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A construction of the left-curtain coupling
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Abstract

In a martingale optimal transport (MOT) problem mass distributed according to the
law µ is transported to the law ν in such a way that the martingale property is re-
spected. Beiglböck and Juillet (On a problem of optimal transport under marginal
martingale constraints, Annals of Probability, 44(1):42-106, 2016) introduced a solu-
tion to the MOT problem which they baptised the left-curtain coupling. The left-curtain
coupling has been widely studied and shown to have many applications, including
to martingale inequalities and the model-independent pricing of American options.
Beiglböck and Juillet proved existence and uniqueness, proved optimality for a family
of cost functions, and proved that when µ is a continuous distribution, mass at x
is mapped to one of at most two points, giving lower and upper functions. Henry-
Labordère and Touzi (An explicit martingale version of Brenier’s theorem, Finance
and Stochastics, 20:635-668, 2016) showed that the left-curtain coupling is optimal for
an extended family of cost functions and gave a construction of the upper and lower
functions under an assumption that µ and ν are continuous, together with further
simplifying assumptions of a technical nature.

In this article we construct these upper and lower functions in the general case of
arbitrary centred measures in convex order, and thereby give a complete construction
of the left-curtain coupling. In the case where µ has atoms these upper and lower
functions are to be interpreted in the sense of a lifted martingale.
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1 Introduction

In the classical formulation of the optimal transport (OT) problem due to Kantorovich
[32] one seeks a joint law π for random variables X ∼ µ and Y ∼ ν which, for a given cost
function c : Rd ×Rd → R, minimises Eπ[c(X,Y )]. The cornerstone result in Rd with an
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A construction of the left-curtain coupling

Euclidean cost c(x, y) = |x− y|2 is Brenier’s Theorem, see Brenier [11] and Rüschendorf
and Rachev [38]. Brenier’s Theorem states that, under some regularity assumptions, the
optimal coupling is deterministic and realised by a map which corresponds to a gradient
of a convex function. In the one-dimensional setting this coupling is identified with the
Fréchet-Hoeffding (or quantile) coupling πHF . An important feature of this coupling
is that it is optimal for the large class of cost functions satisfying the Spence-Mirrlees
condition cxy > 0.

In recent years, there has been significant interest in optimal transport problems
where the transport plan is constrained to be a martingale. The basic problem of
martingale optimal transport (MOT) is, given probability measures µ and ν on R which
are in convex order and a cost function c, to construct a joint law π for X ∼ µ and
Y ∼ ν satisfying the martingale constraint Eπ[Y |X] = X and such that Eπ[c(X,Y )] is
minimised. Such problems arise naturally in the context of robust (or model-independent)
mathematical finance and were first considered by Hobson and Neuberger [25] and
Hobson and Klimmek [24] for the specific (financially relevant) cost functions c(x, y) =

−|y − x| and c(x, y) = |y − x|. Subsequently, Beiglböck et al. [5] (in a discrete time
setting) and Galichon et al. [17] (in continuous time) extended the problem to a more
general setting, made the connection to optimal transport problems, and proved duality
theorems. The class of MOT problems is of wide mathematical interest and, as well as
the application to finance, is closely related to, and has important consequences for, the
study of martingale inequalities (see Beiglböck and Nutz [10], Henry-Labordère et al.
[18], Obłój et al. [36]) and the Skorokhod embedding problem (see Beiglböck et al. [4],
Källblad et al. [33]).

Using an extension of the notion of cyclical monotonicity from the classical OT setting,
Beiglböck and Juillet [8] introduced the left-monotone martingale coupling, which can
be viewed as a martingale analogue of the monotone Fréchet-Hoeffding coupling. The
authors then prove the existence and uniqueness of the left-monotone coupling, which
they baptise the left-curtain martingale coupling, together with the optimality of this joint
probability measure for some specific cost functions. Henry-Labordère and Touzi [19]
extended their results to show that the left-curtain coupling is optimal for a wide class of
payoffs (essentially1 those satisfying cxyy < 0). Several other authors further investigate
the properties and extensions of the left-curtain coupling, see Beiglböck et al. [6, 3],
Juillet [30], Nutz et al. [34, 35], Campi et al. [13]. In the case of a continuum of
marginals which are increasing in convex order, Henry-Labordère et al. [20], Juillet [31]
and Brückerhoff at al. [12] recently showed, amongst other things, how the left-curtain
coupling can be used to construct a martingale that fits given marginals at any given
time and how it solves a continuous-time version of the martingale optimal transport
problem.

