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Abstract

Recently, in [11], the “coin-turning walk” was introduced on Z. It is a non-Markovian
process where the steps form a (possibly) time-inhomogeneous Markov chain. In
this article, we follow up the investigation by introducing analogous processes in
Zd, d ≥ 2: at time n the direction of the process is “updated” with probability pn;
otherwise the next step repeats the previous one. We study some of the fundamental
properties of these walks, such as transience/recurrence and scaling limits.

Our results complement previous ones in the literature about “correlated” (or
“Newtonian”) and “persistent” random walks.
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1 Introduction

We are going to study a non-classical random walk. This kind of process has been
studied in one-dimension in [11], and we now define and study the higher dimensional
analogs. To avoid ambiguity, in this paper, by geometric distribution we will mean the
probability distribution of the number of Bernoulli trials (and not failures) needed to get
one success, i.e., the random variable with support on {1, 2, . . . }. It will be denoted by
Geom(p). Finally, by symmetrized geometric distribution with parameter p ∈ (0, 1) (or
Sgeom(p)) we will mean the distribution of a random variable X such that

P(X = m) = pm =
1

2
(1− p)|m|−1p, m = ±1,±2,±3, . . . (1.1)

This latter distribution will play an important role during the investigation of the two
dimensional homogeneous case; see Section 2.

1.1 The coin-turning process

We start with reviewing the notion of the coin-turning process, which has recently
been introduced in [10]; note however, that the following definition is slightly different
from that in [10]. Let p2, p3, p4... be a given deterministic sequence of numbers such that
pn ∈ [0, 1] for all n; define also qn := 1 − pn. We define the following time-dependent
“coin-turning process” Xn ∈ {0, 1}, n ≥ 1, as follows. Let X1 = 1 (“heads”) or = 0 (“tails”)
with probability 1/2. For n ≥ 2, set recursively

Xn :=


0, with probability pn/2;

1, with probability pn/2;

Xn−1, otherwise,

that is, a fair coin is flipped with probability pn and stays unchanged with probability qn.
Additionally, one can define p1 = 1 and X0 ≡ 0. The process defined above is the same as
the one in [10] with the sequence p̂n := pn/2, and so turning occurs with probability at
most 1/2.

Consider XN := 1
N

∑N
n=1Xn, that is, the empirical frequency of 1’s (“heads”) up to

time N , in the sequence of Xn’s. We are interested in the asymptotic behavior of this
random variable when N →∞. Since we are interested in limit theorems, it is convenient
to consider a centered version of the variable Xn; namely Yn := 2Xn − 1 ∈ {−1,+1}. We
have then

Yn :=


+1, with probability pn/2;

−1, with probability pn/2;

Yn−1, otherwise.

(1.2)
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Note that the sequence {Yn} can be defined equivalently as follows:

Yn := (−1)
∑n
i=1Wi ,

where W1,W2,W3, ... are independent Bernoulli variables with parameters p1/2, p2/2,
p3/2, ..., respectively. Let also Fn := σ(Y1, Y2, ..., Yn), n ≥ 1.

For the centered variables Yn, we have Yj = Yi(−1)
∑j
i+1Wk , j > i, and so, using Corr

and Cov for correlation and covariance, respectively, one has

Corr(Yi, Yj) = Cov(Yi, Yj) = E(YiYj) = E(−1)
∑j
i+1Wk (1.3)

=

j∏
i+1

E(−1)Wk =

j∏
k=i+1

(1− pk) =: ei,j ;

E(Yj | Yi) = YiE(−1)
∑j
i+1Wk = ei,jYi. (1.4)

The quantity ei,j plays an important role in the analysis of the coin-turning process.
Finally, throughout the paper, we will use the notation |x| for the standard Euclidean

norm in Rd.

1.2 The one-dimensional coin-turning walk

We recall from [11] the definition of the coin-turning walk in one dimension.

Definition 1.1 (Coin-turning walk in Z). The random walk S on Z corresponding to the
coin-turning, will be called the coin-turning walk. Formally, Sn := Y1 + ...+ Yn for n ≥ 1;
we can additionally define S0 := 0, so the first step is to the right or to the left with equal
probabilities. As usual, we can then extend S to a continuous time process by linear
interpolation.

Even though Y is Markovian, S is not. However, the 2-dimensional process U defined
by Un := (Sn, Sn+1) is Markovian.

In [11] the one dimensional coin-turning walk has been investigated from the point of
view of transience/recurrence and scaling limits.

1.3 Generalizing the “coin-turning walk” to higher dimensions: “conservative
random walk”

We define a random walk corresponding to a given sequence pn, n = 2, 3, . . . in [0, 1]

for d ≥ 2, similarly to the case d = 1 in Definition 1.1. Now, instead of turning a “coin”,
we have to roll a “die” which has 2d sides.

The steps are defined as follows. Let Yn ∈ {±e1, . . . ,±ed} where ei are the 2d unit
vectors in Rd, and let Y1 be chosen uniformly from these vectors. Let the vectors Y1, Y2, ...

form an inhomogeneous Markov chain with the transition matrix between times n and
n+ 1 given by

(1− pn)Id +
pn
2d
Ad, n ≥ 1,

where Id is the d× d identity matrix and

Ad :=


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


is the d× d matrix of ones.

Now we define the random walk S on Zd, starting at z. Let Sn := z +
∑n
i=1 Yi for

n ≥ 0 (with the usual convention that
∑0
i=1 = 0), and denote by Pz the law of this walk.
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Sometimes we will simply write P when z = 0. Equivalently, we can define a sequence
of independent Bernoulli random variables ηi, i = 0, 1, . . . , such that P(ηi = 1) = pi, and
the increasing sequence of stopping times τj , such that τ0 = 0 and

τj+1 = inf{k > τj : ηk = 1}, j = 0, 1, 2, . . .

At times τj the walk Sn behaves just like a simple symmetric random walk, while in
between those times it keeps going in the direction it was going before.

For the sake of completeness, we will include the time-homogeneous case too, that is
the case when pn = p for n ≥ 2 where 0 < p < 1 (when p = 0 the walk moves in a straight
line, while the case p = 1 corresponds to the classical simple symmetric random walk; so
we do not consider these two degenerate cases).

Intuitively, the walker is more “reluctant” to change direction than an ordinary
random walker, motivating the following definition.

Definition 1.2 (Conservative random walk). We dub the process S the conservative
random walk in d dimensions, corresponding to the sequence {pn}.
Remark 1.3. Regarding the sequence of the pn’s we note the following.

(i) In this paper, we will focus on the case when the pn’s are non-increasing (“cooling
dynamics”). Nevertheless, studying growing pn’s and mixed cases also makes
sense. We hope to address this topic in future work.

(ii) The probability of changing the direction is pn · 2d−1
2d ≤

2d−1
2d . Our setting thus rules

out the kind of heating dynamics (allowed in the setup of [10]) when the probability
of changing the direction approaches one. �

We now make a fundamental definition.

Definition 1.4 (Recurrence/transience). We call the walk S

• recurrent if P0(Sn = 0 i.o.) = 1;

• weakly transient, if it is not recurrent in the above sense;

• strongly transient if P0(limn→∞ |Sn| =∞) = 1.

Remark 1.5 (Differences compared to traditional categorization). It is easy to see that
strong transience implies weak transience, and that, in fact, Pz(limn→∞ |Sn| =∞) = 1

for each z ∈ Zd. On the other hand, for recurrence, the probability might depend on the
starting point as well as on the “target.”

Unlike in the case of a simple random walk, it is not a priori clear whether weak
transience necessarily implies strong transience. For example, the walk might come
close to the origin infinitely often, without hitting it, see Figure 1. Also, as mentioned
above, it is hypothetically possible that the walker visits the origin infinitely often, yet
visits some other fixed point only finitely often.

Note that both of these scenarios are possible only if the probability pn of updating
the direction is not bounded away from zero. Indeed, for a usual random walk, if it
hits the origin infinitely often, every time it does, it has a fixed positive probability of,
e.g., going to (1, 0) on the next step. Hence, by the usual arguments, it will also hit
(1, 0) infinitely often. Our random walk, while possibly hitting zero only from a vertical
direction, say, at times η1, η2, η3 etc., might never change its direction at the origin and
simply continue going vertically, if

∑
k pηk < ∞. Thus, the previous argument will not

work.
Finally, although a simple application of Kolmogorov’s 0 − 1 law shows (the ηj are

independent and the directions chosen at updates too) that Pz(limn→∞ |Sn| =∞) ∈ {0, 1},
we cannot rule out the possibility that e.g. P0(Sn = 0 i.o.) ∈ (0, 1). �
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Figure 1: A sample path of the walk; the origin is denoted by star. Each arrow keeps
track of the “total” horizontal/vertical relocation only.

1.4 Some motivation coming from the literature

Models similar to ours have appeared in the literature under the names “correlated”
(or “Newtonian”) random walk and “persistent random walk.” (Here “Newtonian” refers
to the fact that the position of the particle as well as its “velocity” affect the next step.)
In the statistical physics literature, correlated random walks are often called “random
walks with internal states.”

Scientific phenomena where these models are relevant include polymer growth by
sequential addition/deletion of single monomers, and also when a population with births
and deaths is considered — in both cases, growth may predict more growth. Further
ones are flows through a branched structure and the theory of cooperative phenomena
in crystals. See [7, 8] for more details on these.

Following chronological order, we first mention that in [8] random walks with “re-
stricted reversals” (i.e. correlated walks) were studied on a class of lattices. Next, [15]
treats a two-dimensional problem, where the walker must turn either to the left or to the
right, relative to the previous step, with given (constant in time) probabilities. In [17] a
one dimensional model is considered with a fixed probability of reversal of the last step.

Proceeding to the 1980 s, one dimensional correlated random walks in the homoge-
neous case are treated in [22]. Persistent random walks were studied in [26], where
the “persistence mechanism” is given by specifying it at each lattice point and it is done
randomly (i.i.d.). In this random environment model, the setup is “quenched,” that is,
almost sure statements (with respect to the environment) are sought. The main focus of
the work was obtaining Central Limit Theorems. One dimensional correlated random
walks are again discussed in [7] and here even a related time-inhomogeneous model (“an
increasingly more sluggish walk”) is investigated. The article [12] investigates restricted
random walks on d-dimensional lattices.

