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Abstract

In this paper, we study the maximal edge-traversal time on optimal paths in First-
passage percolation on the lattice Zd for several edge distributions, including the
Pareto and Weibull distributions. It is known to be unbounded when the edge distribu-
tion has unbounded support [J. van den Berg and H. Kesten. Inequalities for the time
constant in first-passage percolation. Ann. Appl. Probab. 56-80, 1993]. We determine
the order of the growth depending on the tail of the edge distribution.
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1 Introduction

First Passage Percolation (FPP) is a model of the spread of a fluid through a random
medium which was first introduced by Hammersley and Welsh in 1965. In FPP, a graph
with random weights is given and we consider the optimization problem of the passage
time between two fixed vertices. The minimum value is called the first passage time
and it represents the time when the fluid reaches from one point to the other. From
the viewpoint of an optimization problem, properties of the optimal path that attains
minimum value are also of interest. Theoretical physicists predicted that the front
of spread in FPP asymptotically satisfies KPZ-equation [4] in some sense. Moreover,
they have found the relationship between the fluctuation of surface and the deviation
of optimal paths, the so-called scaling relation [9]. Over 50 years, as mathematical
techniques have been developed for these problems, there has been significant progress
especially about the asymptotic and the fluctuation of the first passage time and the
surface growth. On the other hand, not much is known about the properties of the optimal
path. The above-mentioned scaling relation concerns the geometry of the optimal path
but it has not been proved fully rigorously [5]. This paper studies the maximal weight
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Maximal edge-traversal time in First-passage percolation

of the edges on an optimal path aiming to provide a better understanding of how the
medium along the optimal path looks. For more on the background and known results in
FPP, we refer the reader to [1].

1.1 The setting of the model

In this paper, we consider the first passage percolation on the lattice Zd. The model
is defined as follows. An element of Zd is called a vertex. Denote by Ed the set of
non-oriented edges of the lattice Zd:

Ed = {〈v, w〉| v, w ∈ Zd, |v − w|1 = 1},

where |u|1 =
∑d
i=1 |ui| for u ∈ Zd. We say that v and w are adjacent if |v − w|1 = 1. With

a slight abuse of notation, an edge e = 〈v, w〉 is considered as a subset of Zd such as
e = {v, w}. We assign a non-negative random variable τe on each edge e. Assume that
the collection τ = {τe}e∈Ed is independent and identically distributed with a common
distribution F . Let (Ω,F ,P) be the probability space and denote by E its expectation.
A path γ is a finite sequence (x0, · · · , xl) of Zd such that for any 1 ≤ i ≤ l, xi and xi−1
are adjacent. When x0 = v and xl = w for a path γ = (x0, · · · , xl), we write γ : v → w

and then γ is said to be a path from v to w. It is sometimes convenient to regard a path
γ = (x0, · · · , xl) as a sequence of edges such as (〈x0, x1〉, · · · 〈xl−1, xl〉). Thus we will use
this convention with some abuse of notation.

Given a finite path γ, we define the passage time of γ as

T(γ) =
∑
e∈γ

τe.

Given two vertices v, w ∈ Zd, we define the first passage time from v to w as

T(v, w) = inf
γ:v→w

T(γ),

where the infimum is taken over all finite paths from v to w. We say that a finite path
γ : v → w is optimal if T(γ) = T(v, w). Denote by O(v, w) the set of all optimal paths
from v to w:

O(v, w) = {γ : v → w| T(γ) = T(v, w)}.

It is proved in [10] that if P(τe = 0) 6= pc(d), then at least one optimal path exists for
any endpoints and if P(τe = 0) < pc(d), then O(v, w) is always a finite set, where pc(d) is
the critical probability of d-dimensional percolation. It should be noted that the same
questions are still open when P(τe = 0) = pc(d).

It is easy to see that T : Zd × Zd → R≥0 is pseudometric. Hence optimal paths are
sometimes called geodesics. Given a path γ, we set the maximal edge-traversal time (or
the maximal weight) of γ as

M(γ) = sup
e∈γ

τe.

An edge e is said to be a maximal edge for γ if e belongs to γ and it attains the maximal
weight of γ. In this paper, we investigate the growth rate of the maximum weight of
optimal paths.

1.2 Overview

Edge weights along an optimal path are important research topics. In addition, there
are many applications in the study of the geometry of optimal paths. For examples, Bates
[2] proves that the empirical distribution of an optimal path,

∑
e∈γ δτe for γ ∈ O(0, ne1)

where δx is the Dirac measure at x, converges to some distribution independent of a
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choice of the optimal path, and as a corollary, he obtained the law of large numbers of
the length of the optimal path. Also, the authors in [8] studied the tail bounds of the
empirical distributions.

Van den Berg and Kesten proved in [3] that the maximal edge-traversal times of
optimal paths go to infinity as the endpoint goes to infinity if the distribution F is
unbounded, as a special case of more general theorems. The problem of the speed of the
divergence is natural to consider and appears in [1] as an open problem (Open problem
2).

Since the formulation of our results will be a bit complicated, we state some illus-
trative consequences first when the distribution is continuous, i.e. P(τe = a) = 0 for
any a ∈ R. (See Thoerem 1.1 and Remark 1.5.) If P(τe ≥ t) = exp{−tr+o(1)} with r > 0

for any sufficiently large t ∈ R, then the following occurs with high probability: for any
optimal path π from 0 to x,

M(π) =


(log |x|1)

1
1+r+o(1), if r ≤ d− 1,

(log |x|1)
1
d+o(1), if d− 1 < r ≤ d,

(log |x|1)
1
r+o(1), if d < r,

(1.1)

where o(1)→ 0 as |x| → ∞. It should be noted that if, in addition, we remove o(1) in the
assumption about the distributions, then we get the same results without o(1) except
when r = d or r = d− 1. And, if α1t

−β ≤ P(τe ≥ t) ≤ α2t
−β for any sufficiently large t > 0

with some constants β > 2 and α1, α2 > 0, then the order becomes

M(π) � log |x|1
log log |x|1

.

These transitions itself are interesting and closely related to that of the large deviations
of the first passage time [6, 7].

In the proofs, one can see that different geometric pictures around the maximal
edges appear. It would be interesting if there is a transition of some quantity about
the configurations around the maximal edge, such as the average weight around the
maximal edge.

1.3 Main results

We only consider the optimal paths from 0 to Ne1, though all of the results also
hold for any direction. For the sake of the simplicity, we write TN = T(0, Ne1) and
ON = O(0, Ne1). Given d ≥ 2 and r ≥ 0, we set fd,r(N) as

fd,r(N) =



(logN)(log logN)−1, if r = 0,

(logN)
1

1+r , if 0 < r < d− 1,

(logN)
1
d (log logN)

d−2
d , if r = d− 1,

(logN)
1
d , if d− 1 < r < d,

(logN)
1
d (log logN)−

1
d , if r = d,

(logN)
1
r , if d < r.

(1.2)

First we state the upper bound for maximal weight.

Theorem 1.1. Let d ≥ 2. Suppose that there exist constants r ∈ (0,∞), b, a > 0 such
that for t ≥ 0,

P(τe ≥ t) ≤ ae−bt
r

, (1.3)
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and P(τe = 0) < pc(d). Then, there exists a positive constant C such that

lim
N→∞

P

(
sup
γ∈ON

M(γ) ≤ Cfd,r(N)

)
= 1.

Theorem 1.2. Let d ≥ 2. Suppose that Eτ2e < ∞ and P(τe = 0) < pc(d). Then, there
exists a positive constant C such that

lim
N→∞

P

(
sup
γ∈ON

M(γ) ≤ Cfd,0(N)

)
= 1.

Next we move on to the lower bound. Let us restrict our attention to the following
class of distributions, called useful distributions, which is introduced in [3].

Definition 1.3. Let τ be the infimum of the support of a random variable τe. We say that
the distribution F is useful if either holds:

(1) τ = 0 and P(τe = 0) < pc(d) or (2) τ > 0 and P(τe = τ) < ~pc(d),

where pc(d) and ~pc(d) stand for the critical probabilities of d-dimensional percolation
and oriented percolation model, respectively.

Note that if F is continuous, then it is also useful. This restriction assures that
a typical optimal path never goes far away taking only the minimum value of the
distribution.

Theorem 1.4. Let d ≥ 2. Suppose that the following three hold:

1. F is useful,

2. for any positive integer m, E[τme ] <∞,

3. there exist r ∈ (0,∞), β, α, ρ > 0 and κ > 1 such that for any t > ρ,

P(t < τe < κt) ≥ αe−βt
r

.

Then, there exists a positive constant c such that

lim
N→∞

P

(
inf
γ∈ON

M(γ) ≥ cfd,r(N)

)
= 1.

Remark 1.5. Let us comment how to deduce the lower bound in (1.1) under the assump-
tion P(τe ≥ t) = exp (−tr+o(1)). We now consider a weaker assumption that κ depends on
t such that κ = tδ with δ > 0. Essentially the same proof yields the following result: for
any ε > 0, there exists δ > 0 such that under the above conditions (i)–(iii) with κ = tδ,

lim
N→∞

P

(
inf
γ∈ON

M(γ) ≥ cfd,r(N)1−ε
)

= 1.

Note that if P(τe ≥ t) = exp (−tr+o(1)), then it is easy to check that for any δ > 0,

P(t ≤ τe ≤ t1+δ) ≥ e−t
r+o(1)

,

and that the other conditions hold. Therefore, the lower bound of (1.1) follows.

Theorem 1.6. Let d ≥ 2. Suppose that the following three hold:

1. F is useful,

2. E[τ2e ] <∞,
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3. there exist β, α, ρ > 0 and κ > 1 such that for any t > ρ,

P(t < τe < κt) ≥ αt−β .

Then, there exists a positive constant c such that

lim
N→∞

P

(
inf
γ∈ON

M(γ) ≥ cfd,0(N)

)
= 1.

Remark 1.7. Given two sets A,B, we define T(A,B) = infx∈A, y∈B T(A,B) and denote
by O(A,B) the set of corresponding optimal paths. If we consider the Box-to-Box first
passage time T(DLN (0), DLN (Ne1)) instead of T(0, Ne1) where DLN (x) = x+[−LN , LN ]d

for x ∈ Rd and LN to be specified below, and the maximal weight of corresponding
optimal paths, then the above four results hold not only in probability, but with probability
one. More precisely, the following results hold:

Proposition 1.8. Let LN = logN . Under the condition of Theorem 1.1, the following
happens with probability one: there exists a positive constant C such that for any N ∈ N,

sup
γ∈O(DLN (0),DLN (Ne1))

M(γ) ≤ Cfd,r(N). (1.4)

If only we assume the condition of Theorem 1.2, then (1.4) holds with r = 0.

Proposition 1.9. Take a positive constant ρ and set LN = (logN)1+ρ. Under the condi-
tion of Theorem 1.4, the following happens with probability one: there exists a positive
constant c such that for any N ∈ N large enough,

inf
γ∈O(DLN (0),DLN (Ne1))

M(γ) ≥ cfd,r(N). (1.5)

If we assume the condition of Theorem 1.6 instead, then (1.5) holds with r = 0.