In the light of the Brenier’s Theorem in classical OT theory, a natural question arises
as to whether the aforementioned optimal martingale transport plans possess similar
nice structural properties and whether they can be explicitly constructed. Due to the
martingale constraint, if the marginals are such that µ 6= ν, then no martingale coupling
can be realized by a single map. Instead, the best one can hope for is a binomial map.
Hobson and Neuberger [25] showed that if µ is continuous then there exists a pair of
increasing functions on which πHN , their optimal coupling, is concentrated. In particular,
if we write πHN (dx, dy) = µ(dx)πHNx (dy) we find πHNx has support in a two-point set
{g(x), f(x)} and the functions x 7→ g(x) and x 7→ f(x) are both increasing. Hobson and

1Some authors seek to minimise Eπ [c(X,Y )], whereas others seek to maximise, and therefore some care is
needed when moving between articles. Henry-Labordère and Touzi [19] maximise, and therefore the condition
they state is cxyy > 0, but this becomes the condition in the main text if we move to −c and a minimisation
problem.
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Klimmek [24], on the other hand, worked under the dispersion assumption and showed
that their coupling πHK is such that each portion of mass from initial law µ is mapped
to ν by splitting it into three points at most. In particular, πHK is supported on the
diagonal and the graphs of two explicitly constructed decreasing functions. When µ is
atom free, Beiglböck and Juillet [8] showed that for the left-curtain coupling πlc there
exist lower and upper functions Td, Tu with Td(x) ≤ x ≤ Tu(x) such that if we write
πlc(dx, dy) = µ(dx)πlcx (dy) then πlcx has support concentrated on the set {Td(x), Tu(x)}.
Here Tu is non-decreasing while Td satisfies a particular left-monotonicity property.

There are two methods in the literature used to obtain the upper and lower functions
that characterise the left-curtain coupling πlc. The first method is non-constructive and
is to approximate µ by a family of discrete measures and to consider the limits of the
resulting upper and lower functions. The second method requires additional regularity
assumptions on µ and ν and is to characterise Td and Tu via differential equations (or
integral equations). In the case where both marginals µ and ν are continuous (and satisfy
a further particular structural property), Henry-Labordère and Touzi [19] (among other
things) construct the upper and lower functions Td, Tu as the solutions of a pair of coupled
ordinary differential equations. Indeed, after some further ingenious manipulations, they
show that Td is the root of an integral equation. However, there are several barriers
which make it difficult to extend the construction via differential equations to the general
case. First, it cannot cope with atoms in the initial or terminal laws, and requires both
measures to have positive densities. Second, it requires a starting condition to initialise
the differential equations. Third, the method works by solving for Td and Tu on a family of
intervals, but there may be countably many such intervals, and the set of right-endpoints
of these intervals may have (countably many) accumulation points beyond each of which
it is difficult to extend the solutions to the differential equations. The same sorts of
issues apply to the construction via the integral equation of Henry-Labordère and Touzi
[19]

The first point is absolutely fundamental. When µ has an atom at x the probability
kernel πxlc(·) in the disintegration πlc(dx, dy) = µ(dx)πxlc(dy) becomes a measure with
support on non-trivial subsets of R and not just on a two-point set. In this case Td, Tu
cannot be constructed, unless we allow them to be multi-valued. By changing the
viewpoint, Hobson and Norgilas [26] showed how to recover the property that Y takes
values in a two-point set. The idea is to write X = Gµ(U), where Gµ is a quantile function
of µ and U ∼ U [0, 1], and then to seek functions R,S satisfying certain monotonicity
properties such that Y ∈ {R(U), S(U)}. While Td and Tu are multivalued on the atoms
of µ, R and S remain well defined. Hobson and Norgilas explicitly constructed such R
and S in the case the initial law µ is finitely supported (while ν is arbitrary), and then
by approximating general µ with atomic probability measures showed that the limiting
functions give rise to a generalised, or lifted, left-curtain martingale coupling.