Turning to the 1990 s and later, [5, 6] revisit the Gillis–Domb-Fisher correlated
random walk and generalize it, while [4] studies again the one dimensional correlated
random walk but this time with two absorbing boundaries. For d = 2, [19] investigates
the recurrence of persistent walks. The paper [16] considers (generalized) correlated
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random walks and studies their diffusive limits. Random flights are similar processes
too. Here a particle in Rd changes direction at Poisson times [21].

Also, as pointed out to us by Andrew R. Wade1, correlated random walks may also be
discussed by using additive functionals (this connection is found in [23] and [14]), while
some applications in statistical sampling utilize processes “with momentum” as well [2].

Finally, recalling that we are mainly interested in the case when pn ↓ 0, we mention
that considering “cooling” or (simulated) “annealing” is quite standard in the probabilis-
tic/statistical literature. For papers in this direction which are also quite closely related
to our own setup, please see [1, 3] and the references therein.

1.5 Outline

The rest of the paper is organized as follows. In Section 2, as a warm-up, we prove
recurrence when d = 2 and pn = p ∈ (0, 1). In Section 3, we derive the scaling limit
in this case, while in Section 4 we do that for the critical case, when the scaling limit
is very different (a “zigzag process”). In Section 5, we consider the (recurrent) case
when the sequence of the pn’s is periodic, followed by the proof of transience for the
two dimensional walk when pn has a sufficiently strong decay, as well as that of strong
transience for certain multidimensional cases. In Section 6 we formulate some open
problems. Finally, the Appendix states and proves some technical lemmas.

2 Homogeneous case; recurrence on Z2

We start with a discussion of the time-homogeneous case. The next result is perhaps
not too surprising.

Theorem 2.1 (Recurrence on Z2; homogeneous case). Let d = 2 and pn = p ∈ (0, 1),
n ≥ 2. Then the random walk S is recurrent, that is, Sn = (0, 0) infinitely often a.s.

Proof. (i) Recall that τ1, τ2, . . . are the consecutive times when the random walk S

updates its direction, let τ0 = 0 and introduce the embedded walk S̄ = (S̄k)k≥0 where
S̄k := Sτk , k = 0, 1, 2, . . . . This process is a two-dimensional long-range random walk with
independent increments, such that

S̄l+1 − S̄l = (κlξl, (1− κl)ξl),

where ξl ∼ Sgeom(p) as in (1.1), κl is Bernoulli(1/2) and {ξl, κl}l is a collection of
independent random variables. Equivalently, we can describe S̄ as a process with
independent increments distributed as

S̄l+1 − S̄l =


(|ξl|, 0), with probability 1/4;

(−|ξl|, 0), with probability 1/4;

(0, |ξl|), with probability 1/4;

(0,−|ξl|), with probability 1/4,

and the |ξl|’s are i.i.d. Geom(p) variables. We will show that, in fact, even the embedded
process S̄ is recurrent, and, as a result, so is S. To show this, one can directly use
Proposition 4.2.4 from [18] which says that any time-homogeneous random walk on
Z2 with zero drift and finite second moment is recurrent, but for the sake of being
self-contained, we present a short proof based on Lyapunov functions.

Recall that |(x, y)| =
√
x2 + y2. We use Theorem 2.5.2 from [20], implying that in

order to establish recurrence, it is sufficient to find some function f : Z2 → R+ and A > 0

such that
1In fact this whole subsection is based on his suggestions.
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• f(z)→∞ as |z| → ∞;

• if Ml := f(S̄l) then the process M = {Ml}l=0,1,2,... satisfies

E
[
Ml+1 −Ml | S̄l = (x, y)

]
≤ 0, (2.1)

whenever |(x, y)| ≥ A, l = 0, 1, 2, ... So, informally, M is “a supermartingale, outside
some disc”,

We will use the function f : Z2 → R+ defined as

f(x, y) :=

{
ln(x2 + y2 − a) = ln

(
|(x, y)|2 − a

)
, if |(x, y)| ≥

√
a+ 1;

0, otherwise,

for some a > 0 to be chosen later. Denote r := |(x, y)|, x1 = x+ κξ and y1 = y + (1− κ)ξ,
and assume that r ≥ 3, where ξ and κ have the distribution of ξl and κl, respectively.
Define the event

E =
{
|ξ| ≤ r −

√
a+ 1

}
.

By the triangle inequality, on E we have |(x1, y1)| ≥
√
a+ 1 and thus f(x1, y1) = ln(x2

1 +

y2
1 − a).

Define the random variable ψ = ψ(x, y) for ‖(x, y)‖ ≥
√
a+ 1 as

ψ :=
2ξζ + ξ2

x2 + y2 − a
where ζ := xκ+ y(1− κ) =

{
x, with probability 1/2;

y, with probability 1/2,

and ζ is independent of ξ. Letting Sl = (x, y), Sl+1 = (x1, y1) a straightforward computa-
tion yields that if r, ‖(x1, y1)‖ ≥

√
a+ 1 then

∆l := f(S̄l+1)− f(S̄l) = ln(x2
1 + y2

1 − a)− ln(r2 − a) = ln(1 + ψ),

Consequently, if r >
√
a+ 1 then

E
[
∆l | S̄l = (x, y)

]
= E

[
∆l1E | S̄l = (x, y)

]
+ E

[
∆l1Ec | S̄l = (x, y)

]
= E [ln(1 + ψ)1E ] + E

[
∆l1Ec | S̄l = (x, y)

]
(2.2)

≤ E [ln(1 + ψ)1E ] + E
[
ln(x2

1 + y2
1)1Ec

]
=: (I) + (II).

Another simple computation, using the independence of ζ and ξ, gives

Eψ =
Eξ2

r2 − a
,

Eψ2 =
Eξ4 + 2(x2 + y2)Eξ2

(r2 − a)2
, (2.3)

Eψ3 =
6(x2 + y2)Eξ4

(r2 − a)3
+O(r−6)Eξ6,

where we used the fact that the odd moments of ξ equal 0. Also observe that

Eξ2 =
2− p
p2

, Eξ4 =
(2− p)(p2 + 12(1− p))

p4
, (2.4)

since ϕ(λ) = Eeλ|ξ| = peλ

1−(1−p)eλ ∈ (0,∞) for λ < − log(1 − p), and Eξm = E|ξ|m =
dm

dλmϕ(λ)
∣∣
λ=0

for 0 < m ∈ 2N.
Now we will use the elementary inequality

ln(1 + u) ≤ u− u2

2
+
u3

3
for u > −1, (2.5)
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and observe that (as a brief computation reveals) for fixed (x, y) satisfying r >
√
a+ 1

we have ψ > −1 almost everywhere on the event E . Hence, by (2.3), (2.4) and (2.5), we
have that

(I) ≤ E
[(
ψ − ψ2

2
+
ψ3

3

)
1E

]
=

[
Eψ − E(ψ2)

2
+
E(ψ3)

3

]
+ (III)

= − (2− p)[(2a− 3)p2 − 36(1− p)]r2 + Cp
2p4(r2 − a)3

+ (III) = −C + o(1)

r4
+ (III),

where

(III) := −E
[(
ψ − ψ2

2
+
ψ3

3

)
1Ec

]
,

and Cp is some polynomial of p. Note that C = C(a) > 0 if 2a− 3p2 − 36(1− p) > 0, that

is if we choose a = ap > 3/2 + 18(1−p)
p2 . We choose such an a and fix it for the rest of the

proof.
We also have

|(III)| ≤ E
[(
|ψ|+ ψ2

2
+
|ψ|3

3

)
1Ec

]
≤ C3e

−C2r,

for some C2, C3 > 0, since, assuming that r, and hence max(|x|, |y|), is sufficiently large,
we get

x2 + y2 − a ≥ 4 max(|x|, |y|) ≥ 2,

yielding |ψ| ≤ 1
2 (|ξ| + ξ2) ≤ ξ2 (recall that |ξ| ≥ 1) and hence for a positive integer m

we have E (|ψ|m1Ec) = E
(
|ψ|m1|ξ|>r−

√
a+1

)
< E

(
ξ2m1|ξ|>r−

√
a+1

)
< C ′3e

−C2r using the

properties of the geometric distribution.
Let us also note the inequalities

ln
(
x2

1 + y2
1

)
≤ ln

(
(2x2 + 2κ2ξ2) + (2y2 + 2(1− κ)2ξ2)

)
= ln

(
2x2 + 2y2 + 2ξ2

)
≤ ln(2r2) + ln(2ξ2),

which use the fact that ln(a+ b) ≤ ln(a) + ln(b) whenever min(a, b) ≥ 2. As a result, the
second term in (2.2) satisfies that

(II) ≤ E
[(

ln(2r2) + 2 ln |ξ|
)

1Ec
]

(2.6)

= ln(2r2)P
(
|ξ| > r −

√
a+ 1

)
+ 2E

[
ln
(
2ξ2
)

1|ξ|>r−
√
a+1

]
≤ C1 ln(r) e−C2r

for some C1, C2 > 0, using again the properties of the geometric distribution.
Consequently, from (2.2) and (2.6) we conclude that

E
[
∆l | S̄l = (x, y)

]
≤ −C + o(1)

r4
, as r →∞,

which is negative for r = |(x, y)| sufficiently large, and we can apply Theorem 2.5.2
from [20], as alluded to at (2.1), thus completing the proof.

3 Homogeneous case; scaling limit

We will exploit the following lemma later, but we think that it is also of independent
interest. Let Ln be a one dimensional coin-turning walk, where pn = p ∈ (0, 1) for Yn
in (1.2).
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Proposition 3.1 (Tail estimate for the one-dimensional walk). There exists an N0 ∈ N
such that if n ≥ N0 then for all a ≥ 1,

P(|Ln| > a
√
n) ≤ f(p, a), where f(p, a) := 2 exp

{
−p2 a/5

}
. (3.1)

Before presenting the proof of Proposition 3.1, we state and prove a lemma which is
a consequence of this proposition.

