k2)€Z2

DO DL enGsHagRQat) ke by o]l < CJt — 5|72 log |t — 5|7

]1 »J2 701,72
71<032>0 (k}l kQ €72

Z Z Z 2]1(1 H1)2]2(1 Hos) k1,k2[k1,k2[t 8] <C|t—8|_H1 10g|t—8|_1

]1 »J2 T J1,J2
j1>0j2<0 (k17k2)€Z2

and we conclude because Hy + Hy — 1 < min{Hy, Ho} < 1.

3.2 Ordinary points

Let us now focus on the almost sure finiteness of the limit (1.7) for almost every
point. The main idea behind our method is that wavelets which contribute the most in
|Rp, m,(t,-) — Ru, .1, (s, )| are the ones with associated dyadic intervals “close” to the
interval [t, s]. Thus, we aim at proving the following Proposition.

Proposition 3.21. There exists an event (),.q of probability 1 such that for all w € Q4,
for almost every t € (0,1),

lim sup |RH1’H2(t’w) _RHl,H2(57W)|
st |t — s|HitHa=loglog [t — 5|1

< 400.

As in [18], for all j € IN, we denote by k;(t) the unique integer such that ¢ €
[k;(t)279, (k;(t) + 1)277). In other words, k;(t) = s(\;(t)). Ift € (0,1) is fixed, apply-

ing Lemma 3.6 to the sequence of random variables (§k1’k2

J1,52 )(j1»j21k,17k/2)€Z4 defined by

gkllak/z _ Elfll"'_'kj1(t)’k/2+kj2(t)
1,72 J1,J2
we deduce the existence of (2}, an event of probability 1, and C;;, a positive ran-

dom variable with finite moment of any order, such that, for all w € Q} and for each
(41,72, k1, ko) € Z*, one has

€22 ()] < Cun(w)y/los(3 + ] + k1 — Ky, (D)) /108(3 + ia| + k2 — k(1)) (3.40)

In view of this fact, let us set, for t € (0,1) and (j1, j2, k1, ko) € IN? x Z2

L2 (1) = flog(3 + 1 + [k — ki, (D))o (3 + o + k2 — ki (1)),

EJP 27 (2022), paper 152. https://www.imstat.org/ejp
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In what follows, we show how to modify Lemmata 3.7 to 3.19 from the previous subsec-
tion, using lel ’ka( ) instead of lel ’ka Before all, we need the following Lemma which is
inspired by results from [18] that can be extended in our case.

Lemma 3.22. For all L > 2 there exists a constant C, > 0 such that, for alln € IN and

t,s€(0,1) such that2 ™ ! < |t —s| < 27", forall x € [s,1]

1. Forall0<j<n

Z:\/Iogi’)—+j+|l<: kj(t)]
B+ [z — k)L

< Cp/log(3 + 7).
keZ

2. Forallj =n

V1og(3 + j + [k — k;( .
14/1 .
];Z 3 T |27$ — k|) OL\/j n + \/og(S +])

Proof. Forall je N, k € Z and x € [s, t], observe that
|k —k;(t)| < |k — 22| + 270 — 274 + |27t — k;(t)| < |k — 272 + 297" + 1. (3.41)

If 0 < j < n, then it follows from (3.41) that |k — k;(¢)| < |27z — k| + 2 which allow us
to write, thanks to inequality (3.11),

A/log(3 + j + [k — kj( \/logT\/lOg(5+|2jx_k|)

3+ [29x — k) |27 — k| + 3
< Cy/log(3 + 7).

where C := sup,-q (W) and we conclude using the boundedness of the function

1
£ (3.42)
DY G

forall M > 1.
Now, if j > n, from (3.41) we get |k — k;(t)| < |27z — k| + 297" "! and thus, again by
inequality (3.11),

\/1og(3 + 27z — kI)
|27z — k| + 3

Vog(3+j + [k — k; (1)
B+ 27z — k|

< +/log(3 + 29—7+1)4/log(3 + j)

< C'\/j —n+ 14/log(3 + j).

where C’ := v/3sup,~, (bi(r?;fw) and the conclusion comes again from the bounded-
ness of the function in (3.42) for all M > 1 O

Lemma 3.23. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)

we have
2 2 Z 2]1(1 H1)2]2(1 Hs) Lk?l k2 Ikl,k2 t, S
J1 Jz J1,J2
0<j1<n 0<j2<n (ky,k2)€Z2
< Ot — s/ H2"1oglog |t — s| L.
EJP 27 (2022), paper 152. https://www.imstat.org/ejp
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Proof. If € € [s,t], we get from the fast decay of the fractional antiderivatives of ¥ (3.7)
and inequality (3.40), for 0 < 71,72 < n,

S LR O, (27 — k), (2726 — ko))

(k1,k2)eZ?

<cC (Z \/10g3+j1+|k1 > (Z \/10g3+j2l+|k2 —§€j2(t))>'

4
Kz 3 + |2]1€ kl — 3 + |232§ — ko

These last two sums are bounded by the first point of Lemma 3.22. Using

n—1
Z 971(1—Hx) log(3 + j1) < CQ"(l_Hl)m (3.43)

j1=0
instead of (3.10), we conclude, just as in Lemma 3.7, that the desired inequality holds. O

Lemma 3.24. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
and 0 < j; < n < jo, the quantities

kl,k ki1,k
Z Z le,J; ‘Ijl ng t § ‘ (3.44)
K1€Z ko€ Z (1.5)

k ,k k1,k
Z Z LJ11 ]22 ‘Iﬁl]; t s ‘ (3.45)

kiL€Z kr€Z7 (t,5)

are bounded from above by C\/js — n + 14/log(3 + j1)+/log(3 + j2)2772.

Proof. Let us prove the bound for (3.44), the argument for (3.45) being similar. We have,
by the first part of Lemma 3.22, for 0 < j; < n < ja,

(3.44) < C/log (B + 1) f g VIoeB i Tk kL0,

[:8] kyez5 (1.9) (8 + 2722 — kol)*

and, as for all k; € Z; (t,s) and x € [s, ] we have
ke — g (D] < (220 — ko] + sy (8) — 2] <[220 — ko + 227" + 1

and, by inequality (3.11),

\/log(?) + ja + ko — Ky, (1)]) < Cr/G2 — n + 14/1og(3 + ja)/log(3 + [2722 — ko)

it just remains us to use the bound (3.14) to write

(3.44) < Cr/jo — n + 13/1og(3 + j1)/log(3 + ja)2772. (3.46)
O

Lemma 3.25. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
and 0 < j; < n < jo, the quantities

min{s,t} ) )
ko) em e - kv 2R - k) do (3.47)
k1€Z ko€Zj, [t,5] —®
Z L35, (t) J Y, (2" — k)Y, (2720 — ko) do (3.48)
k1€Z ko€, [t,5] max{s,t}
are bounded from above by C+/log(3 + j1)1/log(3 + j2)v/j2 — n + 12772,
EJP 27 (2022), paper 152. https://www.imstat.org/ejp
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Proof. Again we assume s < t. First, using the fast decay of the fractional antiderivatives
of ¥ (3.7), (3.47) is bounded from above by

de. (3.49)

f S OY V30g(3 + 1 + [k — kj, (B)]) v/log(3 + ja + [k2 — kj, (£)])
P ki1€Z ko€Zj, [t,s] (3 + |2J1x B k1|)4 (3 + |2J2I B k2|)4
Observe that, for all k; € Z, ks € Zj,[t,s] and = € (—x0, s], we have, as j; < n < jo,

20y — 2N TR oy | 2912 gy — 2704 4 |2708 — Ky, (1)

|27 — Ky, (8)] <
<222 — ko| + 2

|
|
and therefore |k — kj, (t)| < [27' 2 — k| + |2722 — ko| + 2 while |ky — kj, (8)] < |ko — 272¢| +

|292¢ — K, (t)| < 2727 + 1. It allows to write, thanks to inequality (3.11), the boundedness
of the function (3.42) and inequality (3.15)

s dx
3.49)| < 1 ] 1 ) o — 1 -
(2.4 < O/hog(8 + 1) /log(8 + fal/a —n + JOO,MZZ CRAT S