The goal of this paper is to give a direct, geometric construction of the lifted left-
curtain martingale coupling for general measures µ and ν. In particular we construct
R and S (and (Td, Tu) in the case where µ is continuous). Our methods rely neither on
differential equations nor on the delicate approximation of measures, but rather on a
representation of the initial and target laws via potentials. The potential of a measure
involves integrating the measure against a test function and this has a smoothing
effect. It is this extra smoothness which allows us to give a global construction of the
key quantities. Nonetheless, some delicate arguments are needed to prove that the
quantities we construct have the appropriate monotonicity properties and do indeed
yield the left-curtain martingale coupling, especially since we place no assumptions on
the initial or terminal laws.

The power of the potential representation is well-recognised in related settings.
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There is a close connection between martingale optimal transport and solutions of the
Skorokhod embedding problem (SEP) for Brownian motion (especially for non-trivial
initial laws), based on the idea of viewing a martingale as a time-change of Brownian
motion. One productive source of elegant solutions to the SEP is the potential-theoretic
representation of measures and a geometric description due to Chacon and Walsh [15].
Many of the classical solutions of the Skorokhod embedding problem (and therefore
many of the martingale optimal transports which have been proposed in the literature)
can be described by drawing tangents (or supporting hyperplanes in the atomic case)
on a suitable picture, see Chacon and Walsh [15] and Hobson [22]. The constructions
of the SEP due to Dubins [16], Azéma and Yor [1], Jacka [29], Vallois [40], Hobson [23],
Hobson and Pedersen [28] (at least) have a representation in this form. The geometric
approach has a clear advantage in bypassing many of the technical issues which arise in
approximation arguments.

The classical result by Strassen [39] states that it is possible to transport µ to ν using
a martingale if and only if the marginal laws respect the convex order condition µ ≤cx ν
(i.e., µ is less than ν in convex order). In order to study transport plans in the martingale
setting, Beiglböck and Juillet [8] introduced the notion of extended convex order of two
measures, denoted by ≤E , which compares measures of possibly different total mass. If
a pair of measures µ, ν is such that µ ≤E ν, than there exists a martingale that transports
µ into ν (without necessarily covering all of ν). In particular, the set of measures η
with µ ≤cx η ≤ ν, is non-empty, and each such η corresponds to a terminal law of a
martingale that embeds µ into ν. Beiglböck and Juillet [8] proved that there exists a
canonical choice of such η with respect to ≤cx. In particular there exists the unique
measure Sν(µ), the shadow of µ in ν, that is the smallest measure with respect to convex
order among measures η satisfying µ ≤cx η ≤ ν. Our interest in the shadow measure
lies in the fact that the left-curtain martingale coupling can be defined as the unique
measure πlc on R2 such that, for each x ∈ R, πlc|(−∞,x])×R has the first marginal µ|(−∞,x]

and the second marginal Sν(µ|(−∞,x]). (For other martingale transports arising using
the shadow measure, but different parametrisations of µ, see Beiglböck and Juillet [9].)
Recently Beiglböck et al. [7] showed how to explicitly construct, via potential-geometric
arguments, the shadow measure Sν(µ) for arbitrary µ and ν with µ ≤E ν. This turns
out to be the main ingredient of our construction of the upper and lower functions
characterising the left-curtain coupling.

One feature of our construction is that in the case where µ is continuous (respectively
the general case) for each x ∈ R (respectively u ∈ (0, 1)) we find {Td(x), Tu(x)} (respec-
tively {R(u), S(u)}) by considering the convex hull of a certain function. Since we can
do this for each x individually, the construction for a single x immediately extends to a
construction for all x and to pairs of functions {Td(·), Tu(·)} (with a similar conclusion
for the lifted martingale). In some applications, for example the model-independent
pricing of American options (see Hobson and Norgilas [26]), it is sufficient to find a triple
(x, Td(x), Tu(x)) associated with the left-curtain coupling and with one further property,
and the full structure of the construction of the left-curtain coupling is not required.
Then the direct nature of our construction is particularly useful.