Lemma 3.2 (Upper bound on distance; d ≥ 2). If d ≥ 2 then there is an N0 ∈ N such that
for all a ≥

√
d and n ≥ N0,

P(|Sn| ≥ a
√
n) ≤ d f

(
p, a/
√
d
)
,

where f is given in (3.1).

Proof. Let S(j), j = 1, 2, . . . , d be the j-th coordinate of S. Since after an update, with
probability 1/d the walk will be moving along the same axis as before, and with probability
1− 1/d it will start moving in a perpendicular direction, we can write

S(j)
n = L(j)

κ

for some κ = κ
(j)
n ∈ {1, 2, . . . , n}, and L(j) has the distribution of the one-dimensional

walk as in Proposition 3.1. By Proposition 3.1, we have

P

(∣∣∣S(j)
n

∣∣∣ > a

√
n

d

)
= P

(∣∣∣L(j)
κ

∣∣∣ > (a√ n

dκ

)√
κ

)
≤ f

(
p, a

√
n

dκ

)
≤ f

(
p, a/
√
d
)

since a 7→ f(p, a) is decreasing, n/κ ≥ 1, and a/
√
d ≥ 1. This, in turn, implies

P(|Sn| ≥ a
√
n) = P

√√√√ d∑
j=1

[
S

(j)
n

]2
≥ a
√
n

 ≤ P(|S(j)
n | ≥ a

√
n

d
for some j ∈ {1, . . . , d}

)

≤ dP
(
|S(j)
n | ≥ a

√
n

d

)
≤ d f

(
p, a/
√
d
)
.

Proof of Proposition 3.1. Define the strictly increasing integer sequence of stopping
times

0 = τ0 < τ1 < τ2 < . . . ,

when the walk updates its direction; it keeps going in the same direction between times
τi and τi+1. Then the τk − τk−1 ∼ Geom(p), k = 1, 2, . . . are i.i.d. Moreover, L̃k = Lτk
defines the embedded walk, where

L̃k = ξ1 + · · ·+ ξk,

with the i.i.d. variables ξi ∼ Sgeom(p), while trivially, |ξi| = τi − τi−1. Let

ν(n) := min{j ∈ Z+ : τj ≥ n}, so that τν(n)−1 < n ≤ τν(n) and ν(n) ≤ n. (3.2)

Since the walk moves in the same direction between τν(n)−1 and τν(n),

|Ln| ≤ max
(
|L̃ν(n)−1|, |L̃ν(n)|

)
,
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hence

P
(
|Ln| ≥ a

√
n
)
≤ P

(∣∣∣L̃ν(n)−1

∣∣∣ ≥ a√n)+ P
(∣∣∣L̃ν(n)

∣∣∣ ≥ a√n) . (3.3)

Using Markov’s inequality we want to bound L̃m = ξ1 + · · ·+ ξm. Indeed, for any positive
integers n, m ≤ n (see (3.2)), and any t ∈ (0, p),

P
(
L̃m > a

√
n
)

= P

(
m∏
i=1

etξi > eat
√
n

)
≤
(
Eetξ1

)m
eat
√
n

= exp (−Λ(a, t,m, n)) , (3.4)

where Λ(a, t,m, n) := at
√
n−m log

(
Eetξ1 .

)
.Since

Eetξ1 =
1

2
E
(
et|ξ1| + e−t|ξ1|

)
= E cosh(t|ξ1|) ≥ 1,

the function Λ is monotone decreasing in m, hence, for given p and t, Λ(a, t,m, n) reaches
its minimum over m ≤ n at m = n. Note that for t < − ln(1− p) we have

Eetξ1 =
p

2

(
1

e−t − (1− p)
+

1

et − (1− p)

)
.

Now it follows via Taylor expansion up to the fourth order of Λ(a, t, n, n) with respect to t
that for sufficiently large n

Λ(a, t(n), n, n) =
p2(2a− 1)

4− 2p
+O(n−1) ≥ p2 a

5
(3.5)

where t(n) := p2

(2−p)
√
n

(< p < − ln(1− p)), since a ≥ 1 and p ≥ 0. (Here the term O(n−1)

is uniform in a.) The result now follows from (3.3), (3.4) and (3.5).

Our next result shows that diffusive scaling leads to Brownian motion, up to a constant
scaling factor.

Theorem 3.3 (Scaling limit in the homogeneous case). Let d ≥ 1 and p ∈ (0, 1). Extend
the walk S to all non-negative times using linear interpolation and for n ≥ 1, define the
rescaled walk Sn by

Sn(t) :=

√
p

2− p
· Snt√

n
, t ≥ 0,

and finally, letW(d) denote the d-dimensional Wiener measure. Then limn→∞ Law(Sn) =

W(d) on C([0,∞),Rd).

Remark 3.4. (i) Informally, Sn·√
n
≈
√

2−p
p · B·, for large n, where B is a standard d-

dimensional Brownian motion. Since
√

2−p
p ∈ (1,∞) for p ∈ (0, 1), the Brownian motion

is “sped up.” The intuition is that the updates are less frequent compared to a simple
random walk, thus there is less cancellation in the steps.

(ii) Note that e.g. for d = 2, the horizontal and vertical components of the walk are
not independent, because, for example, the horizontal component is idle (stays at one
location) for the duration of a vertical “run.” �

Proof. While using the notation of the previous section, we also take the liberty of using
the notation Xt as well as X(t) for a stochastic process X, whichever is more convenient
at the given instance. We follow the standard route and prove the result by checking the
convergence of the finite dimensional distributions (fidis) along with tightness.

(i) Convergence of fidi’s: We will argue that the convergence of the fidi’s is easy to check
for an embedded walk, and the original random walk must have the same limiting fidi’s.
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To carry out this plan, recall from the proof of Theorem 2.1 the long-range embedded
random walk, S̄ = (S̄k)k≥0 where S̄k := Sτk , k ≥ 0. In this d-dimensional setting, its

increment vectors are S̄l+1 − S̄l = ξl
∑d
i=1 1{Ul=i}ei, l = 0, 1, ... where ξl ∼ Sgeom(p) and

Ul is uniform on 1, 2, ..., d (and the system {ξl, Um}l,m≥0 is independent), while {ei}1≤i≤d
are the unit basis vectors. Using that

Var(S̄l+1 − S̄l) = E(S̄l+1 − S̄l)2 = Eξ2
l · E

∣∣∣∣∣
d∑
i=1

1{Ul=i}ei

∣∣∣∣∣
2

= Eξ2
l ·

d∑
i=1

E1{Ul=i} =
2− p
p2

,

it follows that the increment vectors have mean value 0 and covariance matrix 2−p
p2 Id,

where Id is the unit matrix. Therefore, denoting γp := p√
2−p , we may apply the multidi-

mensional Donsker Invariance Principle (see e.g. Theorem 9.3.1 in [25]) to the process
Ŝ := γpS̄. We obtain that the rescaled walk Ŝn defined by

Ŝn(t) :=
Ŝnt√
n

= γp
S̄nt√
n
, t ≥ 0, (3.6)

satisfies
lim
n→∞

Law(Ŝn) =W(d) on C([0,∞),Rd). (3.7)

In other words,

lim
n→∞

Law

(
t 7→ γp

ST (nt)√
n

)
=W(d) on C([0,∞),Rd), (3.8)

where T is a random time change such that for integers t = l ≥ 0, T (l) := τl and for
t = l + s, s ∈ (0, 1), T (t) := T (l) + (T (l + 1)− T (l))s.

Next, given that the waiting times for the updates are Geom(p), the Strong Law of
Large Numbers implies that

lim
s→∞

T (s)/s→ 1/p, a.s. (3.9)

Let B be a standard d-dimensional Brownian motion. We know that for 0 ≤ t1 < t2 <

... < tk,

lim
n→∞

Law

(
γp√
n

(
ST (nt1), ST (nt2)..., ST (ntk)

))
= Law(Bt1 , Bt2 , ..., Btk), (3.10)

and what we want to see next is that this implies that

lim
n→∞

Law

(
γp√
n

(
S 1
pnt1

, S 1
pnt2

, ..., S 1
pntk

))
= Law(Bt1 , Bt2 , ..., Btk). (3.11)

It is enough to show (by Slutsky’s Theorem) that the difference vector between the
vectors on the left-hand sides of (3.10) and (3.11) converges in probability to 0 as n→∞.
(These vectors are such that each of their components are in Rd.) We will check this
component wise.

Denote by T−1 the inverse of the (strictly increasing) map T . Fix ε > 0 and define the

random variables t∗i,n := 1
nT
−1
(

1
pnti

)
. Then almost surely,

lim
n
t∗i,n = lim

n

1

n
T−1

(
1

p
nti

)
(3.9)
= ti.

Fix 1 ≤ i ≤ k. The ith component of the difference vector alluded to above, satisfies

P

(
γp√
n

∣∣∣S 1
pnti
− ST (nti)

∣∣∣ > ε

)
= P

(
γp√
n

∣∣∣ST (nt∗i,n) − ST (nti)

∣∣∣ > ε

)
,
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and we now verify that this converges to zero. Given that limn t
∗
i,n = ti, a.s., it is enough

to check that

lim
δ→0

lim sup
n→∞

P

(
γp√
n

∣∣∣ST (nt∗i,n) − ST (nti)

∣∣∣ > ε | Ei,δn
)

= 0,

where

Ei,δn := {t∗i,n ∈ (ti − δ, ti + δ)}.

Since, for any fix δ > 0, limnP(Ei,δn ) = 1, there is an Nδ ∈ N such that P(Ei,δn ) ≥ 1/2 for
n > Nδ,

lim sup
n→∞

P

(
γp√
n

∣∣∣ST (nt∗i,n) − ST (nti)

∣∣∣ > ε | Ei,δn
)
≤

2 lim sup
n→∞

P

(
sup

s∈(ti−δ,ti+δ)

γp√
n

∣∣ST (ns) − ST (nti)

∣∣ > ε

)
.