Remark 2.8 and 3.3 explain the necessary modifications to show the above results.

Remark 1.10. In order to get the exact order of the growth of the maximal weight, in
general, we need the assumption of the distribution such as P(τe ≥ t) ∼ exp{−f(t)},
where f(t) is regularly varying function, as we do for an extreme value problem of
independent and identical distributed random variables. Therefore, our assumption on
distributions is natural one.

1.4 Notation and terminology

This subsection introduces useful notations and terminologies used in the proofs.

• Given a < b, we write Ja, bK = [a, b] ∩Z.

• Given a finite set A, we denote the cardinality of A by ]A.

• Given a path γ = (x0, · · · , xl), we define the length of γ as ]γ = l.

• Given two vertices v, w ∈ Zd and a subset D ⊂ Zd, we set the restricted first
passage time as

TD(v, w) = inf
γ⊂D

T(γ),

where the infimum is taken over all paths γ ⊂ D from v to w. If such a path does
not exist, then we set the infinity instead.

• We use c, ci, C and Ci with i ∈ N for positive constants. They may change from line
to line. Typically, c and ci are used for small constants and C and Ci for large ones.

• The symbol b·c is a floor function, i.e. bxc is the greatest integer less than or equal
to x.
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• It is useful to extend the definition to measure the p-norm between two sets as

dp(A,B) = inf{|x− y|p| x ∈ A, y ∈ B}, A,B ⊂ Rd.

When A = {x}, we simply write dp(x,B). We only use p = 1 or p =∞ in this article.

• Given a set D of Zd, let us define the inner boundary of D as

∂D = {v ∈ D| ∃w /∈ D s.t. |v − w|1 = 1}.

We define the interior of D by ι(D) = D\∂D.

• Given a set D ⊂ Zd and x, y ∈ D, we write x ∼D y if there exists a path from a to b
which lies only on D. Let us denote the connected component of D containing of x
as Conn(x,D) = {y ∈ D| x ∼D y}.

1.5 Heuristics and Reader’s guide

For the proof of the upper bound, to each edge, we will consider a condition, where if
the edge has a large weight and a path passes through the edge, then one can make a
detour from this path to get a smaller passage time. We will check that all edges related
to optimal paths satisfy this condition with high probability, and thus optimal paths do
not have too large weights. This condition appears in Lemma 2.4. The easiest case for
the upper bound is r = 1 and proved in Section 2.2.

For the proof of the lower bound, we will use the resampling argument introduced
in [3]. We resample the local configurations to make the optimal paths pass through
this region and take a sufficiently large weight. (See the conditions E(2.2)–E(2.4) in Defini-
tions 3.11, 3.15, 3.19 and Propositions 3.12, 3.17, 3.22.) It needs the detailed information
of optimal paths near the maximal edge, which heavily depends on the tail of distribu-
tions. The easiest case for the lower bound is 0 < r < d− 1 and proved in Section 3.1
and 3.3.

2 Proof for the upper bound

2.1 General argument for upper bound

Given an edge e = 〈v, w〉, we define ve ∈ {v, w} such that |ve|1 = min{|v|1, |w|1} (such

ve is uniquely determined) and denote the k–th boundary and the set of its edges by C
(e)
k

and C̃
(e)
k , respectively (See Figure 2.1):

C
(e)
k = {z ∈ Zd : |ve − z|∞ = k},

C̃
(e)
k = {〈x, y〉 : x, y ∈ C

(e)
k and |x− y|1 = 1}.

Note that if k 6= k′, then C̃
(e)
k ∩C̃

(e)
k′ = ∅ and thus {τe}e∈C̃(e)

k

and {τe}e∈C̃(e)

k′
are independent.

Moreover, each face is the square of sidelength 2k + 1 and its dimension is d− 1. Thus
there exists C(d) > 0 which depends only on the dimension d such that

]{v ∈ Zd| v ∈ C
(e)
k } ≤ C(d)kd−1. (2.1)

In fact we can take C(d) = 4dd since ]{v ∈ Zd| v ∈ C
(e)
k } ≤ 2d(2k + 1)d−1.
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Figure 1:
Left: The figure of C

(e)
k and C̃

(e)
k .

Right: We make a better path from the original one.

Definition 2.1. We say that e is good if there exists 1 ≤ k ≤ fd,r(N) such that for any

v, w ∈ C
(e)
k ,

T
C

(e)
k

(v, w) ≤M fd,r(N),

where M will be chosen later.

It will be proved in Lemma 2.4 that for any path γ, if e ∈ γ and τe > M fd,r(N), then
the goodness of e can make γ detour with a smaller passage time.

Definition 2.2. For x ∈ Zd and L > 0, we define

DL(x) = (x+ [−L,L]d) ∩Zd,

When x = 0, we simply write DL = DL(0).

We take K > 0 to be chosen in Lemma 2.5.

Definition 2.3. We set

E(2.2) = {∀e ∈ Ed with e ∩DKN 6= ∅, e is good}, (2.2)

E(2.3) = {∀γ ∈ ON , γ ⊂ DKN}, (2.3)

E(2.4) = {∀e ∈ Ed with e ∩ (DM fd,r(N)(0) ∪DM fd,r(N)(Ne1)) 6= ∅, τe ≤M fd,r(N)}. (2.4)

We will see that the condition E(2.2) ∩ E(2.3) ∩ E(2.4) implies that the maximal weight of
optimal paths is less than or equal to M fd,r(N).

Lemma 2.4. On the event E(2.2) ∩ E(2.3) ∩ E(2.4), for any γ ∈ ON and e ∈ γ,

τe ≤M fd,r(N).

Proof. Let us take γ ∈ ON arbitrary and write γ = {x0, · · · , x]γ}. We fix e = 〈xt, xt+1〉 ∈ γ
for some 0 ≤ t ≤ ]γ − 1. If e ∩ DM fd,r(N)(0) ∪ DM fd,r(N)(Ne1) 6= ∅, by E(2.4), then
τe ≤M fd,r(N). Now we suppose that e∩DM fd,r(N)(0)∪DM fd,r(N)(Ne1) = ∅. By E(2.2) and

E(2.3), e ⊂ DKN and e is good. Thus there exists k ≤ fd,r(N) such that for any v, w ∈ C
(e)
k ,

T
C

(e)
k

(v, w) ≤M fd,r(N). (2.5)

We take such k. Let xp and xq be the first and last intersecting point between γ and C
(e)
k ,

i.e. p = inf{s ∈ {0, · · · , ]γ}| xs ∈ C
(e)
k } and q = sup{s ∈ {0, · · · , ]γ}| xs ∈ C

(e)
k }. Since

e ∩ (DM fd,r(N)(0) ∪ DM fd,r(N)(Ne1)) = ∅, the inside of C
(e)
k contains neither 0 nor Ne1.

Thus we have 0 ≤ q < t < p ≤ ]γ. It follows from (2.5) that

τe ≤ T(xp, xq) ≤ T
C

(e)
k

(xp, xq) ≤M fd,r(N).
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From Lemma 2.4, if we can prove

lim
N→∞

P(E(2.2) ∩ E(2.3) ∩ E(2.4)) = 1, (2.6)

then the proof of Theorem 1.1 is completed. First we will estimate P(E(2.3)).

Lemma 2.5. Suppose Eτ2e < ∞ and P(τe = 0) < pc(d). Then there exist C,K > 0 such
that for any N ∈ N,

P

 ⋃
γ∈ON

γ

 ∩ (DKN )c 6= ∅

 ≤ CN−2d. (2.7)

Proof. From Proposition 5.8 in [10], there exist C1, C2, C3 > 0 such that for any ` > 0,

P (∃ self avoiding path γ starting at 0 with ]γ ≥ ` and T(γ) < C1`) < C2 exp (−C3`).

(2.8)

We take K > 4E[τe]/C1. Then,

P (∃γ ∈ ON s.t. ]γ ≥ KN)

≤ P (∃γ ∈ ON s.t. ]γ ≥ KN and TN < C1KN) + P (TN ≥ C1KN)

≤ C2 exp (−C3KN) + P (TN ≥ C1KN) ,

(2.9)

where we have used (2.8) in the second inequality. Now we consider 2d disjoint paths
{γi}2di=1 from 0 to Ne1 so that

max{]γi| i = 1, · · · , 2d} ≤ 2N,

as in [10, p 135]. Since E[T(γi)] ≤ C1KN/2,

P (TN ≥ C1KN) ≤
2d∏
i=1

P (T(γi) ≥ C1KN)

≤
2d∏
i=1

P (|T(γi)− E[T(γi)]| ≥ C1KN/2) .

(2.10)

By the Chebyshev inequality, this is further bounded from above with some constant
C4 = C4(d, F,C1) > 0 by

2d∏
i=1

(
(C1KN/2)−2 2NE[τ2e ]

)
≤ C4K

−4dN−2d.

(2.11)

Thus we have

P (∃γ ∈ ON s.t. ]γ ≥ KN) ≤ C2 exp (−C3KN) + C4K
−4dN−2d

≤ 2C4K
−4dN−2d.

(2.12)

Since  ⋃
γ∈ON

γ

 ∩ (DKN )c 6= ∅ =⇒ max
γ∈ON

]γ ≥ KN,

we have

P

 ⋃
γ∈ON

γ ∩ (DKN )c 6= ∅

 ≤ 2C4K
−4dN−2d.
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Since the complement of E(2.3) is the event inside the probability in (2.7), we have

P(Ec(2.3)) ≤ CN−2d, (2.13)

which converges to 0. Next we will estimate P(E(2.4)). By the union bound, we have

P(Ec(2.4)) = P(∃e ∈ Ed s.t. e ∩ (DM fd,r(N)(0) ∪DM fd,r(N)(Ne1)) 6= ∅ and τe > M fd,r(N))

≤ 2d](DM fd,r(N)(0) ∪DM fd,r(N)(Ne1)) a exp (−b(M fd,r(N)r))

≤ 2d(4dM fd,r(N))d a exp (−bMrfd,r(N)r),

(2.14)

which also converges to 0. We will estimate P(E(2.2)) in several cases.

2.2 The case r = 1

First, we consider the case r = 1. Then fd,r(N) =
√

logN and there exists β > 0 such
that Eeβτe <∞. In this case, we take a positive constant M such that

M > β−116d2Eeβτe . (2.15)

Given two vertices v, w ∈ C
(e)
k , we take a path γwv : v → w lying on C

(e)
k whose length is

at most 8d2fd,r(N). We will calculate the probability that e is good.

Fix v, w ∈ C
(e)
k . Then since we takeM sufficiently large as in (2.15), by the exponential

Markov inequality, we have

P

∑
η∈γwv

τη > M
√

logN

 ≤ exp (−βM
√

logN)
∏
η∈γwv

Eeβτη

≤ exp (−βM
√

logN)
(
Eeβτe

)8d2√logN

≤ exp

(
−βM

√
logN

2

)
.