< C/1og(3 + j1)\/10g(3 + j2)A/ja — n + 12772,
We bound the second sums in the same way. O

Lemma 3.26. There exists a deterministic constant C > 0 such that, for allt,s € (0,1),
the quantities

DIEDNEDIEE S UL

0<j1<n j2=n (k1 ,ks)€Z2
k1 .k k1 .k
I N M e Ul U
J12n 0<g2<n (ky,k2)eZ2
are bounded from above by C|t — s|f1+H2=1oglog |t — s|71.
Proof. The proof is exactly the same as the one of Lemma 3.12 except that we use

Lemmata 3.24 and 3.25 instead of Lemmata 3.10 and 3.11 respectively and that we
conclude using again (3.43) instead of (3.10) and

+00
D27y —n 4+ 13/log(3 + ) < €272 /log(n) (3.50)
j2=n

instead of (3.20). O

Lemma 3.27. There exists a deterministic constant C > 0 such that, for all t,s €
(0,1) and n < ji < jo, the quantities (3.44) and (3.45) are bounded from above by
CVjz —n+ 1/ji — n+ 14/log(3 + j1)4/1og(3 + j2)2772.

Proof. The proof is exactly the same as for Lemma 3.24 except that, here, we use the
second part of Lemma 3.22 instead of the first one. O

Lemma 3.28. There exists a deterministic constant C > 0 such that, for all t,s €
(0,1) and n < j; < jo the quantities (3.47) and (3.48) are bounded from above by

Cvji—n+1yj—n+ 1\/10g(3 + jl)\/log(:} + j2)2*j2_

Proof. The proof is exactly the same as for Lemma 3.25 except that, here, we use the
second part of Lemma 3.22 instead of the first one. O
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Just as we did for the rapid points, it remains us to bound the random variables Z;(\).
Here, we don’t want anymore to show the existence of an uniform modulus but only a
pointwise modulus of continuity at a fixed point of interest ¢t. Therefore, we just have to
bound, for all n € IN the random variables Z;()) for j > n and A € 3\, (t). We thus have
the following result.

Lemma 3.29. For all ¢t € (0,1), there exist an event ﬁt of probability 1 and a positive
random variable C; ; with finite moment of any order such that, on ),

Vne N, VA€ 3\ (t), Vj = n, Z;(N) < Cra (j — n + 1) log(n). (3.51)
Proof. If t € (0,1) is fixed and 0 > 0, let us define the event
An(t) = {YA e 3N (t) Vi =, Z5(\) < O(j —n + 1)log(n)}.

Similarly to Lemma 3.18, we get

P(An(£)) < C Y 220 exp(—CO(j — n + 1) log(n))

j=n

< Cexp( 0910g 2243 ™ exp( C’G(j—n)),

j=zn

for a determistic constant C' > 0. Therefore, if we take again § > 4log(2)/C then
Borel-Cantelli Lemma implies the existence of an event (2, of probability 1 and C; 7 a
positive random variable of finite moment of any order such that, on §2;, assertion (3.51)
holds. O

Lemma 3.30. Ift € (0,1), let Qf be the event of probability 1 where inequality (3.40)

holds and ﬁ; be the event of probability 1 given by Lemma 3.29. There exists a positive

random variable C; 3 with finite moment of any order such that, on 1 n ﬁt for all
€ (0,1) the random variable

S Y% an-meomdbpb g @.52)

Ji=nja2>n (kl,kQ)eZz
is bounded from above by C, 3|t — s|H1+H2=1]og |t — 5|71,

Proof. Again, we use the split (3.31) and we only do the details for the first sum. We
deal with the series (3.32) and (3.33) in the same way that in Lemma 3.19 but using
inequality (3.40) and Lemmata 3.27 and 3.28 and finally inequality (3.50).

For (3.34), first, by Lemma 3.28 and inequality (3.40), we have, on Qf n QNt

DD D N N A PR ff’fff Vi (27 — kYo, (222 — ko) da

J1=njo=j1 k1€Z kQEZ]’Q [t,s]
<CCyy Yo > 2= 0 4 14 /ja — n + 14/log(3 + ji1)v/1og(3 + ja)
Jji=n ja2=j1

< CC M ) o0(p), (3.53)

We bound

I T Z % acmpecmd f Vi, (270 — k), (20 — ko) da

=n j22j1 k1€Z ko€Zj, [t,s]
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on Qf N S/Tt exactly in the same way.

To finish the proof again, we have to bound (3.36), (3.37) and (3.38) for £ € {j,j + 1}
(with j = n) on Qf mQt For (3.36), in the case ¢ = j, one can note that, for all k; € Z;[t, s],
lky —k;j(t)] < 277" + 1 and, for all ky € Z5 (t,5), [k1 — k;(t)| < |2/ min{t, s} — ki + 277" + 1.

Using the same tricks as in (3.39), we get, on Qf n fz

1
(2 + |20 min{s, £} — ky])?

(3.36)| < CCra(j —n+1)log(3+ )27 )]
k‘1€Zj<(t,S)

<C(—n+1)log(3+5)277

The bounds for (3.37) and in the case ¢/ = j + 1 are obtained in the same way. Finally to
bound (3.38), we use (3.51) and (3.28) and get on f n Q,

j+1

Z 93 (2—H1—Hz) Z Z Z E;ﬁzkzIJk},kz

j=zn =3 k1€Zj(t,s] ko€Zy[t,s]

< CChp Y, 2G=M=H9=5 (j 1 + 1) log(n)

j=n

< CC, 2" Hi=H2) 190 (),

We conclude that (3.52) is bounded from above by C max{C 1, C; 2} |t — s|H1 T H2"11og |t —
|7 on QF A Q. O

We can now prove Proposition 3.21.

Proof of Proposition 3.21. Let us fix ¢t € (0,1) and consider w € Q¥ n ;. Forall s € (0,1),
we write!

|Rlyy, 11, (t,w) — Ry, g, (5,w)]

Y Y% e b

0<j1<n 0<j2<n (kq,k2)€Z?

DD YD A e S () el ()

0<ji<n j2=n (ki,k2)eZ?

+ Z Z Z 9i1(1=H1)9ja(1- H2)5f11,]k;2( )ngll,j]?[t s]

J1=2n 0<jo2<n (ki,k2)€Z?

Hu k2 IR @L ).

=n jo=n (kq,k2)€Z?

We bound from above the first sum by inequality (3.40) and Lemma 3.23, the second and
the third sums by inequality (3.40) and Lemma 3.26 and the last sum by Lemma 3.30.

Using inequalities (3.50) and (3.53) and Remark 3.20, one can finally write that for
all ¢t € (0,1), for all w in the event of probability 1 Qf n Q,

‘RH17H2 (t’w) - RH17H2 (va)l

lim su < 4+
i |t — s|HitH2=1]oglog |t — 5|1
and we conclude by Fubini Theorem. O
1We recall that R}{ ., 1s defined in Remark 3.20.
1,412
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3.3 Slow points

In this section, we aim at showing that the generalized Rosenblatt process admits
slow points: we prove the following Proposition.