As δ → 0, the right-hand side tends to zero, since (as a consequence of the convergence
in law toW(d),)

lim
n
P

(
sup

s∈(ti−δ,ti+δ)

γp√
n

∣∣ST (ns) − ST (nti)

∣∣ > ε

)
=W(d)

(
sup

s∈(ti−δ,ti+δ)
|Bs −Bti | > ε

)
.

We now have verified (3.11), that is, that

lim
n→∞

Law

(
t 7→ p√

2− p
Snt̃√
n

)
=W(d),

where t̃ := t
p . Finally, use Brownian scaling: t̃ can be replaced with t, leading to the

equivalent limit

lim
n→∞

Law

(
t 7→

√
p

2− p
Snt√
n

)
=W(d).

(b) Tightness:
Exploiting Lemma 3.2, we are going to check Kolmogorov’s condition for the fourth

moments. To achieve our goal we fix an ε ∈ (0, p) and note that by Lemma 3.2, and using
the fact that |Sn| ≤ n, it follows that

E|Sn|4 =

n4−1∑
i=0

P
(
|Sn|4 > i

)
≤ d2n2 +

n4−1∑
i=d2n2

P
(
|Sn|4 > i

)
= d2n2 +

n4−1∑
i=d2n2

P
(
|Sn| > ai

√
n
)
≤ d2n2 + d

n4−1∑
i=d2n2

f
(
p, ai/

√
d
)

for all large n’s, where ai := i1/4√
n
≥
√
d, as i ≥ d2 n2. Since

n4−1∑
i=d2n2

f
(
p, ai/

√
d
)

=

n4−1∑
i=d2n2

2e
− p

2ai
5
√
d ≤

∞∑
i=0

2 exp

{
− p

2 i1/4

5
√
dn

}
,

by comparing the sum on the right-hand side with the corresponding integral

∫ ∞
0

exp

{
−p

2x1/4

5
√
dn

}
dx

x=
n2d2(5u)4

p8

=
2500 d2 n2

p8

∫ ∞
0

u3e−udu =
15 000 d2 n2

p8
,
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we conclude that there exists a Cp > 0 such that E|Sn|4 ≤ Cpn2, n ≥ 1. For the rescaled
process Sn this yields

E|Sn(t)|4 =
p2

(2− p)2E

∣∣∣∣Snt√n
∣∣∣∣4 ≤ Cpn2t2

n2
= Cpt

2, n ≥ 1,

(since p
2−p < 1), provided nt is an integer. If nt is not an integer, recall that Sn is defined

by linear interpolation and use Jensen’s inequality for y = x4 to get the same bound with
some C ′p replacing Cp. Finally, by the stationary increments property,

E|Sn(t)− Sn(s)|4 ≤ C ′p(t− s)2, 0 ≤ s < t, n ≥ 1.

Kolmogorov’s condition for tightness is thus satisfied.

Remark 3.5 (A direct bound for E|S4|, establishing tightness). An alternative way of
establishing tightness is via computing a bound in a more elementary way for E|Sn|4.
For simplicity, we will illustrate this in the d = 2 case.

Let Ln := S
(x)
n − S(y)

n and Rn := S
(x)
n + S

(y)
n . Then Ln = Y1 + · · ·+ Yn is really a one-

dimensional coin-turning walk with parameter p (see (1.2) and the proof of Lemma 3.2.)

Next, observe that |Sn|2 =
(
S

(x)
n

)2

+
(
S

(y)
n

)2

= 1
2 (L2

n + R2
n), yielding that |Sn|4 ≤

1
2

(
L4
n +R4

n

)
. Since Ln and Rn have the same distribution, this implies E|Sn|4 ≤ EL4

n.
The latter expectation can be computed directly, albeit that requires a bit of algebra. In
this time homogeneous case (1.3) and (1.4) reduce to

ei,j = Cov(Yi, Yj) = E(YiYj) = qj−i; E(Yj | Yi) = YiE(−1)
∑j
i+1Wk = ei,jYi, (3.12)

for j ≥ i, where q := 1− p. We thus have

EL4
n = E

(
n∑
1

Yi

)4

= E

6

n−1∑
i=1

n∑
j=i+1

Y 2
i Y

2
j + 4

n−1∑
i=1

n∑
j=i+1

Y 3
i Yj + 4

n−1∑
i=1

n∑
j=i+1

YiY
3
j

+ 24

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

YiYjYkYl

+ 12

n∑
i=1

Y 2
i

[
i−2∑
k=1

i−1∑
l=k+1

YkYl +

n−1∑
k=i+1

n∑
l=k+1

YkYl +

i−1∑
k=1

n∑
l=i+1

YkYl

]
+

n∑
i=1

Y 4
i

)

= n+ 3n(n− 1) + 8

n−1∑
i=1

n∑
j=i+1

E [YiYj ] + 24

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

E [YiYjYkYl]

+ 12

n∑
i=1

[
i−2∑
k=1

i−1∑
l=k+1

E [YkYl] +

n−1∑
k=i+1

n∑
l=k+1

E [YkYl] +

i−1∑
k=1

n∑
l=i+1

E [YkYl]

]
.

(3.13)

From (3.12) we obtain that if i < j < k < l, then

E [YiYjYkYl] = E (YiYjYk E [Yl|Yi, Yj , Yk]) = E
(
YiYjY

2
k q

l−k) = ql−k E [YiYj ] = qj−i × ql−k.

Substituting this into (3.13) gives

EL4
n = n+ 3n(n− 1) + 8

[
nq

p
− q

p2
+O(qn)

]
+ 24

[
n2q2

2p2
− n(5− q)q2

(2p3)
+

3q2

p4
+ +O(nqn)

]
+ 12

[
n2q

p
+
nq(2q − 3)

p2
+

2q

p2
+O(nqn)

]
=

3n2(2− p)2

p2

− 2n(2− p)(p2 + 12(1− p))
p3

+
8(1− p)(3− 2p)(3− p)

p4
+O (nqn) = O

(
n2
)
,

hence, Kolmogorov’s tightness condition holds. �
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4 The critical regime

Next, we turn our attention to the case when pn = a/n for all large n’s where a > 0.
Following [11], we call this case the “critical regime.” We now need the definition of the
“zigzag process” in higher dimensions.

4.1 Preparation: the zigzag process in higher dimensions

For simplicity, we start with the two-dimensional case. We describe informally a
stochastic process in continuous time, moving in R2 and starting at the origin. The
process is piecewise linear and always moves either horizontally or vertically.

First, notice that if p∗n := 3
4pn then the direction is changed with probability p∗n at

time n. In our case pn = a/n and thus p∗n = 3a
4n =: b/n for large n’s.

One then takes a realization of the “scale-free” Poisson point process, just like it was
done in [11] for d = 1. This process is defined on (0,∞) with intensity measure b

x dx.
For the given realization, we construct a trajectory of the zigzag process as follows.
Let t∗ and t∗ in the point process be the left, resp. right neighbors of t = 1. Toss two
independent fair coins and assign one of the labels “N,W,S,E” according to the outcome
(that is, each has probability 1/4) to the time interval (t∗, t

∗]. Going backward in time,
label each interval in a way so that the next interval can be labelled in three different
ways, each with probability 1/3, and the label must differ from that of the previous
interval (if the interval containing 1 was, say, labeled “N”, then, going backwards, the
next label should be W , S or E with equal probabilities, etc.) Do the same for the
intervals between the points forward in time. This way, each interval between two
consecutive points of the PPP is labeled. All the coin tossings are independent. These
four labels will indicate the direction the process is moving in the time intervals.

Let the union of intervals labeled N be U (N) and

`N (t) := Leb
(
U (N) ∩ [0, t]

)
.

Define similarly `S(t), `E(t), `W (t).
The trajectory of the zig zag process Z will then2 be defined by

Zt := (`E(t)− `W (t), `N (t)− `S(t)), t > 0.

Clearly, limt→0 Zt = (0, 0) almost surely, even though there are infinitely many points of
the PPP in any neighborhood of the origin.

When d > 2, the construction is analogous. The difference is that in general p∗n :=
2d−1

2d pn and pn = a/n yields p∗n = (2d−1)a
2dn =: b/n for large n’s, and, furthermore, one

needs to work with 2d labels. The constraint is that between two consecutive time
intervals the process “must change the label”.

4.2 Scaling limit for the multidimensional case

In the critical case, just like in one dimension, proper scaling leads to the zigzag
process.

Theorem 4.1 (Scaling limit in the critical case). Let d ≥ 2 and pn = a/n for n ≥ n0.
Extend the walk S to all non-negative times using linear interpolation and for n ≥ 1,
define the rescaled walk Sn by

Sn(t) :=
Snt
n
, t ≥ 0,

and finally, let Z(d) denote the law of the d-dimensional zigzag process, with parameter
b = (2d−1)a

2d . Then limn→∞ Law(Sn) = Z(d) on C([0,∞),Rd).
2Conditionally on the realization of the PPP and the labeling.
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Remark 4.2. The result is still valid for d = 1. Note, however, that the definition of pn
in [11] differs by a factor 2, yielding unit parameter instead of 1/2.

Proof. The proof is very similar to that of the one dimensional analog which is part of
Theorem 4.11 in [11] (see Subsection 6.10 there for the critical case).

The tightness part works similarly, namely, just like in [11], one simply uses the
Lipschitz-1 property of the paths that holds for Sn for each n ≥ 1. (This is an advantage
compared to the time homogeneous case, and it comes from the fact that the scaling is n
and not n2 in this case.)

For the convergence of the finite dimensional distributions, it will be enough to show
that weak convergence holds for the processes on [0, T ] for any T > 1.

To keep the notation easier, in the rest of the proof we will work with the d = 2 case,
however we note that the general case is completely analogous, by considering 2d labels
instead of just four.

Consider now the space S of all double infinite sequences c−2, c−1, c0, c1, c2, ... where
ci ∈ {N,W,S,E}. When assigning a unique path on [0, T ] to a realization of the turning
points, the situation is a bit more complicated than for d = 1. Namely, one has to use a
rule, described below in Definition 4.3 with some fixed s ∈ S. (In one dimension, there
are only two options to assign a path; see Definition 6.10 in [11].) Informally, for the
segment containing 1, we assign the label of c0, for the segment to the left and to the
right we assign the label of c−1 and the label of c1, respectively, etc.