In recent work Bayraktar et al. [2] provide a geometric construction of the so-called
increasing supermartingale coupling πI (introduced by Nutz and Stebegg [34]), which
builds upon and extends the construction presented in this article. (πI can be viewed as
supermartingale counterpart of the left-curtain coupling πlc). The increasing coupling
πI has a feature that it behaves as πlc on a certain part of the space, and thus the
construction of Bayraktar et al. [2] heavily relies on the ability to construct πlc on these
‘martingale’ intervals. This is achieved in the present paper and in full generality.

The paper is structured as follows. In Section 2 we discuss the relevant notions of
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probability measures and (extended) convex order, and discuss some important (for our
main theorems) results regarding the convex hull of a function. In Section 3 we introduce
the shadow measure and the left-curtain martingale coupling. Sections 4, 6 and 7 are
dedicated to our main results. (Section 5 contains preliminary results for Sections 6
and 7.) In Section 4 we construct a candidate pair of functions that characterise the left-
curtain coupling (Theorem 4.9), while in Section 6 we study their regularity properties.
Finally in Section 7, we show (Theorem 7.9) that our construction yields the (lifted)
left-curtain martingale coupling. Some proofs are deferred until the appendix.

2 Preliminaries

2.1 Measures and Convex order

LetM (respectively P) be the set of measures (respectively probability measures)
on R with finite total mass and finite first moment, i.e. if η ∈ M, then η(R) < ∞ and∫
R
|x|η(dx) <∞. Given a measure η ∈M (not necessarily a probability measure), define

η̄ =
∫
R
xη(dx) to be the first moment of η (and then η̄/η(R) is the barycentre of η).

The support of η ∈ M is denoted by supp(η); it is the smallest closed set E ⊆ R with
η(E) = η(R). Let `η := inf{k ∈ supp(η)} and rη := sup{k ∈ supp(η)}. Let Iη be the
smallest interval containing the support of η, so that {`η, rη} are the endpoints of Iη. If η
has an atom at `η then `η is included in Iη, and otherwise it is excluded, and similarly for
rη.

For η ∈ M, let Fη : R → [0, η(R)] and Gη : (0, η(R)) → R be the distribution and
quantile functions of η, respectively. As usual Fη is right-continuous, however we take
an arbitrary version of Gη until further notice. (In Sections 6 and 7 we will work with a
left-continuous version of Gη.)

For α ≥ 0 and β ∈ R, let D(α, β) denote the set of non-negative, non-decreasing
convex functions f : R→ R+ such that

lim
z↓−∞

f(z) = 0, lim
z↑∞
{f(z)− (αz − β)} = 0.

When α = 0, D(0, β) is empty unless β = 0 and then D(0, 0) contains one element.
For η ∈M, define the function Pη : R→ R+ by

Pη(k) :=

∫
R

(k − x)+η(dx), k ∈ R.

(The notation P· arises from the connection with the expected payoff of a put option.)
The following properties of Pη can be found in Chacon [14], and Chacon and Walsh [15]:
Pη ∈ D(η(R), η̄) and {k : Pη(k) > (η(R)k − η̄)+} = (`η, rη). Conversely (see, for example,
Hirsch et al. [21, Proposition 2.1]), if h ∈ D(km, kf ) for some numbers km ≥ 0 and
kf ∈ R (with kf = 0 if km = 0), then there exists a unique measure η ∈ M, with total
mass η(R) = km and first moment η̄ = kf , such that h = Pη. In particular, η is uniquely
identified by the second derivative of h in the sense of distributions. Note that Pη is
related to the potential Uη, defined by

Uη(k) := −
∫
R

|k − x|η(dx), k ∈ R,

via Pη(k) = 1
2 (−Uη(k) + (η(R)k − η̄)). We will call Pη a modified potential. Finally note

that both second derivatives P ′′η and −U ′′η /2 identify the same underlying measure η.
For η, χ ∈M, we write η ≤ χ if η(A) ≤ χ(A) for all Borel measurable subsets A of R,

or equivalently if ∫
fdη ≤

∫
fdχ, for all non-negative f : R→ R+.
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Since η and χ can be identified as second derivatives of Pχ and Pη respectively, we have
η ≤ χ if and only if Pχ − Pη is convex, i.e. Pη has a smaller curvature than Pχ.