Proposition 3.31. There exists an event (), of probability 1 such that for all w € (g,
there exist t € (0,1) such that

|RH17H2 (tvw) - RH17H2 (S,UJ)‘
|t — s|Hi+Ha—1

lim sup < 400. (3.54)

s—t

In [25], Kahane described a procedure to insure the existence of slow points for the
Brownian motion. This procedure was then generalized in [18] to fit for any arbitrary
fractional Brownian motion. It consists in showing that for any m > 0, almost surely,
there exist u > 0 and ¢ € (0, 1) such that, if one sets

AJ(t) = {Ae Aj: [s(A(1) —s(N)| < 1} (3.55)
and, forall1 <!
AL(t) = {he Ay, 2m07D < [s(A(F) — s(V)] < 2™}, (3.56)
then, for all A € Al(t) we have
lexl < 2'p, (3.57)

where ¢ is the random variable 2% SR ¥x(z) dB(x). In this procedure, if p € IN, for all
J;le Ngand X € Aj, A < [0,1], we define

Aji(N) = N e Ay, [s(h) = s(V)] < 2™}
and the random set
St={Nehy: 2p<ex| <2 p}
Finally we consider the random set
I;‘ ={AeAj, A< [0,1]: Vle Ny, Aj;(A) n S;.fl = 0},

and show that almost surely, there exists . € IN such that

Sea=1{1 JAr#0

Jj€No Xelt

which is equivalent to the fact that, for any J

Stws =1 U Ax#0

i<J )\eI}‘

as (S{;W_’ ;)7 is a decreasing sequence of compact sets. To do so, let us denote by 2S{éW7 J

the sets of dyadic intervals of scale J + 1 obtained by cutting in two the remaining
intervals® in Sj;, ; and remark that Sj;, ;. is obtained from 25|, ; by removing the

dyadic intervals A such that Aj;1,:(A) N S%,,, # 0 for al e INy. But now, if § ~ N(0,1),
we set, for all such al

pi(p) = P2'u < €] < 2 p).

2The interval [k277, (k + 1)277] is cut into [(2k)2=U+D (2k 4+ 1)2=0+D] and [(2k + 1)2-U+D (2k +
2)2-U+1)],
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and note that, if N is the number of intervals of S{(‘Jw s, counting the number of intervals
in 25, ; n S%,,, is a binomial random variable of parameter 2N and p; (1) and this

number is thus bounded by

2N (pi(p) + (1 + D/ pu(w) (X = i)

on an event of probability 1 — (I + 1)~2N~!. Therefore, to pass from S/

17
low,J to S
remove at most

low,J+1 W€

2N 3@+ 1) (i) + (L + D) (L — pie)
=0

intervals with probability greater than 1 — N~!. But if x is large enough, as p;(u) is of
(22

order % one can make sure that this last term is bounded by % So, if N/ is the

random variable counting the number of subintervals of S}, ;, we have

O~ §N5‘|N“ =N)=1-N"!

which leads to the recursive formula

. 3 2 L
P(Njyy = (57 = (1= (9))PWN] = (5)7), vJe N,

see [18, Lemma 3.6 and Theorem 3.7.]. Finally, we deduce

P(J () (N =1) =1 (3.58)

n JelNg

Moreover, we can show that, in this case, S, n (0,1) # 0. If a > 0, applying this
procedure with % < « gives us that any point ¢ € S, . n (0,1) is a slow point of the
fractional Brownian motion of exponent a.

From formulas (3.1) and (3.2), we see that this procedure is also useful to bound the
random variables appearing in the expansion (3.3) of the generalized Rosenblatt process.
But, from the proofs of Propositions 3.5 and 3.21 we know that this is not sufficient and
we also need to give a bound for the random variables Z;(A), for A € 3\,,(¢t),n € IN and
j = n. Such dyadic intervals are precisely the ones in the set A,, (A, (¢)) and this fact
forces us to consider the following modification of the procedure. For all j € IN, if [ # 0,
the sets S;‘ , remain untouched as well as its associated probability p;(x) while for / = 0
we set

S;fo ={NeA,Nc[0,1]: 3" =245;N)> (' =7+ Du},

with associated probability (which only depends on p)

po(p) =PEj" = jE;(A) > (7' —j + Dp).

As Zj/(\1) is independent of =j/(\;) as long as A\; n Ay = 0, for all J € IV, if N is again
the number of dyadic intervals of S|, ;, the number of such intervals in 25, ; n S%,,
is still a binomial random variable of parameter 2N and pg(u). Therefore If y is large
enough, using Theorems 3.14 and 3.15, one can still affirm
+o0 N
2N @™+ Do) + o+ DV () (L= pi() < 5
1=0

and the end of the procedure is saved: equality (3.58) still holds. Now, if ¢t € S

low N (07 1)
we know that

VnelN,VAe3\,(t),V) = n,5;(\) < (j—n+ . (3.59)
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Let us remark that, as for all A € A,,, 5§| < 22,(A) + 1, we still have, in this case, for all
A€ 3\, (t), lea] < Cu, for a deterministic constant C' > 0.

Starting from now we take m such that 1/m < min{H;, Ho} and 2/m < 1 — H; — Ho.

In order to use notations (3.55) and (3.56), here after \; (resp. \;) will always stand
for the dyadic interval [k12771, (k; + 1)2771) (resp. [k22772, (kg + 1)2772)) and 1y, (resp.
1x,) will be the associated antiderivative of wavelet g, (271 - —k1) (resp. ¥, (272 - —k3))
and I, »,[t, s] will stand for Ifllﬁ’j? [t, s]. Finally, £, », will stand for Efj]k; Ifte (0,1), let
(ya(t))aa be the sequence defined by

yr(t) =2 if N e Ag.(t).

Note that, if we apply the preceding procedure, we find {2y, an event of probability 1
such that, for all w € §g,, there exists p for which S{! ~ (0,1) # 0. Then, if ¢ belong to

low

this set, we have, thanks to inequality (3.57) and equalities (3.1) and (3.2)

[exie (@) < Crya, (yn, (1), (3.60)
for a deterministic constant C' > 0. Again, we need to adapt the Lemmata from previous
sections with this alternative upper bound.

Lemma 3.32. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
we have

o2y 2Ry, @y ()]0 st s)

0<j1<n 0<ja<n A1€A; , A2€EA,

<CJt— s|H1+H2—1,
Proof. If £ € [s,t] and A € A,(t), for 0 < j <nand > 1,
1276 — s(\)| = [s(A(t)) — s(\)| — 2 > 2m(=D) — 2

and so, using the fast decay of the fractional antiderivatives of 1 (3.7) and the definition
of (ya)ren, we get for 0 < ji,j2 <n

Z Yx (t)y)\z (t) |w)\1 (5)7/])\2 (5)‘

12260,

= XYY i Oy @l (O 9]

. 2 1 1
(1,12)€NG \; AL (#) A2 AT2 (1)

A EA

oli+la

SO L 2 G k)G k)

l l
(11,12)€No Xy AL (8) A2 A'2 (1)

ol +l29—m(l1+l2)

<C ) X N G RGP

1 l
(11,12)€No Xy AL (8) A2 A2 (1)

1 1
- ' ‘ <¢ (3.61)
kgz (3 + (276 —ka)? k;Z (3 + (2726 — ko)?
It leads, just as in Lemmata 3.7 and 3.23, to the desired estimate. 0

In what follows, we use these notations instead of the one given in Definition 3.8:
Aj<2(t,8) = {)\2 € Aj2 : S()\Q) (S Z;(t,s)},
A7 (t,s) ={ha€ Ay, 1 s(\2) € Z7,(t,5)},
At s] = D€ Ay, © s(he) € Z, [t 5]},
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Lemma 3.33. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
and 0 < j; < n < jo, the quantities

Z Z Yny ()Y, () [Ix; 2, (15 5] (3.62)

A1EA;; A2€AT (t,5)
Yo D v Oyt Iyl sl (3.63)
A1€A, )\2€AJ?2 (t,s)
are bounded by C2w (i2=1)2—j2

Proof. Again, we prove the bound for (3.62), the reasoning for (3.63) being similar. Let
us remark that, if jo, > n x € [s,t] and A\, (z) € Aé»z (t) then, the construction and the
definition of (yx(t))aea gives that

cl<Lt(jp—n)as|s—t[<27",

* if A€ A (2) then [y| < 222'+!) while, by definition, if I, > 1
342722 — s(\)| = 2 4 2m—),

Therefore, if we set Déé (t) = U’\GA§2 ) )\, we have

Gens ¥ Y s

1 W})\l (x)qp)\z ($)| dzx

Mg, AeAs (t.s) [s
(3.64)
< Y Y Y 0] @@l
O\Z<Ti(j2_") A1€A;, AQEA;Z (t,s) Djz(t)