More precisely, fix T > 1, denote byMT the set of all locally finite point measures on
the interval (0, T ], and denote by N (n) = N (n,T ) the laws of the point processes induced
by the changes of direction of the walk S(n) on the time interval (0, T ].

Let s ∈ S; we now assign a continuous (zigzagged) path to each realization of the
point measure.

Definition 4.3 (Assigning paths for a given s ∈ S). Define the map Φ1 = Φ1,s :MT →
C([0, T ],R2) as follows.

• First, label the (countably many) atoms on (0, 1] from right to left as a1, a2, ..., i.e.,
the closest one on the left to 1 as a1, the second closest as a2, etc., and note that
1 = a1 is possible; also label the atoms on (1, T ], from the closest to the furthest as
b1, b2,...;

• assign label “N” to all intervals (the union of which is denoted by S(N)
1 ) [ai, ai+1),

which are such that in s, the corresponding letter is N . Here “corresponding”
means that c0 corresponds to [a1, b1), and for i ≥ 1, ci corresponds to [bi, bi+1),
while c−i corresponds to [ai+1, ai).

• Do the same for S,E and W .

The path we obtain will make steps to the North (up) resp. to the West (left), South
(down), East (right) on S(N)

1 , resp. S(W )
1 , S(S)

1 , S(E)
1 .

Let µ ∈MT . For 0 < r ≤ T , we define the vertical and horizontal components of the
path as

Φvert
1 (µ)(r) := Leb((0, r] ∩ S(N)

1 )− Leb((0, r] ∩ S(S)
1 ), with Φvert

1 (µ)(0) := 0,

Φhori
1 (µ)(r) := Leb((0, r] ∩ S(E)

1 )− Leb((0, r] ∩ S(W )
1 ), with Φhori

1 (µ)(0) := 0,

and the path itself is Φ1(µ)(·) := (Φhori
1 (µ)(·),Φvert

1 (µ)(·)), where Leb is the Lebesgue
measure on the real line. Then Φvert

1 (µ)(·) is well-defined and continuous on [0, T ].
Clearly,

|Φvert
1 (µ)(r)|, |Φhori

1 (µ)(r)| ≤ r, 0 < r ≤ T. (4.1)

EJP 27 (2022), paper 138.
Page 15/29

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP863
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Conservative random walk

Just like in Proposition 6.13 in [11], one can show that for s ∈ S, T > 0 given,

(a) Φ1,s :MT → C([0, T ],R2) is a continuous and uniformly bounded functional, when
the former space is equipped with the vague topology, and the latter with the
supremum norm ‖.‖ = ‖.‖[0,T ].

(b) As n→∞, N (n) → PPP(b) in law (using the vague topology of measures on (0, T ]),
where PPP(b) denotes the law of the Poisson point process on (0,∞) with intensity
measure b/x dx.

Although the proof of (b) can be found in [11], in order to be more self contained, we
sketch here the main ideas.

Given 0 < a < b <∞, c > 0, set pn = c
n ∧ 1, and denote the number of updates from

step dane+ 1 to step dbne by N (n)((a, b]). Denoting µc;a,b := c ln(b/a) =
∫ b
a
c
x dx, one can

show that

(i) for k ≥ 0, 0 < a < b, as n→∞,

P
(
N (n)((a, b]) = k

)
= exp(−µc;a,b)

µkc;a,b
k!

+O

(
1

n

)
; (4.2)

Law(N (n)((a, b]))
n→∞−→ Poiss(µc;a,b); (4.3)

(ii) given 0 < t1 < t2 < ... < tl <∞, the random variables

N (n)((t1, t2]), N (n)((t2, t3]), ..., N (n)((tl−1, tl])

are independent (independent increments), and

Law
(
N (n)((t1, t2]), N (n)((t2, t3]), ..., N (n)((tl−1, tl])

)
n−→∞−→ PPP(c)

(
(µc;t1,t2), (µc;t2,t3)..., (µc;tl−1,tl)

)
.

One first proves part (i). Once that is done, since the turns from step dtine+ 1 to step
dtjne and from dtlne+ 1 to dtjne are independent for any 0 < ti < tj ≤ tl < tr <∞, part
(ii) will immediately follow.

Regarding part (i), one only needs to prove equation (4.2), and then (4.3) will easily
follow. Checking (4.2) is done via a straightforward (though a bit tedious) computation.
(For pn = 1/n, qn := 1 − pn = (n − 1)/n, n � 1, the computation is easier, since the
probability of not updating for a certain time interval then becomes a telescopic product.)

After this sketch of the ideas in [11], we now return to finish our proof. To accomplish
that, let P uni be a law on S obtained by choosing Ci uniformly in {N,W,S,E} and doing
it independently for all i ∈ Z, and let

Q(·) := P uni(· | ∀i ∈ Z : Ci 6= Ci+1).

Furthermore, let T > 1 and F : C([0, T ], ‖ · ‖)→ R be a bounded continuous functional.
By (a) above, F ◦Φ1,s : (MT , vague)→ R is a bounded continuous functional too. Hence,
by (b) above,

lim
n
E((F ◦ Φ1,s)(N

(n))) = E((F ◦ Φ1,s)(PPP(b))).

Finally, bounded convergence yields that

lim
n

∫
S

E((F ◦ Φ1,s)(N
(n)))Q(ds) =

∫
S

E((F ◦ Φ1,s)(PPP(b)))Q(ds) (4.4)

The right-hand side of (4.4) is the expectation of F applied on the zigzag process with
parameter b, while the left-hand side is the limit of those terms where the zigzag process
is replaced by S(n) (all processes restricted on [0, T ]). Since F was an arbitrary bounded
continuous functional, (4.4) means that the processes Sn converge weakly on the time
interval [0, T ].
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5 Transience/recurrence in higher dimensions

Figure 2: A sample path of Sn assuming the walk always turns by 90 degrees.

First, consider the case d = 2, and define the two-dimensional random walk by
Sn = (Xn, Yn) ∈ Z2, n ≥ 1. The walker keeps going in one of the four directions (up, left,
down, or right) at time n with probability 1 − pn, while with probability pn the walker
changes direction in one of the four possible directions, all directions having equal
probability. If

∑
pn < ∞, then the walk will make only finitely many turns and then it

will trivially drift to infinity. Hence, in the rest of the section we may and will assume∑
pn =∞, i.e., the walk makes infinitely many turns a.s.
We start with a result that is easy to prove.

Theorem 5.1 (Periodic sequence). Let the sequence {pn} be periodic, that is, assume
that there exists an r ≥ 1 such that pn+r = pn for all n ≥ n0 with some n0 ∈ N. Then, for
d = 2 the walk is not strongly transient: P(limn |Sn| =∞) = 0.

Proof. Let T ⊂ N be the set of “update times.” The proof is based on the following
decomposition of the random walk. Let us define a sequence of stopping times: τ0 := n0

and
τn+1 = min{m > n : r | m− n0, m ∈ T }.

Define the random walk U1 on the time interval {0, 1, 2, ..., r} as follows Let

U1
i := Sn0+i − Sn0

and call this a “block.” We possibly concatenate further copies U2, U3, ... in case no
update occurs: U2 is added if and only if n0 + r 6∈ T , U3 is added if and only if also
n0 +2r 6∈ T , etc. So the concatenation occurs exactly when there is no update. Of course,
even if there is an update, it might happen (with a chance that is (3/4)th of the update
probability) that the direction is unchanged, but we then do not concatenate and the
new step is considered to be part of a new U i block.

The first step in U1 can be each one of the unit base vectors with equal probabilities,
and, by symmetry, this property is inherited for further pieces. The number of pieces
(including U1) is geometric with parameter pn0

. The total length of the walk we obtained
this way is exactly τ1; this is the first time we have an “update” time which is a multiple
of r. Then repeat the same with the next finite piece of random walk of length τ2 − τ1,
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which is independent of the previous piece, and continue this construction ad infinitum.
It is easy to see that the random walk obtained this way is exactly S.

Define the embedded walk S∗ by S∗n := Sτn . The steps of this walk are obtained by
concatenating certain blocks, as explained above, and thus they are i.i.d. vectors and
the length of each one is bounded by the total length of the corresponding piece of the
random walk. This latter is a random, geometrically (with parameter pn0

) distributed
multiple of r. In particular, the steps of S∗ have zero mean and a finite second moment.
It follows from Section 8, T1 in [24] that P(limn |S∗n| =∞) = 0 for d = 2. The same must
hold for S too, since limn |Sn(ω)| =∞ implies limn |S∗n(ω)| =∞.

Theorem 5.2 (Strong transience in two dimensions). When d = 2 and pn < n−1/2−ε,
n ≥ n0, for some n0 and ε > 0, the walk is strongly transient, i.e., |Sn| → ∞ a.s.

Proof. First, we prove that S is weakly transient, that is, with probability one it hits (0, 0)

only finitely often.
This statement is obviously true if ε > 1/2, as

∑
pn <∞, so without loss of generality

from now on we assume that ε ≤ 1/2. Moreover, pn < n−1/2−ε′ implies pn < n−1/2−ε for
0 < ε < ε′; hence, it suffices to prove the theorem only for small positive ε’s.

As before, let τn be the times when the direction of the walk might change (the nth
update time); hence, for a fixed m ≥ 1,

P(τn+1 > m+ k | τn = m,Fm) = (1− pm+1)(1− pm+2) . . . (1− pm+k)
k→∞→ 0

as
∑
pn = ∞. Let us define a subsequence of these stopping times by choosing only

those at which the walk switches direction from horizontal to vertical or vice versa. To
do so formally, let κn ∈ {±e1,±e2} be the random direction the walk chooses at time τn,
set η0 := 0 and

ηj+1 = inf{N 3 n > ηj : κτn ⊥ κτn−1
}.