Two measures η, χ ∈M are in convex order, and we write η ≤cx χ, if∫
fdη ≤

∫
fdχ, for all convex f : R→ R. (2.1)

Since we can apply (2.1) to all affine functions, including f(x) = ±1 and f(x) = ±x, we
obtain that if η ≤cx χ then η and χ have the same total mass (η(R) = χ(R)) and the
same first moment (η̄ = χ̄). Moreover, necessarily we must have `χ ≤ `η ≤ rη ≤ rχ.
From simple approximation arguments (see Hirsch et al. [21]) we also have that, if η
and χ have the same total mass and the same first moment, then η ≤cx χ if and only if
Pη(k) ≤ Pχ(k), k ∈ R.

For our purposes in the sequel we need a generalisation of the convex order of two
measures. We follow Beiglböck and Juillet [8] and say η, χ ∈ M are in an extended
convex order, and write η ≤E χ, if∫

fdη ≤
∫
fdχ, for all non-negative, convex f : R→ R+.

The partial order ≤E generalises both ≤ and ≤cx in the sense that it preserves existing
orderings and gives rise to new ones. If η ≤cx χ then also η ≤E χ (since non-negative
convex functions are convex), while if η ≤ χ, we also have that η ≤E χ (since non-
negative convex functions are non-negative). Note that, if η ≤E χ, then η(R) ≤ χ(R)

(apply the non-negative convex function φ(x) = 1 in the definition of ≤E). It is also easy
to prove that, if η(R) = χ(R), then η ≤E χ is equivalent to η ≤cx χ.

For η, χ ∈ P, let Π(η, χ) be the set of probability measures on R2 with the first
marginal η and second marginal χ. Let ΠM (η, χ) be the set of martingale couplings of η
and χ. Then

ΠM (η, χ) =
{
π ∈ Π(η, χ) : (2.2) holds

}
,

where (2.2) is the martingale condition∫
x∈B

∫
y∈R

yπ(dx, dy) =

∫
x∈B

∫
y∈R

xπ(dx, dy) =

∫
B

xη(dx), ∀ Borel B ⊆ R. (2.2)

Equivalently, ΠM (η, χ) consists of all transport plans π (i.e. elements of Π(η, χ)) such that
the disintegration in probability measures (πx)x∈R with respect to η satisfies

∫
R
yπx(dy) =

x for η-almost every x.
If we ignore the martingale requirement (2.2), it is easy to see that the set of

probability measures with given marginals is non-empty, i.e. Π(η, χ) 6= ∅ (consider the
product measure η ⊗ χ). However, the fundamental question whether, for given η and
χ, the set of martingale couplings ΠM (η, χ) is non-empty, is more delicate. For any
π ∈ ΠM (η, χ) and convex f : R→ R, by (conditional) Jensen’s inequality we have that∫

R

f(x)η(dx) ≤
∫
R

∫
R

f(y)πx(dy)η(dx) =

∫
R

f(y)π(R, dy) =

∫
R

f(y)χ(dy),

so that η ≤cx χ. On the other hand, Strassen [39] showed that a converse is also true (i.e.
η ≤cx χ implies that ΠM (η, χ) 6= ∅), so that ΠM (η, χ) is non-empty if and only if η ≤cx χ.

For a pair of measures η, χ ∈ M, let the function D = Dη,χ : R → R be defined by
Dη,χ(k) = Pχ(k)− Pη(k). Note that if η, χ have equal mass and equal first moment then
η ≤cx χ is equivalent to D ≥ 0 on R. Let (`D, rD) be the smallest interval containing
{k : Dη,χ(k) > 0}; let ID be the open interval (`D, rD) together with {`D} if `D > −∞
and D′(`D+) := limk↓`D (D(k)−D(`D))/(k− `D) > 0 and {rD} if rD <∞ and D′(rD−) :=
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limk↑`D (D(k) − D(`D))/(k − `D) < 0. Note that, if η ≤c χ, then `ν ≤ `µ ≤ rµ ≤ rν and
ID ⊆ [`ν , rν ].