But, forall z € Dé—z, using the same method as in (3.61), but splitting the sums according
to the set A% (z) and A’2 () on which y, (t)ya, (t) < 2/+0+2+1 we get

Z Z ‘5/\1,>\2|‘¢>\1 ($)¢A2($)|

MEAj A2€AS (t,5)

1 1
< 02l+1 _ _ _
Al;;h (3+ 2712 — kq|)3 ME[\Z:@ o (34 |2722 — ko|)3 (3.65)
J2 7

1
< 02l+1 Z _ .
_ 3
A2€AJ.<2 (t,5) (3 + ‘2]2$ kQD

Finally, using the techniques in (3.14), we get (3.62) < 2w (2=n)2J2, O
Lemma 3.34. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)

and 0 < j; < n < j2, the quantities

min{s,t} ) )
> DT unOya () f Vi, (2702 — by ), (2722 — k) dx (3.66)

A€M, A€l [t,s] -

+00
> DT Oy () f Y, (2w — k) m, (225 — ko) d (3.67)

A€, Aa€A, [ts] max{s,t}

are bounded by C2w (l2=1)2—j2
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Proof. Again, we assume s < t. If z € (—0o0, 5] is such that A}, (z) € Aé.l(s), we have, for
all Ay € A (z) and Ay € Aj,[t, 5] N A2 (s) (with j; < n < ja),

Y (D)yrs (1) <O 27 U2 —m)H it 412
B+ 20z — ki) (B + 277 — ka)* (B + 2w — k1 |)A(3 + 2022 — ko)
9 (G2—n)+i+1
CBT e — )P0+ e — )
o 97 (G2—n)
T34 201 — Ky |)3(3 + 2022 — kol)3

(3.68)

because 3 + |22z — ko| = 3 + ko — 2722 > 2 + 271(s — 2) > 2™~V Thus we get,
using the fast decay of the fractional antiderivatives of the wavelet before splitting
the integral over (—, s] into the integral over the sets (—o, s] 1 D}, (s), in the same way
as in (3.64), using (3.68) and finally the boundedness of the function (3.42) for M = 3
and inequality (3.15)

D fwm Yoo ()| do

A1EA ;| A€l [t,s]

1 (s dx
< 2W(32—”>J :
¢ Z Z (3+\2Jlx—k1\) (3 + 2722 — kol)3

DO N1€A;; AaeA,

15 d.]? 1/, .
< CQ;(]Q—TL)J : < 025(12—")2—]2.
. )\2€1§[t,s] (34 |22z — ko|)3

In the same way we get

Z Z Yas (DY, (1)

+00
f le (2j1l‘—k‘1)¢H2(2j2x_k2) dx| < 027j2. O
A1EA;, AseAj, [t,s]

max{t,s}

Lemma 3.35. There exists a deterministic constant C > 0 such that, for allt,s € (0,1),
the quantities

DIND VD S e e OO

0<j1<n j2=n A€M, , A2€A ,

Z 3 > 21 (1=HD 232 (1=Ha)y )y, (8)| Iy 2, [t 8]

=2n 0<j2<n A1€A;, ,A2€A ,
are bounded by C|t — s|fTi+H2—1,
Proof. The proof is exactly the same as the one of Lemma 3.12 excepted that we use

Lemmata 3.33 and 3.34 instead of Lemmata 3.10 and 3.11 respectively. It leads on one
side us to consider the sums

n—1 +00
Z 971 (1—Hx1) Z 2%(.72—”)2—]’21‘12 4 on(1—Hi—Hz)
Jj1=0 J2=n

which are bounded by C2"(1~Hi—Hz2) < O|t — s|H1+H2=1 because L < H,. On the other

I . ki1 ,k
side, if we write I, », for I;'"’* in Lemma 2.1, we have, from it,

Z Z Yx (t)yA2 (t)I)\h)Q

AEAL 1 AaEA,[t,s]
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=S 2h
SR YD VD M o vy i

11=0 )‘IEAillfl(t) A2€A,[t,s]

1
<027 —_ | <027 (3.69)
Ale;n 1)\26§[t€ (3+ |2k1 7k2|)3

O

Lemma 3.36. There exists a deterministic constant C > 0 such that, for all t,s € (0, 1)
andn < j; < j» the quantities (3.62) and (3.63) are bounded by C2w (71— 2w (l2=n)9—j2

Proof. The proof is essentially the same as for Lemma 3.33 excepted that, now, as
n < ji < jo, we remark that if z € D! (t) fora 0 <1 < 1(j, — n) then = € D! (¢) for a
0<l'<L(j1—n). O

Lemma 3.37. There exists a deterministic constant C > 0 such that, for all t,s € (0,1)

and n < j1 < jo the quantities (3.66) and (3.67) are bounded by C2m (11—) 25 (j2=n)9—j2

Proof. The proof is essentially the same as for Lemma 3.34 and the only modification is
the same as in the proof of Lemma 3.36. O

This time, the bound for the random variables Z;(\) are already considered in
the construction and we can directly go to the proof of the main Proposition of this
subsection.

Proof of Proposition 3.31. If we apply the procedure with m such that 1/m <min{H;, Hs}

and 2/m < 1 — H; — Hs, we find an event (), of probability 1 such that, for all w € Qg,,

there is € IN for which S[; » (0,1) # (. Then, if w € Qg, and t € S}, (w) N (0,1) and
€ (0,1), we write

R, m, (8 w) = Ry, 1, (5, w)|

<2 X DI AR LG DN T AW

0<j1<n 0<ja<n A1€A;, ,A2€A,

+ X I WP ) AW [

0<j1<n jo=n A€M, , A2€A ), (3.70)

+ Z Z Z 2j1(17H1)2].2(17}[2)6?11:_;22 (w)IAhkz [t,S]

=2n 0<j2<n A1€Aj, ,A2€A;,

+ Z 2 Z 2j1(17H1)2j2(17H2)€)\17)\2(w)IAhM[t’s]_

Ji=nja2=n )\16[\]‘1 ,)\QEAJ’2

As inequality (3.60) holds, we use Lemma 3.32 to bound the first sum, and Lemma 3.35
to bound the second and the third one. For the last sum, from inequality (3.60) and Lem-
mata 3.36 and 3.37, it just remains us to find bound for the random variables (3.36), (3.37)
and (3.38)with ¢ € {j,j + 1} on {g,. For (3.36) with ¢/ = j, we have, as in (3.69) and
then (3.39)

Z Z EX1, A2 (W)Ikl,AQ

/\1€A].< (t,S) )\QEA]' [t7S]
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. ) 1
< 27 dgmi=—n) 2 Z Z - -
_ 3
AEAT (t,5) A2€A,[ (3 + [2k1 — k)

< C27i2m—m) 2,

The same bound holds when we consider the sums over A\; € A7 (,s) or A2 € Aji1[t, 5],
i.e. for (3.36) and (3.37). Finally the construction and especially (3.59) insures us that

2 Z e (@] SCH—n+1)277 p

)\1€AJ‘ [t,s] AQEAJ [t,s]

Therefore, the last term in (3.70) is bounded from above by

2 ( Z 2j1(1*H1)2%(j1*n) Z 2*j2H22i(j2*n) + Z Qj(%*Hlsz)(j —n+ 1)23)

Jji=n J22J1 jzn

< C,LL2 ( Z le(llesz)Q%(jlfn) + 2”(3H1H2)23>

ji=zn

< C/J22n(1_H1_H2) < Cu2|t _ S|H1+H2—1

and thus inequality (3.54) holds. O

4 Lower bounds for wavelet leaders

In this section, we show that the limits (1.6) and (1.7) are strictly positive. In [7], the
authors used the independence of the increments of the Brownian motion to bound from
below its wavelet leaders. But, for the (generalized) Rosenblatt process this nice feature
is not met anymore. Nevertheless, following an idea by Ayache in a closely related
but different context® [5], we decompose the wavelet coefficients of the generalized
Rosenblatt process in two parts. We gain some independence properties in the first part
while the second is, in some sense, negligible compared to the first, see Proposition 4.6
below. All along this section, C' stands for a deterministic constant whose value may
change from a line to another but does not depend on any relevant quantities, and in
order to ease notations we set