(2.16)

Recall that if k 6= k′, then {τe}e∈C̃(e)
k

and {τe}e∈C̃(e)

k′
are independent. It follows that

P (e is not good) = P
(
∀k ≤

√
logN, ∃v, w ∈ C

(e)
k s.t. T

C
(e)
k

(v, w) > M fd,r(N)
)

=
∏

k≤
√
logN

P
(
∃v, w ∈ C

(e)
k s.t. T

C
(e)
k

(v, w) > M fd,r(N)
)
.

(2.17)

By T
C

(e)
k

(v, w) ≤
∑
η∈γwv

τη, for sufficiently large N , this is further bounded from above

by

∏
k≤
√
logN

P

∃v, w ∈ C
(e)
k s.t.

∑
η∈γwv

τη > M
√

logN


≤

∏
k≤
√
logN

C(d)2(logN)d−1 max
v,w∈C(e)

k

P

∑
η∈γwv

τη > M
√

logN


≤

∏
k≤
√
logN

{
C(d)2(logN)d−1 exp

(
−β

2
M
√

logN

)}

≤
(

exp

(
−β

4
M
√

logN

))b√logNc

≤ N−2d,

(2.18)
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where we have used (2.1) and the union bound in the first inequality and (2.16) in the
second inequality. By using the union bound again, we have

P(Ec(2.2)) ≤ 2d(]DKN )2P(e is not good).

≤ 2d(2KN + 1)dN−2d,

which converges to 0 as N →∞.
Combined with (2.13) and (2.14), this yields

P(E(2.2) ∩ E(2.3) ∩ E(2.4))

≥ 1− (P(E(2.2)) + P(E(2.3)) + P(E(2.4))),
(2.19)

and (2.6). Combining with Lemma 2.4 completes the proof in the case r = 1.

2.3 The case r ∈ (0, 1)

Next we consider the case 0 < r < 1, where fd,r(N) = (logN)
1

1+r . The proof is exactly
the same as before except for the estimate of P(E(2.2)). In fact, by (4.2) of [12], (2.16) is
replaced by

P

∑
η∈γwv

τη > M fd,r(N)

 ≤ e−cMrfd,r(N)r , (2.20)

with some constant c > 0 that depends only on the dimension d and the distribution F .
We have

P (e is not good) ≤
∏

k≤fd,r(N)

P

∃v, w ∈ C
(e)
k s.t.

∑
η∈γwv

τη > M fd,r(N)


≤

∏
k≤fd,r(N)

C(d)2(logN)d−1 max
v,w∈C(e)

k

P

∑
η∈γwv

τη > M fd,r(N)


≤
(

exp
(
− c

2
Mrfd,r(N)

))bfd,r(N)c
≤ N−2d,

(2.21)

where we used the union bound in the second inequality. Using this and the union bound,
we have limN→∞P(Ec(2.2)) = 0 and (2.6) as desired.

2.4 The case 1 < r ≤ d
We consider the case r ∈ (1, d], where

fd,r(N) =


(logN)

1
d (log logN)

d−2
d , if r = d− 1,

(logN)
1
d , if d− 1 < r < d,

(logN)
1
d (log logN)−

1
d , if r = d.

Note that in the previous arguments, the estimates of P(e is not good) are based on
simple (sub-)exponential large deviations, see (2.16)–(2.18) for example. It turns out that
when 1 < r ≤ d we need the following super-exponential tail estimates on the passage
times.

Proposition 2.6 (Lemma 4.5 in [7]). Let d ≥ 2. Suppose that the condition of Theorem
1.1 holds with r > 1. For any M1 > 0 there exists M2 > 0 such that for any e ∈ Ed, L ≥ 1,
0 ≤ k ≤ L and v, w ∈ C

(e)
k ,

P
(

T
C

(e)
k

(v, w) > M2L
)
≤ exp (−g(r, d− 1, L, k)M1),
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where

g(r, d, L, k) =


Lr if 1 < r < d,

Ld

(1+logL)d−1 if r = d,

Ld if r ∈ (d, d+ 1),

Ld+1/k if r = d+ 1.

We take M1 to be chosen later and set M = M2 as in Proposition 2.6. We use the
same definitions as in Definition 2.1. Then for any sufficiently large N ∈ N,

P (e is not good) ≤
∏

1≤k≤fd,r(N)

P
(
∃v, w ∈ C

(e)
k s.t. T

C
(e)
k

(v, w) > M fd,r(N)
)

≤ (C(d)2fd,r(N)2d)fd,r(N) exp

− bfd,r(N)c∑
k=1

g(r, d− 1, fd,r(N), k)M1

.
(2.22)

If 1 < r < d− 1, then since fd,r(N) = (logN)
1

1+r ,

bfd,r(N)c∑
k=1

g(r, d− 1, fd,r(N), k) ≥ 1

2
fd,r(N)1+r

≥ 1

2
logN.

If r = d− 1, then since fd,r(N) = (logN)
1
d (log logN)

d−2
d ≤ logN ,

bfd,r(N)c∑
k=1

g(r, d− 1, fd,r(N), k) = bfd,r(N)c fd,r(N)d−1

(1 + log fd,r(N))
d−2

≥ 1

2
fd,r(N)d(log logN)−(d−2)

≥ 1

2
logN.

If d− 1 < r < d, then since fd,r(N) = (logN)
1
d ,

bfd,r(N)c∑
k=1

g(r, d− 1, fd,r(N), k) ≥ 1

2
fd,r(N)d

≥ 1

2
logN.

If r = d, then since fd,r(N) = (logN)
1
d (log logN)−

1
d ,

bfd,r(N)c∑
k=1

g(r, d− 1, fd,r(N), k) ≥ fd,r(N)d
bfd,r(N)c∑
k=1

1

k

≥ 1

2d
logN,

where we have used the following:

bfd,r(N)c∑
k=1

1

k
≥ 1

2d
log logN.
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In all cases, by (2.22) and fd,r(N) log fd,r(N) � logN , if we take M1 sufficiently large,
then we have

P( e is not good ) ≤ N−2d.

As before, we can get limN→∞P(Ec(2.2)) = 0 and by Lemma 2.4, (2.13) and (2.14), the
proof is completed.

2.5 The case r > d

We consider the case r > d, where fd,r(N) = (logN)
1
r . Recall the notation DL from

Definition 2.2. For sufficiently large M ,

P
(
∃e ∈ Ed s.t. e ⊂ DKN and τe > M fd,r(N)

)
≤ a exp (−b(M fd,r(N))r)

≤ N−2,

where K is chosen as in Lemma 2.5. If for any e ∈ Ed with e ⊂ DKN , τe ≤M fd,r(N) and
E(2.3) holds, then

max
γ∈ON

M(γ) ≤M fd,r(N).

Thus, by (2.13), the proof is completed.

2.6 The case r = 0

Let us move onto the case Eτ2e <∞, where fd,0(N) = logN
log logN . In this case, since we

cannot expect any exponential bounds and the estimate of P(e is not good) is not enough
to get the desired bound, we slightly change the definition of goodness.

Definition 2.7. An edge e is said to be 0-good if there exists 1 ≤ k ≤M fd,0(N) such that

for any v, w ∈ C
(e)
k ,

T
C

(e)
k

(v, w) ≤ 4M2fd,0(N).

Fix k ≤M fd,0(N) and v, w ∈ C
(e)
k . We consider 2(d− 1) disjoint paths {γi}2(d−1)i=1 from

v to w on C
(e)
k so that

max{]γi| i = 1, · · · , 2(d− 1)} ≤ 8d2M fd,0(N),

as in [10, p 135]. If we take M sufficiently large, then the Chebyshev inequality yields
that for any i ∈ {1 · · · , 2(d− 1)},

P
(
T(γi) > 2M2fd,0(N)

)
≤ P

(∑
e∈γi

(τe − Eτe) > M2fd,0(N)

)

≤ (M2fd,0(N))−2E

(∑
e∈γi

(τe − Eτe)

)2


≤ (M2fd,0(N))−2(8d2M fd,0(N)Eτ2e )

≤M−1fd,0(N)−1.

Thus we have

P
(

T
C

(e)
k

(v, w) > 2M2fd,0(N)
)
≤

2(d−1)∏
i=1

P(T(γi) > 2M2fd,0(N))

≤M−2(d−1)fd,0(N)−2(d−1).

(2.23)

Fix an arbitrary vertex vk ∈ C
(e)
k to each k ∈ N. By the triangular inequality, for any v, w ∈

C
(e)
k , T

C
(e)
k

(v, w) ≤ T
C

(e)
k

(vk, v) + T
C

(e)
k

(vk, w). Thus, if there exist v, w ∈ C
(e)
k such that
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T
C

(e)
k

(v, w) > 4M2fd,0(N), then there exists z ∈ C
(e)
k such that T

C
(e)
k

(vk, z) > 2M2fd,0(N).

This yields

P (e is not 0-good) = P
(
∀k ≤M fd,0(N), ∃v, w ∈ C

(e)
k s.t. T

C
(e)
k

(v, w) > 4M2fd,0(N)
)

=
∏

k≤M fd,0(N)

P
(
∃v, w ∈ C

(e)
k s.t. T

C
(e)
k

(v, w) > 4M2fd,0(N)
)

≤
∏

k≤M fd,0(N)

P
(
∃z ∈ C

(e)
k s.t. T

C
(e)
k

(vk, z) > 2M2fd,0(N)
)
.

(2.24)

Since ]C(e)
k ≤ C(d)kd−1 with some C(d) > 0, as in (2.18), if M is sufficiently large, by

(2.23), then this is further bounded from above by∏
k≤M fd,0(N)

C(d) kd−1 max
z∈C(e)

k

P
(

T
C

(e)
k

(vk, z) > 2M2fd,0(N)
)

≤
(
C(d)(M fd,0(N))d−1

)M fd,0(N)
(
M−2(d−1)fd,0(N))−2(d−1)

)Mbfd,0(N)c

≤ fd,0(N)−(d−1)Mbfd,0(N)c ≤ N−2d.

(2.25)

Recall that DL(x) = (x+ [−L,L]d) ∩Zd. We define

E(2.26) = {∀e ∈ Ed with e ∩DKN 6= ∅, e is 0-good}, (2.26)

E(2.27) = {∀v ∈ ∂DM fd,0(N)(x), T(x, v) ≤ 2M2fd,0(N), for x = 0, Ne1}. (2.27)

By the union bound and (2.25), we have limN→∞P(E(2.26)) = 1. Next we will prove
limN→∞P(E(2.27)) = 1. For x = 0, Ne1, we take 2d disjoint paths from x to v as in (2.24)
to obtain

P
(
∃v ∈ ∂DM fd,0(N)(x) s.t. T(x, v) ≥ 2M2fd,0(N)

)
≤ ]∂DM fd,0(N)(x)(fd,0(N))−2d.

It follows that limN→∞P(E(2.27)) = 1. Thus

lim
N→∞

P(E(2.26) ∩ E(2.3) ∩ E(2.27)) = 1.