The following result (see Hobson [23, page 254] or Beiglböck and Juillet [8, Section
A.1]) tells us that, if Dη,χ(x) = 0 for some x, then in any martingale coupling of η and χ
no mass can cross x.

Lemma 2.1. Suppose η and χ are probability measures with η ≤cx χ. Suppose that
D(x) = 0. If π ∈ ΠM (η, χ), then we have π((−∞, x), (x,∞)) + π((x,∞), (−∞, x)) = 0.

It follows from Lemma 2.1 that, if there is a point x in the interior of the interval Iη
such that Dη,χ(x) = 0, then we can separate the problem of constructing martingale
couplings of η to χ into a pair of subproblems involving mass to the left and right of
x, respectively, always taking care to allocate mass of χ at x appropriately. Indeed, if
there are multiple {xj}j≥1 with Dη,χ(xj) = 0, then we can divide the problem into a
sequence of ‘irreducible’ problems, each taking place on an interval Ii such that D > 0

on the interior of Ii and D = 0 at the endpoints. All mass starting in a given interval is
transported to a point in the same interval. Moreover, by the martingale property, any
mass starting at a finite endpoint of Ii must stay there. Putting this together we may
restrict attention to intervals I on which D > 0 (with limx→eI D(x) = 0 at endpoints eI of
I), and we may assume that the starting law has support within the interior of I and the
target law has support within the closure of I (and I is the smallest set with this last
property).

Notation: For x ∈ R let δx denote the unit point mass at x. For real numbers c, x, d
with c ≤ x ≤ d define the probability measure χc,x,d by χc,x,d = d−x

d−c δc + x−c
d−c δd with

χc,x,d = δx if (d− x)(x− c) = 0. Note that χc,x,d has mean x and is the law of a Brownian
motion started at x evaluated on the first exit from (c, d).

2.2 Convex hull

Our key results will make extensive use of the convex hull. For f : R → R let f c

be the largest convex function which lies below f . In our typical application f will be
non-negative and this property will be inherited by f c. However, in general we may have
f c equal to −∞ on R, and the results of this section are stated in a way which includes
this case. Note that if a function g is equal to −∞ (or∞) everywhere, then we deem it
to be both linear and convex, and set gc equal to g.

Fix x, z ∈ R with x ≤ z, and define Lfx,z : R→ R by

Lfx,z(y) =

{
f(x) + f(z)−f(x)

z−x (y − x), if x < z,

f(x), if x = z.
(2.3)

Then (see Rockafellar [37, Corollary 17.1.5]),

f c(y) = inf
x≤y≤z

Lfx,z(y), y ∈ R. (2.4)

(Note that for (2.4), the definition of Lfx,z outside [x, z] is irrelevant and we could restrict
the domain of Lfx,z to [x, z]. However, in Sections 4, 6 and 7 we will need Lfx,z to be
defined on R.)

Moreover, it is not hard to see (at least geometrically, by drawing the graphs of f and
f c) that f c replaces the non-convex segments of f by straight lines. (Proofs of lemmas in
this section are given in Appendix A.1.)

Lemma 2.2. Let f : R → R be a lower semi-continuous function. Suppose f > f c on
(a, b) ⊆ R. Then f c is linear on (a, b).

In the sequel, for a given function f and y ∈ R, we will want to identify the values
x, z ∈ R with x < y < z which attain the infimum in (2.4). For this, however, we need to
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allow x and z to take values in the extended real line. Therefore we extend the definition
of Lfx,z to Lf−∞,z and Lfx,∞ by taking appropriate limits in (2.3). In particular, we define,
for each y ∈ R,

Lf−∞,z(y) = (z − y) lim inf
x↓−∞

f(x)

|x|
+ f(z),

Lfx,∞(y) = f(x) + (y − x) lim inf
z↑∞

f(z)

z
.