1
U(H = 3) T (He = 3)

CH17H2 =

and for s,x1,2z2 € R

(5,01, @) = (s — 21) 72 (5 — ap) 2702

Let ¥ be a wavelet with compact support included in [—N, N]. Using formula (2.6) at
t = k/27, the wavelet coefficient c;, of the generalized Rosenblatt process is given by

N
T+ k k
Cjk = J-_N |:RH1,H2 (ZJ) — Ry, H, <2j>] U(x)dx

N xz+k
27
= CH1 Ho J J]R2 J‘ le Ho (8 xl,xg) dS dB(iL'l) dB({EQ) d

z+k

27
=CH, . H, J . J f fr, 1, (s, 21, 2) dsdx dB(z1) dB(x2)
R &

3In [5], Ayache does not consider wavelets at all but directly work on Wiener-It6 integrals.
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= cu,, HQJ f f fH17H2(5 21, 73) ds dx dB(x1) dB(xs)

where A := |-, k;’jN]Q, because, as long as » € [-N,N] and s € [k277, (k + N)277],

f(s,x1,x2) vanishes for all 21, x5 outside of A.

. =a= . . . ~M  —M
Definition 4.1. Given an integer M > 0, c;, can be written as c;, = cjx +cj, where

6;’ =cpy,, HQJIM f J 2 le 1, (8,x1,22)dsdxz dB(x1) dB(x2) (4.1)
N i
with
W k= NM k4 N7
Sk 2 7 9]
and

c\jf = CHI,HZJ f f 2 le,Hz(s x1,T2) dsdx dB(z1) dB(x2).
A\)\JW

Remark 4.2. Let us highlight the fact that using time change of variable for Wiener-It6
integrals [38, Theorem 8.5.7], for all j, k, we have that EZ;M is equal in law to the random
variable

CH1,H22 §(H+Ha= UJ

In

N T
J z/)(q:)J fu, Hy (8,21, 2) dsdx dB(x1)dB(z2)
-N 0

with Iy = (—M N, N|?, while FjEM is equal in law to the random variable
) / N T
cHl,HQQ_J(H“’H"’_UJ J 1/)(37)J fr 1, (5,1, w2) dsdx dB(x1)dB(x2)
; 0

with I}, = (-0, N]>\(-M N, N]%.
Definition 4.3. For all (j, k) € N x Z and M € IN we define the random variables

—~M —M
~M Cjk —M | Cjk

Ej = ———"—  and¢; —_— .
gk 9—j(Hy+Hz—1) Bk T 9 (Hy+ Ha—1)

Remark 4.4. Note that £, and £;,," are independent when
A N =0. (4.2)

Indeed, if (f;); is a sequence of real-valued step functions on R*\{(z,z) : = € R}
which converge to the integrand with respect to dB(x1)dB(z2) in (4.1) then the integral
81/1{2 fi(z1,22) dB(x1)dB(z2) is a polynomial function of a finite number of increments
B(ty) — B(t1) of the Brownian motion for some ¢y, € )\% Thus gj‘,;M is measurable
with respect to the o-algebra generated by these increments

ok = o ((Blt2) = B(h) : ht2 € ML)

Using the independence of the increments of the Brownian motion, one concludes that
o% and UJ‘?  are independent as long as condition (4.2) is met and so the same holds

~M —~— M — M . .
for g5 and €, w"'. Moreover, €jiki +---1E5.kn  are independent when the following
condition is satisfied

A A, =0foralll<i<I<n. (4.3)
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This leads to defining the following condition.
Definition 4.5. Let n > 2. We say \j, r,,..., A}, .k, Satisfy condition (Cy) if (4.3) is

satisfied.

From Remark 4.2, we know that (sTZM) .k is a family of identically distributed second
order Wiener chaos random variables. Moreover, ;, r, Mo 2 Ejmon M are independent
as long as Aj, k,,.-.,Aj, k, satisfies (Car).

Our aim now is to provide a lower bound (independent of M) for the tail behaviour of
the random variables &;;, M To this end, we start by proving the following lemma.

Lemma 4.6. There exist three strictly positive deterministic constants Cy g, m,,
Cy.m, 1, and C§, g, p, such that for all (j, k) €e N x Z and M > 2 one has

9—i(Hi+Hz=1) < HgﬁM =i (Hy+Hz—1)

/
C‘P’Hth < C‘P,Hl,H2

L3(Q)

—~—M

ik 27j(H1+H271)MmaX{H1,Hz}fl

*
< Cy m, m,

L2()

Proof. Let us assume, w.l.o.g. that H; > H,. We define the functions

N x
Dy : (21,22) Hf \I'(x)J- f, Hy (8,21, 22)ds dz,
_N 0

N x
Dy ¢ (21, 22) r—»f \Il(x)f [, Hy (8,22, 21)ds dz,
-N 0

and the symmetric function* ® = % (@1 + ®3). By Remark 4.2 we have, using the “Wiener
isometry” 5 [42, Section 5],

Cik

NM‘

e = V2epy 2 D [

and thus it suffices to take Cu, i, 1, := vV2¢m, 1, [P 12—y ny2) @04 Cy g, ar, 7= V2¢m, 1,
I®[ 22 ((—o0,n72)- Now, still using Remark 4.2 and “Wiener isometry” we have

—M
Cjok

_ —j(H1+H2—1)
iy~ V2 @
< \/ECH17H22_j(H1+H2—1) H(I’lHL?'(I;u) .
Also as
Iy = (=20, NJ*\(=MN, N> € R x (=00, =M N]|_J (=0, =M N] x R,

we write

2
(@122 11,

)
J,

—-MN N 5 . 2
<[ (f W@l [ e >H2—2dsdx) dor da
< 1)y 2) 4 1dz2

RJ-co  \Jow [0.2]

4The function & is in the fact the symmetrization of ®;.
SFor f a symmetric function in L?(RR?), and I2(f) the second order Wiener-It integral of f, one has

E(I2(£))? = 21Ifl L2 (m2)-

2

dzy dzs

N T H,_3 Hy 8
f \Il(nc)f(s—gcl)Jr 2(s—w2), 2dsdx

v =N 0

N

2
N , \
(JN |V ()] J[o ](s - m)fki (s — arg)frEds dm) dzq dxs
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—MN [ N , 2
Hi—32 Hy—3
+J f J | U (x) (s—x1)y *(s—w2)) Z2dsdx| dxgdz.
RJ-w —-N [0,2]

Let us deal with the first term in the last sum, the second one can be treated similarly by
permuting the roles of H; and H; as well as x; and x,. As the function y — yHl*S/Q is
decreasing, one gets

—MN [ N - s 2
J J f |W(x) (5_$1)+17§(5—$2)+27§d8d$ dx1 dxo
RJ-o -N [0,2]

([ s ([ o]t

Concerning the first integral, we have, as M > 2

N

2
dx) dzs.