If there exist γ ∈ ON and an edge e ∈ γ with e ⊂ DM fd,0(N)(0) such that τe ≥ 2M2fd,0(N),
then there exists v ∈ ∂DM fd,0(N)(0) such that T(0, v) ≥ 2M2fd,0(N). Therefore, by the
same proof as in Proposition 2.4, under E(2.26) ∩ E(2.3) ∩ E(2.27),

max
γ∈ON

M(γ) ≤ 4M2fd,0(N),

and thus the proof is completed.

Remark 2.8. Let us comment how to prove Proposition 1.8. When r > 0, we replace
E(2.2) ∩E(2.3) ∩E(2.4) by E(2.2) ∩E(2.3). Indeed, Lemma 2.4 can be proved by exactly the same
argument. Moreover, (2.19) yields that P(E(2.2)∩E(2.3)) ≥ 1−CN−d and the Borel-Cantelli
lemma leads us to the conclusion.

When r = 0, we just replace E(2.26) ∩ E(2.3) ∩ E(2.27) by E(2.26) ∩ E(2.3). The rest is the
same as before.

3 Proof for the lower bound

3.1 From the means to the lower bounds

Suppose that the condition of Theorem 1.4 or Theorem 1.6 holds. Let c > 0 be a
small positive constant. We take τ̃e such that if τe < cfd,r(N) − 1, then τ̃e = τe and
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otherwise, τ̃e = τe + 1. We denote by T̃(x, y) the corresponding first passage time and
write T̃N = T̃(0, Ne1). We denote by ÕN the set of optimal paths for T̃N . Obviously,
T̃N ≥ TN . Moreover, if minONM(γ) < cfd,r(N) − 1, then T̃N = TN . By taking the
contrapositive, we find that T̃N > TN implies minONM(γ) ≥ cfd,r(N)− 1. We are going
to prove that T̃N > TN with high probability. The following statement will be proved in
the next subsections.

Lemma 3.1. For any δ > 0, there exists c > 0 such that for any N ∈ N,

E

[
min
γ∈ÕN

]{e ∈ γ| τ̃e ≥ cfd,r(N)}

]
≥ cN1−δ. (3.1)

We will conclude the proof of Theorem 1.4 first by using Lemma 3.1. Note first that

T̃N ≥ TN + min
γ∈ÕN

]{e ∈ γ| τ̃e ≥ cfd,r(N)}.

In fact, if we take γ̃ ∈ ÕN , then

T̃N = T̃(γ̃)

= T(γ̃) + ]{e ∈ γ̃| τ̃e ≥ cfd,r(N)}
≥ TN + min

γ∈ÕN
]{e ∈ γ| τ̃e ≥ cfd,r(N)}.

It follows from Lemma 3.1 that

ETN + cN1−δ ≤ ET̃N . (3.2)

Therefore, if both TN and T̃N are well-concentrated around their means, then we can
conclude T̃N > TN with high probability. For this purpose, we introduce the following
concentration inequalities.

Lemma 3.2. Suppose Eτ2e < ∞. For any δ ∈ (0, 1/4), there exists C > 0 such that for
sufficiently large N ,

P
(
|TN − ETN | > N1−2δ) ≤ CN−(1−4δ), (3.3)

P
(
|T̃N − ET̃N | > N1−2δ

)
≤ CN−(1−4δ). (3.4)

Proof. The proof of this lemma follows from Theorem 3.1 in [1], which was first proved in
[11]. Indeed, since Eτ2e ,Eτ̃

2
e < C ′ with some constant C ′ > 0 independent of N , Theorem

3.1 in [1] shows that

E[(TN − ETN )2] ≤ CN,
E[(T̃N − ET̃N )2] ≤ CN, (3.5)

with some constant C > 0. By the Chebyshev inequality, we have

P
(
|TN − ETN | > N1−2δ) ≤ N−2(1−2δ)E[(TN − ETN )2]

≤ CN−(1−4δ),

which yields (3.3). The same argument proves (3.4).
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Proof of Theorem 1.4 and Theorem 1.6 assuming Lemma 3.1. Let δ < 1/4. If both |TN−
ETN | and |T̃N−ET̃N | are less than or equal to N1−2δ, then by Lemma 3.1, for sufficiently
large N ∈ N,

T̃N ≥ ET̃N −N1−2δ

≥ ETN + cN1−δ −N1−2δ

≥ TN + cN1−δ − 2N1−2δ > TN .

Therefore, Lemma 3.2 leads us to

P
(

TN = T̃N

)
≤ P

(
|TN − ETN | > N1−2δ)+ P

(
|T̃N − ET̃N | > N1−2δ

)
≤ 2CN−(1−4δ).

Since minONM(γ) < cfd,r(N)− 1 implies TN = T̃N , we have Theorem 1.4 and Theorem
1.6.

Remark 3.3. Let us comment how to prove Proposition 1.9. The proofs of (3.1) can
be applicable also in this case and Theorem 2 in [13] yields the better concentration
bounds:

Lemma 3.4. Suppose E[τ2e ] <∞. Then for any m ∈ N and δ < 1/4, there exists N0 such
that for any N ≥ N0,

P
(
|T(DLN (0), DLN (Ne1))− ET(DLN (0), DLN (Ne1))| > N1−2δ) ≤ N−m, (3.6)

P
(
|T̃(DLN (0), DLN (Ne1))− ET̃(DLN (0), DLN (Ne1))| > N1−2δ

)
≤ N−m. (3.7)

Combining it with the previous arguments and the Borel-Cantelli lemma, we have the
desired conclusion.

3.2 Proof of Lemma 3.1

Our goal is to prove (3.1). In this section, we explain the general arguments and we
will evaluate what appear there in several cases in the following sections. The proof is
based on the argument in [3], but the choice of box sizes and configurations inside of
the box are considerably more complicated. The following lemma appears in Lemma 5.5
of [3].

Lemma 3.5. There exist δ3.5 > 0 and K > 0 such that for any v, w ∈ Zd,

P (T(v, w) < (τ + δ3.5)|v − w|1) ≤ e−K|v−w|1 .

We fix δ3.5 > 0 that satisfies Lemma 3.5. Note that Lemma 3.5 also holds with τ̃ since
τ̃e ≥ τe. Remark that the usefulness of F assumed in Theorem 1.4 and 1.6 is used only in
Lemma 3.5 to prove (3.1). Since τ̃ satisfies the condition of Theorem 1.4 with the same
r, while the other parameters may be different but independent of N , it suffices to show
(3.1) for τ , i.e.

E

[
min
γ∈ON

]{e ∈ γ| τe ≥ cfd,r(N)}
]
≥ cN1−δ. (3.8)

We fix constants M, s0, s1 > 0 such that s1 � s0 � M to be specified later. Set
n = bs0fd,r(N)c and n1 = bs1fd,r(N)c, where b·c is a floor function. We define three
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kinds of boxes whose notations are the same as in [3] (see Figure 2). First, we define
hypercubes S(l;n) for l = (li)

d
i=1 ∈ Zd as

S(l;n) = {v ∈ Zd : nli ≤ vi < n(li + 1), 1 ≤ i ≤ d}.

We call these hypercubes n-cubes. Second, we define large n-cubes T (l;n) for l ∈ Zd as

T (l;n) = {v ∈ Zd : nli − n ≤ vi ≤ n(li + 2), 1 ≤ i ≤ d}.

Finally, we define n-boxes Bj(l;n) for l ∈ Zd and j ∈ {±1, · · · ,±d} as

Bj(l;n) = T (l;n) ∩ T (l + 2sgn(j)e|j|;n),

and its inner boundary ∂Bj(l;n) as

∂Bj(l;n) = {v ∈ Bj(l;n)| there exists w /∈ Bj(l;n) s.t. |v − w|1 = 1}.

Note that S(l;n) ⊂ T (l;n) and Bj(l;n) is a closed box of size 3n×· · ·×3n×n×3n · · ·×3n,
where n is the length of i-th coordinate and 3n are the lengths of the other coordinates.

Figure 2:
Left: The figure of S(l;n), T (l;n) and Bj(l;n).

Right: The figure of C(l;n) and Dj(l;n).

Let

Dj(l;n) = {v ∈ Bj(l;n)| d∞(v,Bj(l;n)c) > n1, v ∈ n1Zd},
Cj(l;n) =

{
v + kei| v + kei ∈ Bj(l;n), k ∈ Z, i ∈ {1, · · · , d}, v ∈ Dj(l;n)

}
.

C̃j(l;n) = {〈v, w〉| v, w ∈ Cj(l;n), |v − w|1 = 1}.

Definition 3.6. We consider the following conditions:

(Black–1) For any v, w ∈ Bj(l;n) with |v − w|1 ≥ (logN)
1

4d(r+1) ,

T(v, w) ≥ (τ + δ3.5)|v − w|1,

where δ3.5 > 0 is the constant in Lemma 3.5.
(Black–2) For any v, w ∈ ∂Bj(l;n),

T∂Bj(l;n)(v, w) ≤M
(
|v − w|1 ∨ (logN)

1
4d(r+1)

)
.
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(Black–3) For any edge e ⊂ Bj(l;n), τe ≤ (logN)
1

4d(r+1) .
(Black–4) For any v ∈ ∂Bj(l;n), there exists w ∈ ∂Bj(l;n) ∩ Cj(l;n) such that,

T∂Bj(l;n)(v, w) ≤Mn1.

When r > 0, an n-box Bj(l, n) is said to be black if (Black–1), (Black–2) and (Black–3)
hold. When r = 0, the n-box Bj(l, n) is called black if (Black–1) and (Black–4) hold. An
n-cube S(l, n) is said to be black if each of its surrounding n-boxes is black.

The reason why (logN)
1

4d(r+1) appears in the above definition will be clear in the
following lemma, though the specific choice of the exponent is not that important. Note
that |Cj(l;n)| ≤ C(s)fd,r(N) with some positive constant C(s) depending only on s, s1
and d.

Lemma 3.7. If we take M sufficiently large, then

P
(
Bj(l;n) is black

)
→ 1 as N →∞.

Proof. By Lemma 3.5 and the union bound,

P(Bj(l;n) does not satisfy (Black–1))

≤ 2d]Bj(l;n)2 max{P(T(v, w) < (τ + δ)|v − w|1)| v, w ∈ Zd, |v − w|1 ≥ (logN)
1

4d(r+1) }

≤ 2d(3n)2d exp (−K(logN)
1

4d(r+1) ),

which converges to 0 and thus (Black–1) holds with high probability.
Next, we consider (Black–2) with r > 0. Let v, w ∈ ∂Bj(l;n) and γvw : v → w be a path

on ∂Bj(l;n) whose length is at most 6d|v − w|1. Since Eτ2me <∞ with m = b32d2(r + 1)c,
by the same argument as in Lemma 2.5, for any v, w ∈ ∂Bj(l;n), we have

P
(

T∂Bj(l;n)(v, w) > M(|v − w|1 ∨ (logN)
1

4d(r+1) )
)

≤ P
(

T(γvw)− ET(γvw) >
M

2
(|v − w|1 ∨ (logN)

1
4d(r+1) )

)
≤
(
M

2
(|v − w|1 ∨ (logN)

1
4d(r+1) )

)−2m
E[(T(γvw)− ET(γvw))2m]

≤ (logN)−2d.