Let φ = lim infz↑∞
f(z)
z ∈ [−∞,∞], ψ = lim infx↓−∞

f(x)
|x| ∈ [−∞,∞], and if φ ∈

(−∞,∞), γ = infw∈R(f(w)− φw). Then we also define Lf−∞,∞ by

Lf−∞,∞(y) =


∞, ψ + φ > 0,

γ + φy ψ + φ = 0,

−∞, ψ + φ < 0,

y ∈ R,

with the convention that −∞+∞ =∞+ (−∞) = −∞.
Let B(y) = {(x, z) : −∞ ≤ x < y < z ≤ ∞} be the set of open intervals containing y.

Definition 2.3. Let f : R→ R be a measurable function and f c denote its convex hull.
For y ∈ R, define

Xf (y) = X(y) = sup{x : x ≤ y, fc(x) = f(x)},
Zf (y) = Z(y) = inf{z : z ≥ y, f c(z) = f(z)},

with the convention that sup ∅ = −∞ and inf ∅ =∞.

The following result is a slight extension of (2.4).

Lemma 2.4. Suppose f : R → R is continuous. Then for y ∈ R we have f c(y) =

LfX(y),Z(y)(y).

We will need one more result regarding the locations of X and Z.

Lemma 2.5. Suppose f : R→ R is continuous. If (x, z) ∈ B(y) and f(k) > Lfx,z(k) for all
k ∈ (x, z), then

X(y) ≤ x and Z(y) ≥ z.

3 The shadow measure and left-curtain martingale coupling

3.1 The shadow measure

Given two measures µ, ν ∈M with µ ≤E ν let T (µ, ν) = {θ ∈M : µ ≤cx θ ≤ ν}. Then
T (µ, ν) represents the set of all possible target measures in ν to which we can transport
µ using a martingale. We are interested in the smallest element of T (µ, ν) with respect
to convex order.

Definition 3.1 (Shadow measure). Let µ, ν ∈M and assume µ ≤E ν. The shadow of µ
in ν, denoted by Sν(µ), has the following properties

1. Sν(µ) ≤ ν.

2. µ ≤cx Sν(µ).

3. If η is another measure satisfying µ ≤cx η ≤ ν, then Sν(µ) ≤cx η.

Beiglböck and Juillet [8, Proposition 4.4 and Lemma 4.6] proved the existence and
uniqueness of the shadow measure Sν(µ). Furthermore, a result of Beiglböck et al. [7]
says that the modified potential of the shadow measure, PSν(µ), can be explicitly con-
structed, and then Sν(µ) is identified as the second derivative of PSν(µ) in the sense of
distributions.
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Theorem 3.2 (Beiglböck et al. [7, Theorem 1]). Let µ, ν ∈M with µ ≤E ν. Then

PSν(µ) = Pν − (Pν − Pµ)c. (3.1)

Corollary 3.3. If (Pν − Pµ)c is linear on [a, b] then ν − Sν(µ) does not charge (a, b).

3.2 The left-curtain coupling πlc for continuous µ

The left-curtain martingale coupling (introduced by Beiglböck and Juillet [8]), and
denoted by πlc, is a martingale coupling that arises via the shadow measure, created
working from left to right. More specifically (see Beiglböck and Juillet [8, Theorem 4.18]),
πlc is the unique measure in ΠM (µ, ν) which for each x ∈ R transports µ|(−∞,x] to the
shadow Sν(µ|(−∞,x]). In other words, the first and second marginals of πlc|(−∞,x]×R are
µ|(−∞,x] and Sν(µ|(−∞,x]), respectively, for each x. Furthermore, as a consequence of the
minimality with respect to convex order, πlc is also the unique martingale coupling which
is left-monotone in the sense of Definition 3.4 (see Beiglböck and Juillet [8, Theorem
5.3]):

Definition 3.4. A transport plan π ∈ Π(µ, ν) is said to be left-monotone if there exists
Γ ∈ B(R2) with π(Γ) = 1 and such that, if (x, y−), (x, y+), (x′, y′) ∈ Γ we cannot have
x < x′ and y− < y′ < y+.