Also observe that ηj+1 − ηj are i.i.d. Geom(1/2).
Define the events Aj (j ≥ 1) as

Aj := {∃a ∈ Z \ {0} : Xτηj = (0, a) or Xτηj = (a, 0)},

that is, Aj is the event that at the time τηj the walker is either on the x- or on the y-axis.
The crucial observation is that in order to hit the origin (0, 0) between τηj and τηj+1

, the
event Aj must occur. Indeed, between times τηj and τηj+1 the walk moves only along the
same line, either (x, t) or (t, y), t ∈ Z, and unless x = 0 (resp. y = 0) the origin cannot
be hit. Furthermore, if the walk is already on the horizontal or vertical axis, then it can
hit zero only finitely many times3 a.s. before leaving this axis. We will show that almost
surely, only a finite number of the Aj occur, hence the origin is only visited finitely many
times, thus proving non-recurrence.

Fix j, denote ηj =: `, and without the loss of generality, suppose that at time τ` the
walker starts moving horizontally along the line (t, y)t∈Z for some y 6= 0. Let m ≥ 0 and

Bm+1 := {ηj+1 = `+m+ 1} = {κ`+1, κ`+2, . . . , κ`+m ∈ {−e1, e1}, κ`+m+1 ∈ {−e2, e2}}

and note that κ’s are i.i.d. uniform on {±e1,±e2} and are independent of all η’s. We have
for all x ∈ Z \ {0}, that almost surely

P
(
Aj+1 | Fτ` , Bm+1, Sτ`+m = (x, y)

)
=

1

2
(1− pτ`+m+1)(1− pτ`+m+2) . . . (1− pτ`+m+|x|−1)pτ`+m+|x| < pτ`+m+|x|

≤ 1

(τ`+m + |x|)1/2+ε
≤ 1

(τ`+m)1/2+ε
≤ 1

(τηj )
1/2+ε

(5.1)

3in fact, bounded by a Geometric(1/4) random variable
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(if x = 0 then the probability on the left-hand side is zero) where the factor 1/2 comes
from the fact that at time τ`+m the walk has an option of going towards or away from zero
with equal probabilities; in the final two inequalities we assumed that j is sufficiently
large (i.e., j ≥ n0 where n0 is as in the statement) and monotonicity of τk’s in k.

Since the right-hand side of (5.1) does not depend on x, y and m, we conclude that

P(Aj+1 | Fτηj ) ≤ 1

τ
1/2+ε
ηj

, a.s. (5.2)

for large js.

Our next goal is to show that the τj are “rare” in the sense that for nj := (j/8)
1

1/2−ε ,

τj ≥ nj , with finitely many exceptions, a.s. (5.3)

Then (5.3) implies
∑
j P(Aj+1 | Fτηj ) <∞ a.s., and thus (by the conditional Borel-Cantelli

lemma) that only a finite number of Ajs can occur a.s. Indeed, by (5.2),

∞∑
j=n0+1

P(Aj+1 | Fτηj ) ≤
∞∑

j=n0+1

1

τ
1/2+ε
j

, a.s.

and, using (5.3), the sum on the right hand side is a.s. finite, as∑
j

1

n
1/2+ε
j

=
∑
j

1

(j/8)
1+2ε
1−2ε

<∞.

It remains to verify (5.3), and as we discussed at the beginning, we may (and will) assume
that ε ∈ (0, 1/4). For this, note that

P(τj < n) = P(ξ1 + · · ·+ ξn > j) (5.4)

where the ξjs are independent Bernoulli random variables with P(ξk = 1) = pk. Using
that 1 + x < ex, x > 0 along with Markov’s inequality, we obtain that for some positive
constant C1,

P(ξ1 + · · ·+ ξn > j) = P(2ξ1+···+ξn > 2j) ≤ 2−j
n∏
i=1

E2ξi = 2−j
n∏
i=1

(1 + pi)

< C12−j
n∏
i=1

(
1 +

1

i1/2+ε

)
< C12−j exp

{
n∑
i=1

i−1/2−ε

}

< C12−j exp

{∫ n

i=0

x−1/2−ε dx

}
= C12−j exp

(
n1/2−ε

1/2− ε

)
≤ C1 exp

(
4n1/2−ε − j ln 2

)
,

which, along with (5.4) and plugging in nj = (j/8)
1

1/2−ε , leads to the estimate

P(τj < nj) < C1e
(1/2−ln 2)j < C1e

−0.193j .

Thus (5.3) follows by the Borel-Cantelli Lemma. This completes the proof of non-
recurrence.

To upgrade the proof to strong transience is straightforward. Fix any point (x0, y0) ∈
Z2 and redefine the events Aj as

Aj := {∃a ∈ Z \ {0} : Xτηj
= (x0, a) or Xτηj

= (a, y0)}.

Following the weak transience proof verbatim, we obtain that a.s. the point (x0, y0) is
visited only finitely many times. Hence, the same is true for all points (x0, y0) such that
|(x0, y0)| ≤ r for a fixed r ≥ 0. We conclude that the walk eventually leaves each given
bounded set a.s., which completes the proof of the theorem.
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The following statement is more general than the two-dimensional one in Theorem 5.2,
as it works for all d > 1, however, it requires quite strong regularity conditions.

Theorem 5.3 (Strong transience for d ≥ 2). Let d ∈ {2, 3, 4, . . . } and consider the d-
dimensional coin-turning walk S described in Section 1.3 with Sn = Y1 + · · ·+Yn. Assume
that for some ε > ε′ > 0 and r > 1, the sequence of pn’s satisfies the following conditions:

lim sup
n→∞

max
k∈[0,n1−ε′ ]

pn−k

min
k∈[0,n1−ε′ ]

pn−k
< r; (5.5)

lim
n→∞

pnn
1−ε

lnn
=∞; (5.6)

∞∑
n=1

( pn
n1−ε

)d/2
<∞. (5.7)

Then
∑∞
n=1P(Sn = w) <∞ for any w ∈ Zd, and the walk S is thus strongly transient.

Example 5.4 (Inverse sub-linear decay). Assume that γ ∈ (0, 1), and pn = (c+ o(1))/nγ .
Under this assumption (5.5) is automatically satisfied for any ε′ > 0, and assump-
tions (5.6) and (5.7) hold too (pick ε < min{γ, 1− γ}). In this case, therefore, the walk
exhibits strong transience. Finally, note that the γ = 1 assumption (critical case; see [10],
[11]) produces a behavior that is dramatically different from that in the γ ∈ (0, 1) case;
we believe, nevertheless, that strong transience still holds.

Remark 5.5. Concerning the assumptions in Theorem 5.3, note that

(i) Assumption (5.5) implies that pn > 0 for all sufficiently large n.

(ii) Assumptions (5.5) and (5.7) for d = 2 imply that pn → 0 as n→∞. Indeed, if along

a subsequence, pnk ≥ c > 0 for ∀k ≥ 1 then
∑∞
n=1

pn
n1−ε ≥ c

r

∑∞
k=1

n1−ε′
k

n1−ε
k

=∞.

(iii) Assumptions (5.5), (5.6), and (5.7) always hold if d ≥ 3 and lim infn→∞ pn > 0 (by
(ii) this is ruled out when d = 2), although, then strong transience is anything but
surprising.

(iv) For d ≥ 3, assumption (5.7) is automatically satisfied when 0 < ε′ < ε < 1− 2/d. �

Proof. Our goal is to show that for any given lattice point w ∈ Zd, one has∑
n≥1

P(Sn = w) <∞. (5.8)

The proof will proceed in three steps. First, we introduce a sequence of stopping times
and consider the embedded process. Secondly, we show that the total length of the
steps of the embedded process during a certain time interval is “not too large” with high
probability. Finally, we estimate the probability of hitting a vertex for the “remainder” of
the embedded process, using the (integral) inversion formula.

STEP ONE: Recall that ηj ∈ {0, 1} was the indicator function of the update occurring at
time j; the ηj ’s are independent with P(ηj = 1) = 1− P(ηj = 0) = pj . We now consider
the walk Sk for times k = n, n − 1, n − 2, . . . backward. Let τ0 := n and let τk’s be the
decreasing sequence of update times; formally

τk = max{j < τk−1 : ηj = 1}, k = 1, 2, . . . .
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For definiteness, if for some k we have ηj = 0 for j = 0, 1, 2, . . . , τk − 1, then we set
τk+1 = τk+2 = · · · = 0. We will estimate the summands in (5.8) as follows. Let m =

m(n) := bn1−ε pnc and Vn := Sn − Sτm . Clearly, a.s.

P(Sn = w) = P(Sn − Sτm = w − Sτm) =: (∗), (5.9)

and note also that Sτm and Sn − Sτm are independent. Using the bound

(∗) ≤ sup
z∈Zd

P(Sn − Sτm = z) = sup
z∈Zd

P(Vn = z), (5.10)

it is enough to find numbers γn such that

sup
z∈Zd

P(Vn = z) < γn a.s. and
∑
n≥1

γn <∞. (5.11)

For that, the distribution of Vn will be handled by inverting its characteristic function,
after which some elementary but tedious computations will be carried out to bound the
multiple integrals involved. In fact, for simplicity (and without loss of rigor), we will
assume that n1−ε pn is an integer.

We will assume that n is so large that the ratio in the lim sup in (5.5) does not exceed
r and show below that, loosely speaking,

• the probability of the update “does not change significantly” over the time segment
[n− n1−ε, n];

• the variables lk = τk−1 − τk, k = 1, 2, . . . ,m are “nearly” i.i.d. Geom(pn);

• P(l1 + · · ·+ lm > n1−ε′/2) is “very small,”

where the lk are defined via

Zk := Sτk−1
− Sτk ∈


{(±lk, 0), (0,±lk)}, d = 2,

{(±lk, 0, 0), (0,±lk, 0), (0, 0,±lk)}, d = 3;

. . .

Note that
Vn = Z1 + · · ·+ Zm

(m depends on n). To be more precise, first note that given l1, l2, . . . , lk−1, lk, Zk has the
following distribution:

Zk =


(lk, 0) with probability 1/4;

(−lk, 0) with probability 1/4;

(0, lk) with probability 1/4;

(0,−lk) with probability 1/4,

if d = 2, with similar formulae for d ≥ 3.