By ]∂Bj(l;n) ≤ C(d)fd,r(N)d−1 ≤ C(d)(logN)d−1 with some constant C(d) > 0, (Black–2)
holds with high probability for r > 0.

By the union bound and P(τe > (logN)
1

4d(r+1) ) ≤ C(logN)−2d, (Black–3) holds with
high probability for r > 0.

Finally, we consider (Black–4) with r = 0. We fix v ∈ ∂Bj(l;n). There exists w ∈
∂Bj(l;n) ∩ Cj(l;n) such that |v − w|1 ≤ 2dn1. Consider 2(d− 1) disjoing paths (ri)

2(d−1)
i=1

from v to w on ∂Bj(l;n) so that ]ri ≤ 4dn1 as in Section 2.6. For M large enough, using
the Chebyshev inequality, we have

P(T∂Bj(l;n)(v, w) > Mn1) ≤
2(d−1)∏
i=1

P(T∂Bj(l;n)(ri) > Mn1)

≤ n2(d−1)1 .

By the union bound, we conclude that

P(∃v ∈ ∂Bj(l;n) s.t.∀w ∈ ∂Bj(l;n) ∩ Cj(l;n), T∂Bj(l;n)(v, w) > Mn1)

≤ (]∂Bj(l;n))n
2(d−1)
1 ≤ C(d)nd−1n

2(d−1)
1 ,

which converges to 0. Therefore, (Black–4) holds with high probability for r = 0.
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Combining the previous lemma and a similar argument (Peierls argument) of (5.2) in
[3] shows the following lemma. We skip the details.

Lemma 3.8. There exist ε, u > 0 such that for any N ∈ N,

P

(
∃γ ∈ ON visiting at most

εN

fd,r(N)
distinct black n-cubes

)
≤ exp

(
−u N

fd,r(N)

)
.

We note that ε and u above depend on s0, s1,M but not on N . A path which starts in
S(l;n) and ends outside T (l;n) must have a segment which lies entirely in one of the
surrounding n-boxes, and which connects the two opposite large faces of that n-box. This
means that the path crosses the n-box in the short direction (See Figure 3). Hereafter
“crossing an n-box” means crossing in the short direction. From this and Lemma 3.8, we
have

E[]{distinct black n-box Bj(l;n) s.t. ∃γ ∈ ON crossing Bj(l;n)}] ≥ εN

2fd,r(N)
. (3.9)

Fix some small constant c > 0 depending on s, to be chosen later.

Definition 3.9. An n-box Bj(l;n) is said to be good if for any γ ∈ ON , there exists e ∈ γ
such that both vertices of e are in Bj(l;n) and τe ≥ cfd,r(N).

Note that

E

[
inf
γ∈ON

]{e ∈ γ : τe ≥ cfd,r(N)}
]

≥ 1

2d
E[]{(j, l)|Bj(l;n) is a good n-box}]

=
1

2d

∑
(j,l)

P(Bj(l;n) is a good n-box),

(3.10)

where 2d appears because of the overlap of n-boxes. On the other hand, (3.9) yields

1

2

εN

fd,r(N)
≤ E[]{distinct black n-box Bj(l;n) s.t. ∃γ ∈ON crosses Bj(l;n)}]

=
∑
(j,l)

P(Bj(l;n) is black and ∃γ ∈ ON crosses Bj(l;n)).
(3.11)

The next proposition will be proved in subsequent sections, which implies that black
boxes can be made good boxes without too much cost.

Proposition 3.10. With some choices of c, s0, s1,M , there exists δ > 0 such that for N
large enough,

P(Bj(l;n) is good)

≥ N−δP
(
Bj(l;n) is black and ∃γ ∈ ON crosses Bj(l;n)

)
.

Proof of Lemma 3.1 assuming Proposition 3.10. Combining Proposition 3.10 with (3.10)
and (3.11), we have

E

[
inf
γ∈ON

]{e ∈ γ : τe ≥ cfd,r(N)}
]

≥ 1

2d
N−δE[]{distinct black n-box Bj(l;n) s.t. ∃γ ∈ON crosses Bj(l;n)}]

≥ 1

4d

εN1−δ

fd,r(N)
,

which proves Lemma 3.8, retaking δ > 0.
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3.3 Lower bound for 0 < r < d− 1 or r = 1

Set n = bfd,r(N)c and n1 = bsfd,r(N)c, where s is chosen later. Our goal is to prove
Propositioin 3.10. For the main step, we set

Ẽj(l;n) = {〈v, w〉| v ∈ Cj(l;n)\∂Bj(l;n) and w /∈ Cj(l;n)\∂Bj(l;n)}. (3.12)

Let us note that any path has to pass through at least one of edges of Ẽj(l;n) to enter
Cj(l;n)\∂Bj(l;n). It is easy to see that there exists C(s) > 0 such that

|C̃j(l;n)|, |Ẽj(l;n)| ≤ C(s)fd,r(N). (3.13)

Definition 3.11. We say that the collection τ = {τe}e∈Ed satisfies A1–condition if{
cfd,r(N) ≤ τe ≤ κcfd,r(N) when e ∈ Ẽj(l;n),

τe ≤ τ + c when e ∈ C̃j(l;n)\Ẽj(l;n),

where κ is the parameter in Theorem 1.4. If τ satisfies A1–condition, then we write
τ ∈ A1.

Under the A1–condition, the weights are atypically small on the grid (i.e. Cj(l;n)) but
a path has to pass through a large weight to enter the grid.

A resampled configuration τ∗ = {τ∗e }e∈Ed is taken to be τ∗e = τe if e /∈ C̃j(l;n)∪ Ẽj(l;n)

and an independent copy of τe if e ∈ C̃j(l;n) ∪ Ẽj(l;n). We enlarge the probability space
so that it can measure the event both for τ and τ∗ and we still denote the probability
measure by P. We denote by T∗(γ) the passage time of a path γ for τ∗ and by T∗(x, y)

the corresponding first passage time and we write T∗N = T∗(0, Ne1). We also denote by
O∗N the set of all optimal paths for T∗N . Let A be the event defined as

A = {τ∗ ∈ A1} ∩ {Bj(l;n) is black for τ and ∃γ ∈ ON crosses Bj(l;n)}. (3.14)

Figure 3:
Left: ON crosses a n-box in the short direction.
Right: How to construct a new path from ON .
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Proposition 3.12. If we take s sufficiently small depending on M and c sufficiently small
depending on s, then for N large enough, except when 0 ∈ Bj(l;n) or Ne1 ∈ Bj(l;n), we
have

P
(
n-box Bj(l;n) is good for τ

)
= P

(
n-box Bj(l;n) is good for τ∗

)
≥ P(A).

(3.15)

Proof. Since τ and τ∗ have the same distributions, the equality is trivial. Next, we
consider the inequality above. It suffices to show A ⊂ {n-box Bj(l;n) is good for τ∗}. Let
us briefly explain the heuristics behind the proof. Under the event A, since a path can
pass through the box Bj(l;n) with a smaller passage time than that before resampling,
any optimal path must enter the inside of Bj(l;n) after resampling. Since we resample
the configurations only of Ẽj(l;n) and C̃j(l;n), any optimal path must pass on an edge
of Ẽj(l;n) ∪ C̃j(l;n), in particular an edge of Ẽj(l;n) as explained below (3.12). By the
A1-condition, this implies Bj(l;n) is good. Let us make this rigorous.

Assume that the event A occurs. To prove (3.15), it suffices to show that

T∗N < TN . (3.16)

In fact, since we change configurations only on C̃j(l;n) and Ẽj(l;n), (3.16) yields that
any π∗ ∈ O∗N has to pass through an edge of C̃j(l;n) ∪ Ẽj(l;n) at least one time, since
otherwise

T∗N = T∗(π∗) = T(π∗) ≥ TN .

Moreover, in order to enter Cj(l;n)\∂Bj(l;n), π∗ has to pass through an edge of Ẽj(l;n)

at least one time. Therefore Bj(l;n) is good for τ∗. This yields (3.15).
Let us prove (3.16). We take an arbitrary optimal path π ∈ ON . We construct a new

path π∗ from π to prove (3.16) as follows (see also Figure 3). Let v and w be the first
intersecting point and the last intersecting point between π and Bj(l;n), respectively.
Note that τ and τ∗ are the same on ∂Bj(l;n). Under the assumption that Bj(l;n) is black,
we can take v1, w1 ∈ ∂Bj(l;n)∩Cj(l;n) and paths π∗1 : v → v1 and π∗2 : w1 → w on ∂Bj(l;n)

such that max{T(π∗1),T(π∗2)} ≤ 2dMn1 and max{|v − v1|1, |w − w1|1} ≤ 2dn1. We take a
path π∗3 ⊂ C̃j(l;n) ∪ Ẽj(l;n) from v1 to w1 such that π∗3 has exactly two edges in Ẽj(l;n)

and at most |v1 − w1|1 + 4n1 edges in C̃j(l;n). For x, y ∈ π, we write π|x→y the sub-path
of π from x to y. Finally, we connect π|0→v, π∗1, π∗3, π∗2, π|w→Ne1 in this order and let π∗

be the new path. Note that since π crosses Bj(l;n), max{|x− y|1| x, y ∈ π ∩ Bj(l;n)} ≥ n.
Therefore, by (Black–1),

T(v, w) ≥ (τ + δ3.5)(|v − w|1 ∨ n)

≥ τ |v − w|1 + δ3.5n/2,
(3.17)

and by |v1−w1|1 ≤ 3dn and ]π∗3 ≤ |v1−w1|+ 4n1 ≤ |v−w|1 + 8n1, if we take c sufficiently
small depending on s, then we obtain

T∗(v, w) ≤ T∗(π∗1) + T∗(π∗2) + T∗(π∗3)

≤ 2dMn1 + 2κcfd,r(N) + (τ + c)(|v − w|1 + 8n1) + 2dMn1

≤ τ |v − w|1 + 8dMn1.

(3.18)

Since we only resample the edges in Bj(l;n) and the paths π|0→v and π|0→w does not
use such edges, we have

TN = T(0, v) + T(v, w) + T(w,Ne1),

T∗(0, v) ≤ T(0, v),

T∗(w,Ne1) ≤ T(w,Ne1).
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Moreover, by the triangular inequality, we get

T∗N ≤ T∗(0, v) + T∗(v, w) + T∗(w,Ne1).

Thus, using (3.17) and (3.18), if s is sufficiently small such that 100dMn1 ≤ δ3.5n, then
this proves

TN − T∗N ≥ T(0, v) + T(v, w) + T(w,Ne1)− (T∗(0, v) + T∗(v, w) + T∗(w,Ne1))

≥ T(v, w)− T∗(v, w)

≥ τ |v − w|1 + δ3.5n/2− τ |v − w|1 − 8dMn1

≥ δ3.5n/4.