- 2H,—3 1 2H, -2
N — TP dry = ———— (NM — N)77
f_w ( 1) 1 272H1( )y
1

_ oy 2H1 N2H172(M o 1)2H172
< C'M2H1_2

while, using again the “Wiener isometry”,

JR (J_NN |V ()] f[o,m] (5 — 29) 12732

<oN |, sw |
ze[-N,N]JR

2
d;v) dzo

f (s—wg)fz_?’pds
[0.2]

2

d.ﬁg

—2N ¥, sw E||Bu, (@) - Ba, 0)|
ze[—N,N]

<2N [T, sup  C, (l2])*™ <,
z€[—N,N]

where By, denotes the fractional Brownian motion with parameter H. As a result, there
exists a positive constant C, ,; ;;, such that, as we suppose H; > H3, one has

(H1+H2—1)MH1—E

« —j
< Cy 1,2

~—M
Cjk

L2(Q)
Proposition 4.7. Let M € IN and y € R". If M and y are large enough, then the exists a
deterministic constant c, > 0 (independent of M) such that
~ M
Id <|sj7k | > y) > exp (—cay) (4.4)
for all (j,k) e N x Z

Proof. Fix y € R", large enough. By Lemma 4.6, one can remark that as M — +oo,
(E;;M) ar converges in L?(Q) to the random variable
o €.k
Cirk T 9—j(Hi+Hz—1)
with, for all M € NN,

~—M _ —~—M
Eik — &k =&k -
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By Theorem 3.15, there exists a constant ¢; > 0 such that, for all A € A and y sufficiently
large

P (lej x| = y) = exp (—c1y).
Then, for all M € IN, we have, for all such A and y

P (15512 y) = P (155" = v} n (52" < )
> P ({leinl = 153" = v} 0 (155" < w})
> P ({lejnl = 20} 0 {1555 < 0})
P (el > 29) — P (55| > ) -
Using Lemma 4.6 and Theorem 3.14 one has
P (155 > ) <P (1551 > o |55

< eXp(*C(O\;,Hl,HQ)71M17max{Hl’H2}y)~

* —1 a3 s1—max{H;,H2}
G )

Thus, if M is large enough, one has, as 1 — max{H;, Hy} > 0,

x . 1
eXP(_C(CS,Hl,H,,)_lMl_mdx{Hl’Hz}y) < 5 €XP (—2c1y)
which gives that, for all large enough y, one gets

P (Iég ko> y) exp (—c2y)
with ¢y := 2¢;. In the sequel, we will implicitly always consider such large enough M. O

In the following two subsections, Lemmata 4.9 and 4.12 follow the lines of Lemmata
3.6 and 3.8 in [7] respectively, with some subtle modifications as the authors in [7] deal
with N (0,1) random variables while, here, we focus on random variables in the second
order Wiener chaos that depend on the parameter M. For the sake of completeness and
clarity, we write the proofs in full details.

4.1 Ordinary points
In this section our aim is to prove the following proposition.

Proposition 4.8. There exists Qf < ) with probability 1 such that for all w € Qf and
Lebesgue almost every t € (0,1) one has

lim sup d;(t, )

msup o= Fh+ a1 Tog ] > 0. 4.5)

To this end, as a first step, let us state the following lemma concerning the random
variable sN,\M. If A = \j; is a dyadic interval and m € N, S, = S, r,m stands for the
finite set of cardinality 2™ whose elements are the dyadic intervals of scale j +m included
in \; x, formally speaking S; k.m = {A€ Ajim : AT Ak}

Lemma 4.9. There is a deterministic constant C > 0 such that the following holds: for
all M € N and for all t € (0,1), there exists ;1 < Q with probability 1 such that for all
w € Q1 there are infinitely many j € IN such that

max ’&M(w)‘ > Clog j.
Ne S,\,Uogz(NM)JJrz
AE 3)\j (t)
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Proof. Let us fix t € (0,1) and j € IN. For any \ € Sjk;(t),m, there exists a unique
decreasing finite sequence (I,,)o<n<m Of decreasing dyadic intervals in the sense of
inclusion such that Ip = Ajx, 1), Im = A and I, € Sj ;. (+),n- Then, define the sequence
(T)1<n<m of unique dyadic intervals such that I,,_y = I,,uT,,. Note thatforall1 < n < m,
T, € 3I,. Moreover, as (I,)o<n<m iS decreasing, (7,)1<n<m are pairwisely disjoint.
Furthermore, for every n € {1,...,m}, there exist T, = \j &, € S7, |log, Na|+2 Such
kn—NM k,+ N
that < L ,
2]71 2]77,
(5;7; M) are independent as the dyadic intervals (7),)1<n<m Satisfies condition
" 1<n<m

) c T,. As a consequence, the associated random variables

(Car) in Definition 4.5. Next, for a constant C' > 0 to be chosen later, we set

(‘:j,m(t) = {UJ € : max E}ZM‘ = Clog(2m)} .

1<n<m

Note that, as the random variables (EF M) are independent,
" 1<n<m

P (& m(t) =1— ﬁ P (‘gTvM] < c1og(2m))
n=1

Recalling (4.4), and the fact that log(1 — z) < —z if « € (0,1), one gets, for m is large
enough,

P (&m(t) =1 — (1 —exp(—Cczlog(2m))™
Cea\ ™

i (1 () )

2m
>1 m
=1 —exp W

m1—002
—1—exp< 5Ce >
Finally, choosing C such that 0 < C'c; < 1, one obtain that ZPG]N P (Egp 20 (1)) = +00.

Knowing that the events &:» 2»(t) are independent for all p € IN, one concludes using
Borel-Cantelli Lemma that

m——+00

P (lim sup Eam gm (t)) =1
It follows that for a fixed ¢ € R, almost surely, there are infinitely many j € IN such that

max &M(w)’ = C'log j. O
N € S llog, NM|+2
A€ 3)\] (t)

Concerning the “non-independent part” of the wavelet coefficients, one can state the
following Lemma.

Lemma 4.10. There is a deterministic constant C’' > 0 such that, for all M € IN and for
allt € (0,1), there exists €, » < Q with probability 1 such that for all w € Q; o there exists
J € N such that, forall j = J,

max E\/)\/M(UJ)‘ < C/MmaX{Hl,HQ}_l log]
N e S)\,[logQ(NM)J+2
AE 3)\j (t)
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Proof. Let us fix t € (0,1). For any C’" > 0, for all j sufficiently large and X € 3);(¢t), we
have, by Theorem 3.14,

P (3)\/ c SA,[logZ NM|42 ’E\/)\'M‘ > O pymax{Hi, Ha}—1 logj)

< Z ]P (’&M)‘ 2 C/MmaX{Hl,Hg}fl log‘j)
NESK llogy NM]+2
M Y -
< Z P <‘€>\/ > C,(C$,H1,H2) 1”5)\/ HL?(Q) 10gj>

NESA llogy NM|+2

< ANM exp(~CC'(CF g, 1,)” " log j)

Thus, for ¢/ > C¥ ,, . /C, the conclusion follows by Borel-Cantelli Lemma. O
s 411,412

Proof of Proposition 4.8. The constant C' and C’ of Lemmata 4.9 and 4.10 being deter-
ministic and independent of M, on can choose M large enough such that

O _ C/MmaX{H17H2}71 > O

Let us fix ¢t € (0,1) and consider w € ;1 n §, 2, where the events, of probability 1, Q; 1
and 2 » are given by the same Lemmata. For all J € IN, by Lemma 4.9, there exist j > J
and X (j) < 3)\;(t) of scale j' = j + |log NM| + 2 such that

)" (@) 2 O D g .
If J is large enough, we also have, for all such 5 > J, by Lemma 4.10,

%M(W)‘ < C/MmaX{Hl’H2}7127j,(H1+H271) logj

From this we deduce that
d;(t,w) = ‘CX(]»)(w)’
> |57 )] - 57, @)
>0—J'(Hi+Hz~1) log j <C’ _ C/Mmax{Hl,Hz}A)
> /e (AN )T og (¢ — ¢/ et e 1)

Therefore, (4.5) holds true for all ¢ € (0,1) and w € ;1 N 2. The conclusion follows
then from Fubini Theorem. O

4.2 Rapid points
In this section our aim is to prove the following proposition.

Proposition 4.11. There exists Q)5 < Q) with probability 1 such that, for all w € 2%, there
existt € (0,1) such that

dj(t,w)

li _
ISP 550 57

> 0. (4.6)

As in the previous subsection, we start by working with the random variables [—S\M.