STEP TWO: Denoting

A := {l1 + · · ·+ lm = n− τm > n1−ε′/2}, (5.12)

we now show that

P(A) = o
(
e−n

ε−ε′
)
, as n→∞. (5.13)

The event A is the same as having less than m = n1−εpn “updates” in the time segment
[n− 1

2n
1−ε′ , n]. The probability of each update at those time points is no less than pn/r
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by (5.5), independently of the others. Hence P(A) ≤ P(W < m) where W ∼ Bin(N, q)

with N = bn1−ε′/2c and q = pn/r ∈ (0, 1/r]. Since (Nq)i/i! is an increasing function in i
for i < Nq and m ≤ Nq as well as m = o(N) as n→∞, we have

P(W < m) =

m−1∑
i=0

(
N

i

)
qi(1− q)N−i <

m−1∑
i=0

(Nq)i

i!
e−qN(1+o(1))

≤ m · (Nq)m

m!
e−qN(1+o(1)) ≤ em logN−qN(1+o(1)) = e−qN(1+o(1)).

Since lnn = o(m) by (5.6), we conclude that lnn · nε−ε′ = o(qN), proving (5.13).

STEP THREE: Recall that our goal is to find a sequence (γn)n≥1 that satisfies (5.11).
To obtain the distribution of Vn = Sn − Sτm , we invert its characteristic function, and
discuss the cases d = 2 and d ≥ 3 separately. In the sequel, • will denote the usual dot
product in Rd.

First consider the case d = 2. Let h(tx, ty) :=
∣∣Eeit•Vn ∣∣, t = (tx, ty). Since Vn has a lattice

distribution, the inversion formula is particularly simple (see e.g. Chapter 15, Problem 26
in [13], or [9]): for any z = (zx, zy) ∈ Z2 we have

(∗) := P(Vn = z) =
1

(2π)2

∫ 2π

0

∫ 2π

0

e−i(t•z)Eeit•Vn dtx dty

≤ 1

(2π)2

∫ 2π

0

∫ 2π

0

h(tx, ty) dtx dty =
1

π2

∫ π

0

∫ π

0

h(tx, ty) dtx dty.

(5.14)

To verify the ultimate equality, note that Vn ∈ Z2, and its distribution is symmetric in
both coordinate variables. Hence h(u, v) = h(−u, v) = h(u,−v) = h(−u,−v) and the
integrals of h on the squares [0, π]× [0, π], [0, π]× [π, 2π], [π, 2π]× [0, π] and [π, 2π]× [π, 2π]

agree.
Since, given lk, k = 1, 2, . . . ,m, Zk is equally likely to be (0,±lk), (±lk, 0) indepen-

dently of everything else, we have

E[eit•Vn | l1, . . . , lm] =

m∏
k=1

E[eit•Zk | lk] =

m∏
k=1

cos(txlk) + cos(tylk)

2
.

Consequently,

h(tx, ty) =
∣∣E (E[eit•Vn | l1, . . . , lm]

)∣∣ ≤ E (∣∣E[eit•Vn | l1, . . . , lm]
∣∣) ≤ E[ m∏

k=1

φ(t; lk)

]
.

(5.15)

where

φ(t; lk) = φ(tx, ty; lk) =
| cos(txlk)|+ | cos(tylk)|

2
.

Since lk is an integer,

φ(π − tx, ty; lk) = φ(tx, π − ty; lk) = φ(π − tx, π − ty; lk) = φ(t; lk).

Consequently, from (5.14),

(∗) ≤ 1

π2

∫ π

0

∫ π

0

E

[
m∏
k=1

φ(t, lk)

]
dtx dty =

4

π2

∫ π/2

0

∫ π/2

0

E

[
m∏
k=1

φ(t; lk)

]
dtx dty. (5.16)

To proceed with the estimation, we now need a lemma. (Recall that the lengths lk are
defined for a given n.)
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Lemma 5.6. Given (pk)k≥1 satisfying our assumptions, there exists an N ∈ N with the
following property. Let n ≥ N . Let 2 ≤ k ≤ m = m(n). Then, we have ω-wise that

E(| cos(slk)| | l1, . . . , lk−1) ≤ ψ(s)1Ack−1
+ 1Ak−1

, ∀s ∈ [0, π/2], (5.17)

where

Ak−1 =

{
l1 + ...+ lk−1 >

1

2
n1−ε′

}
(m≥k)

⊆ A, (5.18)

ψ(s) = ψn(s) = max

(
1− c1s

2

p2
n

, 1− c2
)

and c1 > 0, c2 ∈ (0, 1] are constants that depend on r only.

Proof. Since the inequality is trivial when Ak−1 occurs, from now on we assume that we
are on Ack−1. For a fixed k ∈ {2, . . . ,m} and j ≥ 1, let qj := P(lk = j | l1, . . . , lk−1). Then

qj = pn−l1−···−lk−1−j ×
j−1∏
i=1

(1− pn−l1−···−lk−1−i),

where the product equals 1 by definition for j = 1. Indeed, qj equals the probability of
turning first at time n − l1 − · · · − lk−1−j and then keeping the same direction for the
consecutive j − 1 steps. As long as l1 + · · ·+ lk−1 + i < n1−ε′ by (5.5) we have that the
above p’s lie in [pn/r, rpn]. Consider two cases (I) pn ≥ 1

2r , and (II) pn <
1
2r .

In case (I) apply Lemma 7.2 with M = 1 and so consider only q1, which (for n large)
≥ 1

2r × r
−1. Hence, choosing a = a(I)(r) = 1

2r2 in the lemma, yields that the left-hand
side of (5.17) is smaller than or equal to

max
(
1− c′1a(I)s

2M2, 1− c′2a(I)

) (M=1)
= max

(
1− c′1s

2

2r2
, 1− c′2

2r2

)
(5.19)

(pn≥ 1
2r )

≤ max

(
1− c′1s

2

8r4 p2
n

, 1− c′2
2r2

)
. (5.20)

In case (II), note that
qj ≥ (1− rpn)j−1 pn

r

as long as l1 + · · · + lk−1 + j < n1−ε′ ; since we are on Ack−1, this is fulfilled, provided

j < n1−ε′

2 . Let M := b1/(2pn)c and observe that

1− r−1

2pn

(pn<
1
2r )

≤ 1− 2pn
2pn

=
1

2pn
− 1 ≤M ≤ 1

2pn
=
n1−ε′

2
· 1

pnn1−ε′
(5.6)
≤ n1−ε′

2
, (5.21)

provided that n is large enough. Thus, for j = 1, 2, . . . ,M we have

qj ≥ (1− rpn)M−1 pn
r
≥ (1− rpn)

1
2pn
−1 pn

r
≥ (r − 1)(1− rpn)

1
2pn
−1(r2M)−1

since pn ≥ 1−r−1

M . An elementary calculation shows that

inf
pn∈(0,(2r)−1]

(1− rpn)
1

2pn
−1 ≥ inf

pn∈(0,(2r)−1]
(1− rpn)

1
2pn = inf

y∈(0,1/2]
(1− y)

r
2y = 2−r,

since (1 − y)1/y is a decreasing function in y. Therefore, qj ≥
a(II)
M where a(II) = r−1

2r r2 .
Therefore, by Lemma 7.2 with a = a(II) the left-hand side of (5.17) does not exceed

max
(
1− c′1a(II)s

2M2, 1− c′2a(II)

) (5.21)
≤ max

(
1−

c′1a(II)s
2(1− r−1)2

p2
n

, 1− c′2a(II)

)
≤ max

(
1− c′1s

2(r − 1)3

2r−1r4p2
n

, 1− c′2
r − 1

2r−1 r2

)
.
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Finally, choosing c1 := c′1 min
(

1
8r4 ,

(r−1)3

2r−1 r4

)
and c2 := min

(
c′2
2r2 ,

c′2(r−1)
2r r2 , 1

)
concludes the

proof.

Let us now return to the proof of Theorem 5.3. Setting k := m, from Lemma 5.6, it
follows that when tx, ty ∈ [0, π/2],

E

[
m∏
u=1

φ(t, lu)

]
≤ E

(
E

[
m∏
u=1

φ(t, lu) | l1, . . . , lm−1

])

≤ E

(
m−1∏
u=1

φ(t, lu)

[
ψ(tx) + ψ(ty)

2
1Acm−1

+ 1Am−1

])

≤ ψ(tx) + ψ(ty)

2
E

[
m−1∏
u=1

φ(t, lu)

]
+ P(Am−1)

= · · · =
(
ψ(tx) + ψ(ty)

2

)m
+ P(Am−1) + P(Am−2) + ...+ P(A1)

≤
(
ψ(tx) + ψ(ty)

2

)m
+m · P(A) =

(
ψ(tx) + ψ(ty)

2

)m
+ o

(
n1−εe−n

ε−ε′
)
,

(5.22)

by induction on k = m,m− 1, . . . , 3, 2 for E
[∏k

u=1 φ(t, lu)
]

and using (5.13) and (5.18).

This, along with (5.16), yields

(∗) ≤ 4

π2

∫ π/2

0

∫ π/2

0

(
ψ(tx) + ψ(ty)

2

)m
dtx dty + o

(
n1−εe−n

ε−ε′
)
. (5.23)

As far as the second summand is concerned, we can ignore it as it is summable. Focusing
on the double integral (in the bound for (*)) only, we will split the area of integration into

four regions, depending on whether tx (ty resp.) is > or < t̄ := pn
√

c2
c1
< π

2 , the value of

t which makes the candidates for the maximum in ψ(t) equal. We will also assume that n
is large enough (since pn → 0 when d = 2 by (ii) of Remark 5.5). Then

(∗) ≤ 4

π2

∫ t̄

0

∫ t̄

0

(
ψ(tx) + ψ(ty)

2

)m
dtx dty +

4

π2

∫∫
t∈[0,π2 ]

2\[0,t̄]2

(
ψ(tx) + ψ(ty)

2

)m
dtx dty

=: (I) + (II).

Turning to scaled polar coordinates: tx =
√

2pnρ cos θ, ty =
√

2pnρ sin θ, we have

(I) =
1

π2

∫ t̄

−t̄

∫ t̄

−t̄

(
1−

c1t
2
x + c1t

2
y

2p2
n

)m
dtx dty ≤

2p2
n

π2

∫ 2π

0

∫ √1/c1

0

ρ
(
1− c1ρ2

)m
dρ dθ

=
4p2
n

π
· 1

2c1(m+ 1)
=

2p2
n

πc1(m+ 1)
≤ 2pn
πc1 n1−ε .