(3.19)

In particular, (3.16) follows.

By (3.13), if we take c sufficiently small depending on s again, then for N large
enough,

P(τ∗ ∈ A1) ≥
{
αe−βc

r(logN)
r
r+1
}|Ẽ|

P (τ∗e < τ + c)
|C̃|

≥ N−δ.

Thus we have

P(A) ≥ N−δP
(
Bj(l;n) is black for τ and ∃γ ∈ ON crosses Bj(l;n)

)
. (3.20)

Combined with Proposition 3.12, this proves Proposition 3.10.

3.4 Lower bound for r = 0

We suppose r = 0, where fd,r(N) = logN
log logN . Let n = [sfd,0(N)] and n1 = [s1+

1
2d fd,0(N)],

and the other definitions be the same as before. Then the same arguments as in subsec-
tion 3.3 work to prove Proposition 3.12. Moreover since ]Ẽj(l;n) ≤ 2d(3n/n1)d−1(3n) ≤
s1/2fd,0(N), for any δ > 0, if s is sufficiently small, then the probability of {τ∗ ∈ A1} can
be bounded from below by((

α
c logN

log logN

)−β)|Ẽ|
P (τ∗e < τ + c)

|C̃| ≥ N−δ. (3.21)

The rest is the same as before.

3.5 Lower bound for r > d− 1

We suppose r > d− 1, where

fd,r(N) =


(logN)

1
d , if d− 1 < r < d,

(logN)
1
d (log logN)−

1
d , if r = d,

(logN)
1
r , if d < r.

(3.22)

We take M > 0 sufficiently large and s > 0 sufficiently small depending on M > 0

specified later. Set
n = bsfd,r(N)c and n1 = 2bs2fd,r(N)c.

Here we have defined n1 to be even so that n1/2 is an integer. We use the same
definitions of Cj(l;n), C̃j(l;n), and Dj(l;n) as before. We change the definitions of
Ej(l;n) and Ẽj(l;n) (see Figure 4) as

Ej(l;n) = {v ∈ Cj(l;n)| ∃w ∈ Dj(l;n) s.t. |v − w|1 = n1/2},
Ẽj(l;n) = {〈v, w〉| v ∈ Ej(l;n), w = v + ei ∈ Cj(l;n), ∃i ∈ {1 · · · , d}}.
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Given a ∈ Cj(l;n)\Ej(l;n), let Wa be the connected component of Cj(l;n)\Ej(l;n) con-
taining a, i.e. Wa = Conn(a,Cj(l;n)\Ej(l;n)) from the notation in Section 1.4. We list
the basic properties of Wa and Cj(l;n).

Figure 4:
Left: The figure of Cj(l;n), Dj(l;n), Ej(l;n) for r > d− 1.

Right: The figure of `(x), `1(x) and `2(x).

Lemma 3.13. (i) For any a ∈ Cj(l;n)\Ej(l;n) and b ∈ Wa, there exists a path π =

(x0, · · · , xl) from a to b which lies only on Cj(l;n)\Ej(l;n) and l = |a− b|1.

(ii) For any a, b ∈ Cj(l;n) with |a− b|1 < n1/4, there exists a path π = (x0, · · · , xl) from
a to b which lies only on Cj(l;n) and l = |a− b|1.

(iii) For any a ∈ ∂Bj(l;n) and b ∈ Cj(l;n) with |a − b|1 < n1/4, there exists a path
π = (x0, · · · , xl) from a to b which lies only on Cj(l;n) ∪ ∂Bj(l;n) and l = |a− b|1.

(iv) If |a − b|1 ≤ n1/4 and Wa 6= Wb, then there exists 〈y1, y2〉 ∈ Ẽj(l;n) such that
|a− y1|1, |b− y1|1 ≤ n1/4 + 1 and a line L including both y1 and y2 also includes both
a and b.

(v) For any a ∈ ∂Bj(l;n), {b ∈ Cj(l;n)| |b− a|1 < n1/2} is a straight line.

Proof. (i) It is easy to see that for any connected component, namely Wa, there exists
x ∈ (Dj(l;n) ∪ ∂Bj(l;n)) ∩Wa such that

Wa ⊂ {x+ kei| i ∈ {1, · · · , d}, k ∈ Zd}.

This yields (i).
(ii) Fix a ∈ Cj(l;n). If there exists x ∈ Dj(l;n) such that |a− x|∞ < n1/4, then since

{y ∈ Cj(l;n)| |a− y|1 < n1/4} ⊂ {x+ kei| i ∈ {1, · · · , d}, k ∈ Zd},

the claim holds. Otherwise, {y ∈ Cj(l;n)| |a− y|1 < n1/4} is a subset of a straight line.
Since {y ∈ Cj(l;n)| |a− y|1 < n1/4} is connected, (ii) holds.

(iii),(iv),(v) They follow from the construction of Cj(l;n) directly.

Given x ∈ Zd, we define `(x) = d1(x,Ej(l;n)) and given 〈x, y〉 ∈ Ed, `(〈x, y〉) =

inf{`(x), `(y)}.

EJP 27 (2022), paper 19.
Page 22/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP746
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Maximal edge-traversal time in First-passage percolation

Lemma 3.14. There exists C(s) > 0 such that for any 0 ≤ ` ≤ 2dn1,

]{e ∈ Ed| `(e) = `} ≤ C(s)(`+ 1)d−1. (3.23)

If ` > 2dn1, then
]{e ∈ Ed| `(e) = `, e ⊂ Bj(l;n)} = 0. (3.24)

Proof. We begin with the case ` ≤ 2dn1. Since there exists C1(s) > 0 such that ]Ej(l;n) ≤
C1(s), we have

]{x ∈ Zd| `(x) = `} ≤ ]{x ∈ Zd| ∃y ∈ Ej(l;n) s.t. |x− y|1 = `}
≤ C1(s)]{x ∈ Zd| |x|1 = `}.

By ]{x ∈ Zd| |x|1 = `} ≤ dd(`+ 1)d−1, we have

]{x ∈ Zd| `(x) = `} ≤ ddC1(s)(`+ 1)d−1.

In particular, we get ]{e ∈ Ed| `(e) = `} ≤ 2dd+1C1(s)(` + 1)d−1 as desired. If ` > 2dn1,
then (3.24) is trivial due to the way of construction.

Unlike the case r < d−1, when r > d−1, P(τ ∈ A1) decays faster than any polynomial,
which implies that the lower bound from A1–condition is not appropriate in this case.
Hence, we need to consider a different condition.

Definition 3.15. We say that the collection τ = {τe}e∈Ed satisfies A2–condition if
c2fd,r(N) ≤ τe ≤ κc2fd,r(N), if e ∈ Ẽj(l;n),

τe ≤ τ + c2, if e ∈ C̃j(l;n)\Ẽj(l;n),

τe ≥ cfd,r(N)
`(e)+1 ∨M

2, if e ⊂ ι(Bj(l;n)) and e /∈ C̃j(l;n),

τe ≥ (logN)
1

2d(r+1) , if e ∩ ∂Bj(l;n) 6= ∅, e ∩ ι(Bj(l;n)) 6= ∅, e /∈ C̃j(l;n),

where recall that ι(B) = B\∂B. If τ satisifes A2–condition, we write τ ∈ A2.

Since an edge weight on ι(Bj(l;n))\Cj(l;n) is high under A2–condition, an optimal
path is more likely to lie on Cj(l;n) while crossing Bj(l;n).

A resampled configuration τ∗ = {τ∗e }e∈Ed is taken to be τ∗e = τe if e ∩ ι(Bj(l;n)) = ∅
and an independent copy of τe if e ∩ ι(Bj(l;n)) 6= ∅. We define the event A as

A = {τ∗ ∈ A2} ∩ {Bj(l;n) is black for τ and ∃γ ∈ ON crosses Bj(l;n)}. (3.25)

Proposition 3.16. For any δ > 0, if s > 0 is sufficiently small depending on M and c > 0

is sufficiently small depending on s, then

P (τ ∈ A2) ≥ N−δ.

Proof. By the fact P (τe > a ∨ b) ≥ P (τe > a)P (τe > b) for a, b ≥ 0 and Lemma 3.14, we
have

P (τ ∈ A2) ≥
(
αe−βc

2rfd,r(N)r
)|Ẽ|

P
(
τe ≤ τ + c2

)|C̃|
(1 ∧ α)2d|B|

2dn1∏
k=1

(
e
−β
(
cfd,r(N)

k

)r)C(s)kd−1

· P
(
τe > M2

)2d|B|(
αe−β(logN)

1
2d

)2d|∂B|

≥ exp

(
−δ logN

2

)
exp

(
−βC(s)

2dn1+1∑
k=1

cr
fd,r(N)r

kr−d+1

)
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where we have used (fd,r(N))d, (logN)1/2d(fd,r(N))d−1 ≤ logN since r > d− 1 in the last
inequality. This is further bounded from above by

exp (−δ logN) ≥ N−δ,

where we have used

n∑
k=1

kd−r−1 ∼


nd−r if d− 1 < r < d,

log n if r = d,

1 if r > d,

and c is sufficently small depending on s.

Proposition 3.17. For M large enough, if s is sufficiently small and c is sufficiently
small depending on s, then for N large enough, unless 0 ∈ Bj(l;n) or Ne1 ∈ Bj(l;n), on
the event A, any π∗ ∈ O∗N does not touch Bj(l;n)\(∂Bj(l;n) ∪ Cj(l;n)) and passes on an
edge of Ẽj(l;n) at least one time.

Proof. By the same way as in the case r < d − 1, we have TN > T∗N , and any
π∗ ∈ O∗N has to enter inside Bj(l;n). We take an arbitrary optimal path π∗ ∈ O∗N
and write π∗ = {x1, · · · , xK}. By assuming that there exists k ∈ {1, · · · ,K} such that
xk ∈ (Bj(l;n)\(∂Bj(l;n) ∪ Cj(l;n))), we shall derive a contradiction.