Lemma 4.12. There exists a deterministic constant C > 0 such that for all M there is
Qo < Q) with probability 1 such that for all w € Q5 there exist t € (0,1) such that

—~ M

EN;(t) (w)‘
limsup ——— > C. 4.7)
j—+o0 J
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Proof. Let us fix a € (0,1) and C > 0 to be chosen later on. For every (j,1) € IN x
{0,...,]290=2] — 1}, we set

Sy =112 /2NM)],..., (1 +1)|2% /(2N M)] — 1}

and consider the event

J
keSM

Ezt/l[ = {weQ : max EWMM(W)‘ > Cj}

Let jo be the smallest integer such that [2%7 /(2N M)| > 1. If we assume that

%= AN (4.8)

230327 1€{0,...,[20(0~®) | -1}

is an event of probability 1 and we consider w € Q. For every j > jo, denote by

GM(w) = (ke fo,.... 2 —1} ; mM(w)] > Cj). (4.9)
Moreover, for every n > jp, one considers
, k k+1
O) (w) = | JUM(w), where UM(w):= | <2jzj> (4.10)
j=n keGM (w)

If one proves that O} (w) is dense in (0, 1), then by Baire’s theorem the set N, j, OM (w)
is non-empty and let t be an element of this set. Then for every n > jo, thereis j > n

such that ‘%M (w)) > ('j, and so desired statement (4.7) is true.
We still have to prove two points:

1. OM(w) is dense in (0,1).
2. Q3 is an event of probability 1.

Indeed, starting with statement 1, consider ¢ € (0,1), j > jo and k such that A;(t) = Aj k.
Then, we have two cases:

Case 1: Thereis /€ {0,...,|27(!=%)| — 1} such that

ke{l297],...,(L+ 1)[2] — 1}
Using (4.8) and (4.9), there is k' € {I|2% /(2N M)],..., (1 +1)|2% /(2N M)| — 1} such
that 2k'NM € G;(w). Then, by (4.10), (QNMkJ, QNM]{.’J * 1> c OM(w). which is

2i 2i
at distance at most 277 (|2%] + 2N M 2% /(2N M)]) from ¢. Finally, we get that ¢ is
at a distance at most 227(*~1) of UM (w).

Case 2: k € {|27079)|[279],...,27 — 1}. Again by (4.8) and (4.9), there is k' € S}
such that 2k’'NM € Géw (w), and similarly, we get that ¢ is at a distance at most
c27(@=1) of UM (w), for some constant ¢ > 0 depending only on N, M and a.

Finally, in both cases t is at a distance at most ¢27(*~1, and so the density follows.
Now for statement 2, in order to prove that Q2 has a probability 1, it is enough to
prove that

P|c N £ (4.11)

s
1e{0,...,[200 =) | -1}
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is the general term of a convergent series, then the result follows by Borel-Cantelli

Lemma. Note that the variables ; 3n a7k " (w), k € SMandl€{0,...,[27="| — 1}, are
independent because for every k # k/, [2NMk — 2NME'| = 2NM and so A\, x) 0
Aharne = 0. Consequently, one has

Ple N £
1e{0,...,|200-) | -1}

. N I
1€{0,...,[27(0~®) | -1}

s- I e IT e (e < )

1€{0,...,|270-) | -1} keSM
, j(1—a)
=1- (1 —(1-P(e| > Cj))l2‘”/<2NM>J) 2
sl—exp (Qj(l_“) log(1 — pj>) (4.12)

where ¢ is a random variable belonging to the Wiener chaos of order 2 distributed
according to the (£3)xea and p; = (1—P (|e| = ;)N Remark that p; is a
positive term that tends to 0 as j — +o. Indeed, using the fact that log(1 — z) < —x if

x € (0,1) together with (4.4), there exist J € IN such that for all j > J,

0< py <(1—exp (—C ey j))127/CND]

20
<exp (— {QNMJ exp (—Cczj)>

<exp (—C"exp (log2¥) exp (—C ¢z j))
<exp (—C"expji(alog2 — C¢)) (4.13)

where C’ depends only on NV, M and a and c; is the constant given in (4.4). It is enough to
choose C' such that alog2 — C ¢y > 0 to deduce that and so p; — 0 as j — +o0. Similarly,
one can get forall j > J

0<2079p; <exp (—C’expj(log2 — Ccs))

which indeed shows that 2/(!1~%)p; tends to 0 as j — +co. Now, using the fact that
log(1—2) = —x+o(x) and exp () = 1 + 2+ o(x) as  — 0, together with (4.12) we obtain
that for all § > 0

P|C m 5% < 2/1-9) (06(pj + dp;) + p; + 0pj)
1€{0,..., |29~ | -1}
for j large enough. Using the upper bound in (4.13), one can finally conclude that (4.11)
is indeed the general term of a convergent series. O
Concerning the random variable sVAM, one can give an almost sure upper bound.

Lemma 4.13. There exists a deterministic constant C' > 0 such that for all M there is
Q) < Q with probability 1 such that for all w € ), there exist J € IN such that, for all
j=J, forallxe Aj, A< [0,1],

53 (@) < O/ pmtitFal
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Proof. If C' > 0, for all j sufficiently large, we have, by Theorem 3.14
P (33 A5 A€ [0.1] 5 |5 (w)] > Crametmsi=1;)

< Z P (’Ev)\zb1<w)‘ > C/Mmax{Hl,Hg}—1j>
XeA; Ac[0,1]

<2 exp(_écl(C&‘l,H1,H2)71j)

and thus, if C" > log(2)Cy 4, p,/C. the conclusion follows by Borel-Cantelli Lemma. [
Proof of Proposition 4.11. Again, one can choose M large enough such that
C — C/Mmax{Hl,Hg}—l - O,

where C and C’ are the constant given by Lemmata 4.12 and 4.13 respectively. Let us
consider w € Q3 := Qs N Q) where the events, of probability 1, 2, and 2} are giving by
the same Lemmata. We use the same notations as in them. First there exist ¢ € (0,1)
such that for all J € IN there exist j > n such that

(c’gg)M(w)‘ > ¢ joiHi+Ha=1), (4.14)
Moreover, if J is large enough, for all such j we also have
mwz(w)‘ < O Mmax{HyHo}—1g—j(Hi+Ha—1) ;. (4.15)
In this case, as in 4.8 we have that for all J great enough, there is 7 > J such that
d;(t,w) > 273+ Ha=1) 5 (C _ C/Mmax{Hl,Hg}—l)
and so one can conclude that (4.6) holds true for all w € Q3. O

5 Proof of the main theorem

Theorem 1.2 is then a straightforward consequence of Propositions 3.5, 3.21, 3.31, 4.8
and 4.11.

Proof of Theorem 1.2. If ) is a dyadic interval, taking into account Remark 3.4, let us
denote by €2, the event obtained by taking the intersection of all the events of probability
1 induced by Propositions 3.5, 3.21, 3.31, 4.8 and 4.11. Then Qz = (), Q. is also an
event of probability 1, as it is a countable intersection of events of probability 1.

If we consider w € Qp, for all dyadic interval A, first, from Proposition 3.5, forall t € A

limsup |RH1,H2 (t,W) - RHl,H2 (s,w)|

st [t—s[HiTH2Tlog |t — 5|1 < +© (5.1)

while, for almost every t, € A, from Propositions 3.21 and 4.8,

. |\Ri, 11, (to, w) — Ry 1, (8, w)|
0 < limsu L2 A LEAEL R < +o0.
S_)top [to — s|H1tH2=1loglog |t, — s|~!
Nevertheless, from Proposition 4.11 we also know that there exists ¢, € A such that

. | R, w1, (tr,w) — Ruy w1, (8, w)]
O <1 S 1,412 ) 1,112 )
I?Ltfp |t — s|HitH2=1]og |t, — s|~!
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which, combined with (5.1), gives that, for all such a %,.,

< +00.

0<1 1 t-
St T — sl T log [t — s

Moreover, from Proposition 3.31, we also know that one can find ¢, € X such that

‘RHlaHQ (tmw) - RH1A,H2 (va)|

limSuP |to——S|H1+H2_1

s>ty

< +00.