On the other hand,

(II) ≤ 4

π2

∫∫
t∈[0,π2 ]

2\[0,t̄]2

[
1 + (1− c2)

2

]m
dtx dty

≤ 4

π2

∫∫
t∈[0,π2 ]

2

[
2− c2

2

]m
dtx dty =

(
1− c2

2

)m
.

Consequently, almost surely,

P(Sn − Sτm = z) = P(Vn = z) ≤ (I) + (II) =
pn

πc1 n1−ε +
(

1− c2
2

)pnn1−ε

=: γn.
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Since the bound is uniform in z, we actually obtained that

sup
z∈Z2

P(Vn = z) ≤ γn, (5.24)

which is summable in n because of (5.6) and (5.7). Thus (5.11) is achieved.

Consider now the case d ≥ 3. The proof of the d = 2 case carries through up to for-
mula (5.14), but now instead of double integrals, one has to deal with multiple ones.
Namely, analogously to (5.23), one now obtains

P(Vn = z) ≤
(

2

π

)d ∫
· · ·
∫

[0,π/2]d

(
ψ(t1) + ψ(t2) + · · ·+ ψ(td)

d

)m
dt1 dt2 . . . dtd

+ o
(
n1−εe−n

ε−ε′
)
,

and we split the area of integration in the same way as in the two-dimensional case,
using the same t̄ as in the two-dimensional case. However, since d ≥ 3, we can no longer
assume that pn → 0, and it might happen that t̄ ≥ π/2; in this case, a multiple integral
analogous to (II) is no longer present in the computation, which makes it easier. On the
other hand, when that term is present (i.e. when t̄ < π/2), its estimate is similar to the
two-dimensional case:

(II) =

(
2

π

)d ∫
· · ·
∫

t∈[0,π/2]d\[0,t̄]d

(
ψ(t1) + ψ(t2) + · · ·+ ψ(td)

d

)m
dt1 dt2 . . . dtd

≤
(

2

π

)d ∫
· · ·
∫

t∈[0,π/2]d

(
1 + · · ·+ 1 + (1− c2)

d

)m
dt1 dt2 . . . dtd =

(
1− c2

d

)m
.

The estimate of the multiple integral defined analogously to (I) however, will be different:
using scaled d-dimensional spherical coordinates t1 = pn · ρ cos θ1, t2 = pn · ρ sin θ1 cos θ2,
t3 = pn · ρ sin θ1 sin θ2 cos θ3, . . . , td = pn · ρ sin θ1 sin θ2 . . . sin θd−1 and exploiting the facts
that the expression in the parenthesis in the integrand below is positive in the cube
[−t̄, t̄]d, which lies inside the ball centered at the origin with radius

√
d/c1 (note that

c2 ≤ 1), and the Jacobian J of the transform satisfies |det(J)| ≤ ρd−1, one arrives at4

(I) =
1

πd

∫
· · ·
∫

[−t̄,t̄]d

(
1− c1t

2
1 + c1t

2
2 + · · ·+ c1t

2
d

p2
n d

)m
dt1 dt2 . . . dtd

≤ pdn
πd

∫
· · ·
∫

ρ∈
[
0,
√

d
c1

]
θ1,...,θd−2∈[0,π],θd−1∈[0,2π]

ρd−1

(
1− c1ρ

2

d

)m
dρdθ1 . . . dθd−1

=
2pdn
π

∫ √d/c1
0

ρd−1

(
1− c1ρ

2

d

)m
dρ =

pdn
π

(
d

c1

)d/2 ∫ 1

0

u
d
2−1 (1− u)mdu

= const pdn · B
(
d

2
,m+ 1

)
∼ const Γ(d/2)pdn ·m−d/2 ∼ const Γ(d/2)

( pn
n1−ε

)d/2
,

where B denotes the Beta-function, and we exploited its well known asymptotics, while
we also recalled that m = bn1−ε pnc. By (5.7), the last expression is summable in n. As
a result, the bound (I) + (II) is uniform in z and is summable in n, just as in the case
d = 2. Again, (5.11) is confirmed.

4Note: one must replace the limits in the integrals by ±π/2 if t̄ ≥ π/2.
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6 Some open problems

In this section we formulate some open problems.

Problem 6.1 (Monotonicity). Fix d ≥ 1. Is it true that if p′n ≤ pn for n ≥ 1 and the walk
exhibits strong transience for the sequence {pn} then the same holds for the sequence
{p′n}? (Compare with the last sentence in Example 5.4.)

Problem 6.2 (Critical case). Fix d ≥ 2. In the critical case (pn = const/n for large n)
we conjecture that the walk exhibits strong transience, which, of course, would readily
follow form monotonicity (cf. the last sentence in Example 5.4) and that this property is
inherited to its scaling limit, the zigzag process too.

Problem 6.3 (Transient dimensions). Is it true that the walk always exhibits strong
transience whenever d ≥ 3? Clearly, monotonicity would imply this, since when pn = p =

1, S is a simple symmetric random walk.
In the periodic case, for example, using the notation of the proof of Theorem 5.1,

when d ≥ 3, it is known (see, e.g. [24]) that P(limn |S∗n| = ∞) = 1. We know that for
all τn < m < τn+1 (1/r)|Sm − S∗n| is uniformly bounded by a geometrically distributed
variable, with parameter pn0 . However, it is not clear whether this is enough to control
S via S∗.

Problem 6.4 (Slow decay). What happens when d = 2 and the pn’s decay slowly as
n → ∞? We already know that if pn = const ∈ (0, 1) then the walk is recurrent. An
interesting question is whether the answer changes if, for example, pn ∼ 1/ log n.

7 Appendix

Here we state and prove two lemmas that were needed in the proofs. Some versions of
these statements are presumably known, but since we could not find a proper reference,
we present their proofs here.

Lemma 7.1. Let s ∈ (0, 1/2], s0 ∈ R, and M ≥ 2 be an integer such that Ms ≥ 1.
Moreover, let ak = ks+ s0 (mod 1), for k = 1, 2, . . . ,M . Then5

Ns,M := |{k : ak ∈ [0, 1/2)}| ≥ 2

15
M.

Proof. First, assume that s ≥ 1/4. Since the length of the interval [1/2, 1) is 1/2, and
s ≤ 1/2, for any triple {ai, ai+1, ai+2}, i ≥ 1, at least one element must not lie in [1/2, 0).
Therefore, Ns,M ≥ bM/3c ≥M/5.

Next, assume that s < 1/4, and define

τk := inf{i : is ≥ k}, k = 0, 1, 2, . . .

Let K ∈ Z be such that τK ≤M , τK+1 > M ; since Ms ≥ 1 we have K ≥ 1. Then we have

0 < aτk+1 < aτk+2 < · · · < aτk+1
≤ 1 for each k = 0, 1, 2, . . .

In each such increasing sequence, since s < 1/4, we have at least b1/(2s)c ≥ 1/(3s)

elements in the segment [0, 1/2) of length 1/2. The total number of elements in this
sequence, τk+1 − τk ≤ d1/se ≤ 5/(4s). Consequently,

Ns,M ≥ K ×
1

3s
while M ≤ (K + 1)× 5

4s
,

so Ns,M/M ≥ 2/15 since K ≥ 1.
5The constant 2/15 is definitely sub-optimal. The true constant is probably 1/3, with equality achieved for

M = 3, 6, 9, . . . .
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Lemma 7.2. Let (qi)
∞
i=1 form a probability distribution (qi ≥ 0,

∑∞
i=1 qi = 1). Assume

that for some a > 0 and a positive integer M we have

qj ≥
a

M
for j = 1, 2, . . . ,M.

Let h(s) :=
∑∞
j=1 qj | cos(js)|. Then

h(s) ≤ max
(
1− c′1as2M2, 1− c′2a

)
, 0 ≤ s ≤ π

2
,

for some absolute constants c′1, c
′
2 > 0.

Proof. First notice that

|h(s)| ≤
M∑
j=1

qj | cos(js)|+
∞∑

j=M+1

qj = 1−
M∑
j=1

qj(1− | cos(js)|)

≤ 1− a

M

M∑
j=1

(1− | cos(js)|). (7.1)

We will use the elementary inequality

1− cosα ≥ α2

4
, 0 ≤ α ≤ π

2
, (7.2)

which holds since ψ(α) := 1 − cosα − α2

4 has the properties ψ(0) = 0 and ψ′(α) =

sinα− α
2 > 0 for α ∈ (0, π/2).

Case one: M ≥ 2. Let M1 = bM/2c ∈ [M/3,M/2]. If tM1 ≤ π/2 then by (7.2)

M∑
j=1

(1− | cos(js)|) ≥
M1∑
j=1

(1− cos(js)) ≥
M1∑
j=1

j2s2

4
=
M1(M1 + 1)(2M1 + 1)s2

24
≥ M3s2

12 · 33
.

On the other hand, if sM1 ≥ π/2 then sM ≥ 2sM1 ≥ π. Let s̃ = s
π ≤

1
2 , then s̃M ≥ 1 and

by Lemma 7.1 (setting j0 := −1/4), in the set {js̃ mod 1, j = 1, 2, . . . ,M} there will be
at least 2M

15 elements which lie in the segment [1/4, 3/4); for the corresponding indices j
this implies that

| cos(sj)| ≤ max
x∈[π4 ,

3π
4 ]
| cosx| = cos

π

4
=

1√
2
.

Hence
M∑
j=1

(1− | cos(js)|) ≥ 2M

15

(
1− 1√

2

)
,

and consequently,

a

M

M∑
j=1

(1− | cos(js)|) ≥ a ·

{
M2s2

324 , if sM1 ≤ π/2;
2−
√

2
15 , otherwise.

Case two: M = 1. Since s ∈ [0, π/2], (7.2) yields that,

a

M

M∑
j=1

(1− | cos(js)|) = a(1− cos s) ≥ as2

4
=
aM2s2

4
.

This, together with (7.1) imply the result.
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