We define p = max{l ≤ k| xl ∈ ∂Bj(l;n) ∪ Cj(l;n)} and q = min{l ≥ k| xl ∈ ∂Bj(l;n) ∪
Cj(l;n)}. Note that q − p ≥ 1. Set a = xp and b = xq. Define C(s) > 0 so that
]Ej(l;n) ≤ C(s).
Step 1 (a, b ∈ Cj(l;n)): Suppose a ∈ ∂Bj(l;n) and we shall derive a contradiction. Since

π∗|a→b has to pass on an edge whose weight is at least (logN)
1

2d(r+1) and passes only on
Bj(l;n)\(∂Bj(l;n) ∪ Cj(l;n)) except for the starting and ending points, we have

T∗(a, b) ≥ (logN)
1

2d(r+1) + (|a− b|1 − 1)M2. (3.26)

If |a− b|1 ≤ n1/4, by Lemma 3.13–(iii) and (Black-2), then there exists a path γ : a→ b on
∂Bj(l;n) ∪ Cj(l;n) such that

T∗(γ) < M
(

(logN)
1

4d(r+1) + |a− b|1
)
< T∗(a, b),

which is a contradiction.
On the other hand, if |a− b| > n1/4, by A2–condition, then for c small enough, we can

take a path γ : a→ b on ∂Bj(l;n) ∪ Cj(l;n) so that

T∗(γ) < M |a− b|1 + C(s)c2κfd,r(N)

< (logN)
1

2d(r+1) + (|a− b|1 − 1)M2

≤ T∗(a, b),

which is also a contradiction. Thus, we have a ∈ Cj(l;n). Similarly, we get b ∈ Cj(l;n).
Step 2 (|a − b|1 ≤ n1/4): Note that by the same reason of (3.26), T∗(a, b) ≥ |a − b|1M2.
Take a path γ : a→ b on Cj(l;n) such that T∗(γ) ≤ (τ+c2)(|a−b|1 +4n1)+C(s)κc2fd,r(N).
It follows that

M2|a− b|1 ≤ T∗(a, b)

=

q−1∑
i=p

τ〈xi,xi+1〉

≤ (τ + c2)(|a− b|1 + 4n1) + C(s)κc2fd,r(N),
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which leads to

|a− b|1 ≤
4(τ + c2)n1 + C(s)κc2fd,r(N)

(M2 − τ − c2)n1
n1.

If we take M > 0 sufficiently large, then it follows that |a− b|1 ≤ n1/4.
Step 3 (Wa 6= Wb): When a and b both belong to the same connected component, i.e.
Wa = Wb, by Lemma 3.13–(i), we can take a path γ : a→ b on Cj(l;n) such that

T∗(γ) ≤ (τ + c2)|a− b|1
< M2|a− b|1 ≤ T∗(a, b),

which is also a contradiction. Thus Wa 6= Wb.
Step 4 (Conclusion): It follows from Lemma 3.13–(ii) that we can take a path γ : a→ b

on Cj(l;n) such that

T∗(a, b) ≤ T∗(γ) ≤ c2κfd,r(N) + (τ + c2)|a− b|1. (3.27)

By Lemma 3.13–(iv), the line between a and b lies on Cj(l;n) and it includes exactly one
vertex of Ej(l;n) between a and b, say x. If there exists k ∈ Jp, qK such that xk ∈ ∂Bj(l;n),
then max{|a− xk|1, |b− xk|1} ≥ n1/4 and by (3.27),

M2n1/4 ≤ T∗(a, b)

< c2κfd,r(N) + (τ + c2)|a− b|1
≤ c2κfd,r(N) + (τ + c2)n1/4,

which contradicts that M is sufficiently large. Thus for any k ∈ Jp, qK, xk ∈ ι(Bj(l;n)).
Since

|xk − x|1 ≤ |xk − a|1 + |xk − b|1 ≤ q − p for any p < k < q,

we have `(〈xk, xk+1〉) ≤ q − p. This yields

T∗(a, b) ≤ (τ + c2)|a− b|1 + c2κfd,r(N)

< M2|a− b|1 ∨
q−1∑
i=p

cfd,r(N)

q − p+ 1

≤
q−1∑
i=p

(
M2 ∨ cfd,r(N)

`(〈xi, xi+1〉) + 1

)

≤
q−1∑
i=p

τ∗〈xi,xi+1〉 = T∗(a, b),

where we have used (3.27) in the first inequality, q− p ≥ |a− b|1 and `(〈xk, xk+1〉) ≤ q− p
in the third inequality, and A2–condition in the last inequality. It leads to a contradiction.
Therefore, we conclude that such xk does not exist and any π∗ ∈ O∗N does not touch
Bj(l;n)\(∂Bj(l;n) ∪ Cj(l;n)).

Finally, we show that any optimal path passes through an edge of Ẽj(l;n). Since any
optimal path π∗ ∈ O∗N does not touch Bj(l;n)\(∂Bj(l;n) ∪ Cj(l;n)), if π∗ does not touch
{x ∈ Cj(l;n)| x 6∼Cj(l;n)\Ej(l;n) ∂Bj(l;n)}, then π∗ ∩ ι(Bj(l;n))c is also a path and we can
take an optimal path so that it does not enter inside Bj(l;n), which contradicts TN > T∗N
mentioned at the beginning of the proof. Thus, π∗ touches {x ∈ Cj(l;n)| x 6∼Cj(l;n)\Ej(l;n)

∂Bj(l;n)} and needs to pass on at least one edge of Ẽj(l;n).

Proposition 3.17 implies that on the event A, Bj(l;n) is good for τ∗. Hence, we obtain
(3.15). Together with Proposition 3.16, as in (3.20), we conclude Proposition 3.10.
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3.6 Lower bound for r = d− 1 with d ≥ 3

We consider the case r = d− 1 with d ≥ 3, where fd,d−1(N) = (logN)
1
d (log logN)

d−2
d .

We take s > 0 and M ∈ N to be chosen later. We define n, n1 as in Section 3.5. We use
the same notation as in subsection 3.5.

We define (See Figure 5)

Fj(l;n) = {v ∈ Bj(l;n)\(∂Bj(l;n) ∪ Cj(l;n))| ∃w ∈ Cj(l;n) s.t. |v − w|1 < (logN)
1

4d2 }.

Given x ∈ Zd, we define `1(x) and `2(x) as follows (See Figure 4):

`1(x) = d1(x,Cj(l;n)), `2(x) = d1(x,Ej(l;n))1 − `1(x).

Given an edge e = 〈x, y〉, we define `1(e) and `2(e) as

`1(e) = `1(x) ∧ `1(y), `2(e) = `2(x) ∧ `2(y).

Figure 5:
Left: The figure of Fj(l;n).

Right: The image of the proof of Proposition 3.22.

Lemma 3.18. There exists a positive constant C(s) such that if 0 ≤ ` ≤ (logN)
1

4d2 and
0 ≤ k ≤ 2n1, then

]{e ∈ Ed| e ∩ Fj(l;n) 6= ∅, `1(e) = `, `2(e) = k} ≤ C(s)(`+ 1)d−2. (3.28)

Otherwise, if ` > (logN)
1

4d2 or k > 2n1, then

]{e ∈ Ed| e ∩ Fj(l;n) 6= ∅, `1(e) = `, `2(e) = k} = 0. (3.29)

Proof. Let L = {ke1| k ∈ Z}. The inequality (3.28) follows from

]{e ∈ Ed| `2(e) = k, `1(e) = `} ≤ 2d(]Ej(l;n))]{v ∈ Zd| |v1| = k, |v|(2)1 = `}
≤ C(s)(`+ 1)d−2,

where we define |v|(2)1 = |v|1 − |v1|. By the definition of Fj(l;n), (3.29) is trivial.
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When r > d− 1, we do subject conditions on all weights in Bj(l;n). However, when
r = d− 1, since (fd,r(N))d � (logN), we cannot do that. Hence, we need to consider an
even weaker condition. This makes the proof more complicated.

Definition 3.19. We say that the collection τ = {τe}e∈Ed satisfies A3–condition if
c2fd,d−1(N) ≤ τe ≤ κc2fd,d−1(N), if e ∈ Ẽj(l;n)

τe ≤ τ + c2, if e ∈ C̃j(l;n)\Ẽj(l;n)

τe ≥ cfd,d−1(N)
(`1(e)+1) log (`2(e)+2) if e ∩ Fj(l;n) 6= ∅ and e ∩ ∂Bj(l;n) = ∅

τe ≥ (logN)
1

2d2 , if e ∩ ∂Bj(l;n) 6= ∅, e 6⊂ ∂Bj(l;n)), e /∈ C̃j(l;n).
(3.30)

If τ satisifes A3–condition, then we write τ ∈ A3.

We note that under A3–condition, for e ∈ Ed with e∩ Fj(l;n) 6= ∅ and e∩ ∂Bj(l;n) = ∅,
τe ≥M2 for N large enough. A resampled configuration τ∗ = {τ∗e }e∈Ed is taken to be an
independent copy if e satisfies one of the conditions which appear in (3.30) and τ∗e = τe
otherwise.

We define the event A as

A = {τ∗ ∈ A3} ∩ {Bj(l;n) is black for τ and ∃γ ∈ ON crosses Bj(l;n)}. (3.31)

On the event A, if e /∈ C̃j(l;n), then τ∗e ≥ τe. Thus, the following proposition follows.

Proposition 3.20. On the event A, the following holds. For any v, w ∈ ι(Bj(l;n)) with

|v − w|1 ≥ (logN)
1

4d2 and a path π : v → w satisfying π ∩ C̃j(l;n) = ∅,

T∗(π) ≥ (τ + δ3.5)|v − w|1. (3.32)

Proposition 3.21. For any δ > 0, there exists s0 > 0 such that for any s < s0, there
exists c0(s) > 0 such that for any c < c0(s),

P (τ∗ ∈ A3) ≥ N−δ.

Proof. If we take c > 0 sufficiently small depending on s > 0, by Lemma 3.18, then

P (τ∗ ∈ A3) ≥
(
αe−βc

2(d−1)fd,d−1(N)d−1
)|Ẽ|

P
(
τe ≤ τ + c2

)|C̃|
×
b(logN)

1
4d2 c∏

`=0

2n1∏
k=0

(
αe
−β
(

cfd,d−1(N)

(`+1) log (k+2)

)d−1)C(s)(`+1)d−2 (
αe−β(logN)

1
2d

)2d|∂B|

≥ exp

(
−δ logN

2

)
exp

−βC(s)

b(logN)
1

4d2 c∑
`=0

2n1∑
k=0

cd−1
fd,d−1(N)d−1

(`+ 1)(log (k + 2))d−1


≥ exp (−δ logN) = N−δ,

where we have used the following facts in the last inequality that for s small enough,

2n1∑
k=0

1

(log (k + 2))d−1
≤ fd,d−1(N)

(log logN)d−1
,

b(logN)
1

4d2 c∑
`=0

1

`+ 1
≤ log logN.
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Proposition 3.22. If s is sufficiently small depending on M and c is sufficiently small
depending on s, then on the event A, unless 0 ∈ Bj(l;n) or Ne1 ∈ Bj(l;n), any optimal
path π∗ ∈ O∗N needs to pass through at least one edge of Ẽj(l;n).

Proof. By the same argument as in (3.19), one can check that

TN −
δ3.5
4
n > T∗N . (3.33)

Thus any optimal path π∗ ∈ O∗N has to enter inside Bj(l;n). We take π∗ ∈ O∗N which is a
self avoiding path and write π∗ = {x0, · · · , xK}. We define sequences (pi, qi) inductively
as follows: let

p0 = min{l ∈ J0 , KK| xl ∈ Bj(l;n)} and q0 = min{l ∈ Jp0 + 1 , KK| xl ∈ Cj(l;n)}.

If we could define (pi, qi)
k
i=0, then we define

pi+1 = min{l ∈ Jqk + 1 , KK| xl ∈ Zd\Cj(l;n)} − 1,

qi+1 = min{l ∈ Jpi+1 + 1 , KK| xl ∈ Cj(l;n)}.