Thus, we have shown that, on Q g, for all dyadic interval A, almost every points in A
are ordinary while there exist rapid and slow points in A. Now, if I is a non-empty interval
of R, writing the interior of I as a countable union of dyadic intervals, we show that, on
Qr, almost every points in A\ are ordinary. Finally, if U is an open set with I n U # ),
there is a dyadic interval A € I n U. Thus, on Qg, I n U contains rapid and slow points
and the density of these points in [ is proved. O

Remark 5.1. Unfortunately, our method does not allow us to affirm the positiveness of
the limit (1.8), at the opposite of limits (1.6) and (1.7). Indeed, as for almost every w € 2

‘RHl,Hz (tvw) - RHl,H2 (s»w”

lim sup = 5|H1+H2—1

s—t

is finite for some t, we would need to show its positiveness for all ¢ and thus the

positiveness of the limit
dj (t7 w)

P (5.2)

lim sup
j—+©
for all ¢.

Concerning the random variables (EN,\M )», one can obtain a positive result®. Indeed,
from [24, Theorem 6.9 and Remark 6.10] we know that there exists an universal deter-
ministic constant € [0,1) such that, for each random variable X in the Wiener chaos of
order 2

1
P (1X] < 51Xl ) <7
As 0 < v < 1, of course, one can find ¢y € IN such that
Ao <271, (5.3)

Let us go back to the construction starting the proof of Lemma 4.9. If the dyadic
interval )\;; and m € IN are fixed and S € §; ., we define the sequences of dyadic
intervals (I,)o<n<m and (T,,)i<n<m in the same way: Iy = Ak, I, = S and, for all
1<n<m, I, 1=1,uT, Now, for any 1 < n < m, there are ¢, dyadic intervals
(T¢ = Ajg“,kg”)lﬁﬂﬂ in S, |log, (60N M)|+2 Such that, forall 1 < £ < 4y

217 9P

KD - NM KD+ N
n n g T,n
and, if £ # ¢/, T! AT = (. Therefore, the dyadic intervals (T)1<n<m.1<e<s, satisfy
condition (C)s) in Definition 4.5. From this, for all S € S; ;. ,, we define the Bernouilli
random variable
Bj,k,Tn,(S) = 1_[ 1{|%N]‘<27IC\P,H1,H2}

1<n<m,1<U<ly

6This result is again a generalization of [7, Lemma 3.3.] where most of the modifications comes from the
fact that we are working in the Wiener chaos of order 2.

EJP 27 (2022), paper 152. https://www.imstat.org/ejp
Page 40/45


https://doi.org/10.1214/22-EJP878
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process

for which, by Proposition 4.6, we have, using the independence of the random variables

(E}ZM)Kngm,lggo, E[B} 1.m(S)] <™. Therefore, if we define the random variable

gj,k,m = Z Bj k, m

SESJ k,m

then E[G; 1] < (2v%)™ and it follows from inequality (5.3) and Fatou Lemma that

E [hmmf Gk m] = 0.

m—+00

As a consequence, Q1 = (o g<peniw ¢ liminfy, 40 Gk m(w) = 0} is an event of
probability 1.

Now if w e ; and t € (0, 1), we take j € N and k = k;(t) and since, for all m, G; », (1),m
has values in {0, ..., 2™} we conclude that there are infinitely many m for which, for every
S € Sjk;t),ms Bjkm(S) = 0. Considering such a m and S = \;,(t) then we first remark
that, for all1 <n<m, I, = A\j4,(t) and thus T}, € 31, (¢). Now, as B, i m(Nj+m (1)) =0,
onecanfind 1l <n<mand1 </ < ¥, such that

e ()]

-1
Ere > 2 C\I],Hl)Hz.

Thus we have showed that, for all w € Q; and ¢ € (0, 1) there exist infinitely many j' € IN
such that
~M -1
max EN (OJ)‘ =2 C\P,Hl,H2~
e S/\,[logz(éoNAI)J+2

To pass to the wavelet leaders, in the spirit of Propositions 4.8 and 4.11, we would need
to get from Borel-Cantelli Lemma an upper bound of

~ M
max ‘E)\I (w)‘
A€ S\ llog, (£o N M) [+2

for all j sufficiently large on an event of probability 1 which does not depend on ¢. Then,
as

P|3xeA;, Ac[0,1] : max gvXM(w)] > O/ Mty Ha} =1
A" € Sy l1og, (b0 NM)|+2
N e 3\

< 2400NM eXP(—éc/(Cé,Hl,HQ)_lj%

if ¢" > log(2)Cy p, y,/C this probability is the general term of some convergent series
and in this case one can affirm the existence of an event ) of probability 1 such that,
for all w € Q] there exist J € IN such that, forall j > J, forall A e A;, A < [0,1],

max g/\//M(w)‘ < Cleax{Hl,Hg}flj.
N € S\ |1og, (£oN M)|+2
N e 3\

It seems to be the sharper upper bound that we can hope to find with our constraints
and the fact that we don’t have any independence property to take advantage of when
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dealing with the random variables &3\™. This is insufficient to consider properly limit (5.2).
Nevertheless, if, instead of working with an uniform constant M we make it depends on

1 *
the scale j by setting M; = (4C"Cgly, y,J) = =077, where C' > log(2)C} 4 4, /C' is
the same constant as in Lemma 4.13,

Mo |k NM; k+N ?
VLI 9i DY )
z+k

/ N Vi
E;ZMj = CH,y,H, J- . J \I/(x)J S, Hy (8,21, 22) dsdx dB(z1) dB(x2)
X ] J-N L

27

and

oMy M

Cj.k =Cjk — Gk
then Proposition 4.6 stills holds if we replace M by M; with j sufficiently large and, by
directly adapting what precedes one can find on event Q2 of probability 1 such that, for

allw e QF and t € (0, 1) there exist infinitely many j € IN such that’

max ET;\//Mj (w)‘ = 2710\117H1,H2-
Ne S)\,[logQ(ZONMj)j-ﬁ-Q
ANE 3)\] (t)

while there exist J € IN such that, forall j > J, forall A\e A;, A < [0,1],

max S )| < gyt
A" € Sy l1og, (o N M;) | +2
N e 3\

—1
<4” Cu,m, H,-

As a consequence, as in Proposition 4.8, for all J € IN there exist j > .J with
. 1—-H{—Ho
dj(t,w) = 2770 Cy Y, ) e T (40 N) 4T Oy gy,
which allows to state that, forall ¢ € (0,1) and w € Qy,

d;(t,w)

. G \ls

limsup — = > 0
Jj—+0 27‘](H1+H2*1)j417max{Hl,H2}

and thus, for all w € ©; and for all ¢ € (0, 1),

> 0.

R t —R
lim sup | Hl;HZ( 7"‘)) H1,H2(517f‘21|7H2
5ot |t — g|[HitHa—1(log |t — s|~1) Tmmaxtm 12}

In particular, we find an almost sure uniform lower modulus of continuity for the
generalized Rosenblatt process, similar to the one established in [26] for the Rosenblatt
process. However, we are not able to judge the optimality of this modulus, which seems
to be a difficult problem, as already stated in [5, Remark 1.2].

An interesting corollary of Remark 5.1 and Proposition 3.5 is the fact that, almost
surely, the pointwise Holder exponent of the generalized Rosenblatt process is every-
where Hi + Hy — 1 and, in particular, it is nowhere differentiable.

Similarly, one can also take (M; = (40/0\17,11{1,1{2 log(j)Wlefz})j, where (' is this
time the same constant that in Lemma 4.10 and show, precisely like in this Lemma,

"The random variables £} M; and av)\/MJ' are defined in an obvious way.
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that there exists a deterministic constant C’ > 0 such that, for all ¢ € (0, 1) there exists
Q2 < Q with probability 1 such that for all w € €; 5 there exist J € IN such that, for all
j=J,

max ‘ae\f/Mj (w)‘ <4 'Cy gy 1,
A€ S llog, (6o N M;) | +2
A€E 3)\J (t)

and conclude in the same way that there exists an event of probability 1 such that, for
all w in this event and for almost every ¢ € (0, 1)

t _
limsup ‘RHlaHQ( 7w) RH1,H2(37°J)| _ >0

1-H)—Hy
s—t ‘tiS|H1+H271(10g10g|t7$|*1)1—max{H1,H2}
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