Let I = inf{l| ql = ∞}. We redefine qI = max{1 ≤ l ≤ K| xl ∈ Bj(l;n)}. (See Figure 5.)
By the same argument as in (3.19), one can check that

T∗(xp0 , xqI ) ≤ (τ + c2)|xp0 − xqI |1 + 8dMn1. (3.34)

Before going into the details, we explain the strategy here. When r > d − 1, since
all the weights in Bj(l;n)\Cj(l;n) are sufficiently large under the condition A2, optimal
paths from xp0 to xqI lies only on Cj(l;n) as we have proved. On the other hand, when
r = d − 1, since we do not subject conditions on all of the weights in Bj(l;n), we no
longer conclude that optimal paths do not touch Bj(l;n)\(Cj(l;n) ∪ ∂Bj(l;n)). However,
if an path from xp0 to xqI enjoys passing through Bj(l;n)\Cj(l;n) very long time, then
Proposition 3.20 yields that this path is not optimal. Thus, any optimal paths from xp0 to
xqI mostly lies on Cj(l;n). Hence, any optimal path needs to pass through an edge of
Ẽj(l;n). Let us make the above heuristic rigorous.

Step 1 (|xpi−xqi |1 > n1/4): We will show that for any i ∈ J1 , I−1K, |xpi−xqi |1 > n1/4.
Until Step 1 is completed, we assume that |xpi − xqi |1 ≤ n1/4 and finally we shall derive
a contradiction. By Lemma 3.13–(i), there exists a path π∗ : xpi → xqi on Cj(l;n) such
that

T∗(xpi , xqi) ≤ T∗(π∗) ≤ (τ + c2)|xpi − xqi |1 + c2fd,d−1(N)1{Wpi
6=Wqi

}. (3.35)

We divide into two cases.
Case 1 (Wxpi

= Wxqi
): If |xpi − xqi |1 ≥ (logN)

1
4d2 , by Proposition 3.20, T∗(xpi , xqi) ≥

(τ + δ3.5)|xpi −xqi |1, which contradicts (3.35). Hence, |xpi −xqi |1 < (logN)
1

4d2 . Moreover,

if there exists k ∈ Jpi , qiK such that |xpi − xk|1 ≥ (logN)
1

4d2 , then Proposition 3.20 yields

T∗(xpi , xqi) ≥ (τ + δ3.5)(logN)
1

4d2

> (τ + c2)|xpi − xqi |1,

which contradicts (3.35). Thus for any k ∈ Jpi , qiK, |xpi − xk|1 < (logN)
1

4d2 .
If, in addition, there exists k ∈ Jpi , qiK such that xk ∈ ∂Bj(l;n), then the path

{xpi , · · · , xqi} crosses ∂Bj(l;n) without using C̃j(l;n). Hence, by A3–condition,

T∗(xpi , xqi) ≥ (logN)
1

2d2

> (τ + c2)(logN)
1

4d2

≥ (τ + c2)|xpi − xqi |1,

EJP 27 (2022), paper 19.
Page 28/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP746
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Maximal edge-traversal time in First-passage percolation

which contradicts (3.35). Hence xk ∈ ι(Bj(l;n)) and, since |xpi − xk|1 < (logN)
1

4d2 as
proved before, xk ∈ Fj(l;n) for any pi < k < qi.

On the other hand, since xk ∈ Fj(l;n) for any pi < k < qi, by the remark below
Definition 3.19, we have

T∗(xpi , xqi) ≥M2|xpi − xqi |1
> (τ + c2)|xpi − xqi |1,

which contradicts (3.35).
Case 2 (Wxpi

6= Wxqi
): Suppose that Wxpi

6= Wxqi
holds. If there exists k ∈ Jpi , qiK

such that xk ∈ ∂Bj(l;n), by Lemma 3.13–(iv), (v) and |xpi − xqi |1 ≤ n1/4, then we have
max{|xpi − xk|1, |xqi − xk|1} ≥ n1/4. It follows from Proposition 3.20 that

T∗(xpi , xqi) ≥ (τ + δ3.5)n1/4

> (τ + c2)|xpi − xqi |1 + c2fd,d−1(N),

which contradicts (3.35). Hence, we have that for any k ∈ Jpi , qiK, xk ∈ ι(Bj(l;n)).
Next we suppose that there exists k1 ∈ Jpi , qiK such that xk1 ∈ Bj(l;n)\(Fj(l;n) ∪

Cj(l;n)). Since xk ∈ ι(Bj(l;n)) for any k ∈ Jpi , qiK and `1(xpi) = 0, `2(xk) ≤ 2n1 and

`1(xk) ≤ k − p1. Since |xpi − xk1 |1 ≥ (logN)
1

4d2 , under A3–condition, we have that by
Proposition 3.20,

T∗(xpi , xqi) ≥ (τ + δ3.5)|xpi − xqi |1 ∨

b(logN)
1

4d2 c∑
`=0

cfd,d−1(N)

(`+ 1) log (2n1)


> (τ + δ3.5)|xpi − xqi |1 ∨ (cfd,d−1(N)/4d2)

> (τ + c2)|xpi − xqi |1 + c2fd,d−1(N),

which also contradicts (3.35). Thus for any k ∈ Jpi , qiK, xk ∈ Cj(l;n) ∪ Fj(l;n). Due to
the definition of (pi, qi), xk /∈ Cj(l;n) for pi < k < qi, which yields xk ∈ Fj(l;n).

Lemma 3.13–(iv) yields that there exists k1 ∈ Jpi , qiK such that `2(xk1) = 0, which
implies

max{`2(xk)| k ∈ Jpi , qiK} ≤ qi − pi.

It follows from A3–condtion that

T∗(xpi , xqi) ≥

(
qi−pi−1∑
`=0

cfd,d−1(N)

(`+ 1) log |qi − pi + 2|

)
> cfd,d−1(N)/2.

Moreover, by Proposition 3.20, if |xpi − xqi | ≥ (logN)
1

4d2 , then

T∗(xpi , xqi) ≥ (τ + δ3.5)|xpi − xqi |1.

Putting things together, we have

T∗(xpi , xqi) ≥ (τ + δ3.5)|xpi − xqi |1 ∨
cfd,d−1(N)

2

> (τ + c2)|xpi − xqi |1 + c2fd,d−1(N),

which contradicts (3.35).
In all cases, we derived contradictions. Hence, we have |xqi − xpi |1 > n1/4.

EJP 27 (2022), paper 19.
Page 29/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP746
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Maximal edge-traversal time in First-passage percolation

Step 2 (|xqI − xp0 |1 ≥ δ3.5n
4M ): Since we only resample the edges inside Bj(l;n) and the

paths π∗|0→xp0 and π∗|0→xqI does not use such edges,

T∗N = T∗(0, xp0) + T∗(xp0 , xqI ) + T∗(xqI , Ne1),

T∗(0, xp0) ≥ T(0, xp0),

T∗(xqI , Ne1) ≥ T(xqI , Ne1).

Moreover, by the triangular inequality, we get

TN ≤ T(0, xp0) + T(xp0 , xqI ) + T(xqI , Ne1).

Thus, by (3.33), we have

δ3.5n/4 ≤ TN − T∗N

≤ T(0, xp0) + T(xp0 , xqI ) + T(xqI , Ne1)− (T∗(0, xp0)

+ T∗(xp0 , xqI ) + T∗(xqI , Ne1))

≤ T(xp0 , xqI )− T∗(xp0 , xqI ) ≤ T(xp0 , xqI ).

By (Black-2), this is further bounded from above by M(|xqI−xp0 |1∨(logN)
1

4d2 ). Therefore
δ3.5n/4 ≤M |xqI − xp0 |1, which implies

|xp0 − xqI |1 ≥
δ3.5n

4M
.

Step 3 (Conclusion): Note that

|xp0 − xqI |1 ≤
I∑
i=0

|xqi − xpi |1 +

I−1∑
i=0

|xpi+1
− xqi |1. (3.36)

By Step 1 and Proposition 3.20, for i ∈ J1 , I − 1K,

(τ + δ3.5)|xqi − xpi |1 ≤ T∗(xpi , xqi). (3.37)

Moreover, by Proposition 3.20, for i = 0 or i = I,

(τ + δ3.5)
(
|xqi − xpi |1 − (logN)

1
4d2

)
≤ T∗(xpi , xqi). (3.38)

It follows that

τ |xp0 − xqI |1 + δ3.5

I∑
i=0

|xqi − xpi |1 − 2(τ + δ)(logN)
1

4d2

≤
I∑
i=0

(τ + δ3.5)|xqi − xpi |1 + τ

I−1∑
i=0

|xpi+1
− xqi |1 − 2(τ + δ)(logN)

1
4d2

≤
I∑
i=0

T∗(xpi , xqi) +

I−1∑
i=0

T∗(xpi+1
, xqi) = T∗(xp0 , xqI )

≤ (τ + c2)|xp0 − xqI |1 + 8dMn1,

(3.39)

where we have used (3.36) in the first inequality, (3.37) and (3.38) in the second inequal-
ity and (3.34) in the third inequality. Comparing the left and right hand side of (3.39),
we have

δ3.5

I∑
i=0

|xqi − xpi |1 ≤ 2(τ + δ)(logN)
1

4d2 + c2|xp0 − xqI |1 + 8dMn1. (3.40)
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Since |xp0 − xqI |1 ≤ 3dn, for c > 0 small enough, we have

2(τ + δ)(logN)
1

4d2 + c2|xp0 − xqI |1 ≤ 8dMn1. (3.41)

Combining (3.40), (3.41) and Step 1, we obtain

(I − 1)δ3.5n1
4

≤ δ3.5
I∑
i=0

|xqi − xpi |1 ≤ 16dMn1. (3.42)

Hence, if we take M > 100d(1 + δ−13.5), then we have I ≤ M2. If π∗ does not pass
through any edge of Ẽj(l;n), by maxa∈Cj(l;n) ]Wa ≤ 2dn1, then for any i ∈ J0, I − 1K,
|xpi+1

− xqi |1 ≤ 2dn1. This yields that

I−1∑
i=0

|xpi+1
− xqi |1 ≤ 2dn1I ≤ 2dM3n1. (3.43)

Recall we have defined n = bsfd,r(N)c and n1 = 2bs2fd,r(N)c. Therefore, we have

δ3.5n

4M
≤ |xp0 − xqI |1

≤
I∑
i=0

|xqi − xpi |1 +

I−1∑
i=0

|xpi+1
− xqi |1

≤ 16δ−13.5dMn1 + 2dM3n1 ≤M4sn,

where we have used Step 2 in the first inequality, (3.36) in the second inequality, (3.42)
and (3.43) in the third inequality. This leads to a contradiction if s is sufficiently small
depending on M and δ3.5. Thus we complete the proof.

Proposition 3.22 implies that on the event A, Bj(l;n) is good for τ∗. Hence, we obtain
(3.15). Together with Proposition 3.21, as in (3.20), we conclude Proposition 3.10.
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