When the initial law µ is continuous, the left-curtain coupling has a rather sim-
ple representation. In particular, for x ∈ R, the element πxlc(·) in the disintegration
πlc(dx, dy) = µ(dx)πxlc(dy) is a measure supported on a set of at most two points.

Lemma 3.5 (Beiglböck and Juillet [8, Corollary 1.6]). Let µ, ν be probability measures in
convex order and assume that µ is continuous. Then there exists a pair of measurable
functions Td : R → R and Tu : R → R such that Td(x) ≤ x ≤ Tu(x), such that for all
x < x′ we have Tu(x) ≤ Tu(x′) and Td(x

′) /∈ (Td(x), Tu(x)), and such that, if we define
π̄(dx, dy) = µ(dx)χTd(x),x,Tu(x)(dy), then π̄ ∈ ΠM (µ, ν) and π̄ = πlc.

Since Td(x) ≤ x ≤ Tu(x) we call Td a lower function and Tu an upper function.

Lemma 3.5 is expressed in terms of elements of ΠM . We can give an equivalent
expression in terms of a martingale. First we give an analogue of Definition 3.4 for
functions.

Definition 3.6. Given an interval I and an increasing function g : I → R, a pair of
functions f, h : I → R is said to be left-monotone with respect to g on I if f ≤ g ≤ h and
if for x < x′ we have h(x) ≤ h(x′) and f(x′) /∈ (f(x), h(x)).

Corollary 3.7. Let (Ω,F ,P) = (I × (0, 1),B(Ω), µ × Leb((0, 1))). Let ω = (x, v) and let
the canonical random variable (X,V ) on (Ω,F ,P) be given by (X(ω), V (ω)) = (x, v).
Then X has law µ, V is a U(0, 1) random variable and X and V are independent. Let
F = (F0 = {∅,Ω},F1 = σ(X),F2 = σ(X,V )}) and set M = (Ω,F ,F,P).

Suppose µ is continuous. Then there exists Td, Tu : I → R such that (Td, Tu) is
left-monotone with respect to the identity function on I and such that if we define
Y (x, v) ∈ {Td(x), Tu(x)} by Y (x, v) = x on Td(x) = x = Tu(x) and

Y (x, v) = Td(x)I{
v≤ Tu(x)−x

Tu(x)−Td((x)

} + Tu(x)I{
v>

Tu(x)−x
Tu(x)−Td(x)

} (3.2)

otherwise, then M = (µ̄,X, Y (X,V )) is a M-martingale for which L(X) = µ and L(Y ) =

ν.
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Tu

Td

Figure 1: Stylized plot of the functions Td and Tu in the general case. Td and Tu are given
by the solid lines in the figure. Note that on the set {x : Tu(x) = x} we have Td(x) = x.
In the figure the set {x : Tu(x) > Td(x)} is a finite union of intervals whereas in general
it may be a countable union of intervals (and the set of endpoints of these intervals may
have accumulation points). Similarly, in the figure Td has finitely many downward jumps,
whereas in general it may have countably many jumps. Atoms of ν lead to horizontal
sections of Td and Tu. Atoms of µ, which are excluded in Lemma 3.5 and Corollary 3.7,
but included in Theorem 3.8 below, lead to vertical (multi-valued) sections of Td and Tu.

Suppose ν is also continuous and fix x ∈ R. Under the left-curtain martingale coupling,
µ|(Td(x),x) is mapped to ν|(Td(x),Tu(x)). Thus {Td(x), Tu(x)} with Td(x) ≤ x ≤ Tu(x) are
solutions to

∫ x

Td(x)

µ(dz) =

∫ Tu(x)

Td(x)

ν(dz), (3.3)∫ x

Td(x)

zµ(dz) =

∫ Tu(x)

Td(x)

zν(dz). (3.4)

Essentially, (3.3) is preservation of mass condition and (3.4) is preservation of mean and
the martingale property.

In general, there can be multiple solutions to (3.3) and (3.4) although under the
additional left-monotonicity properties of Definition 3.6, for almost all x ∈ R there is a
unique solution. (However, even then there may be exceptional x at which Td jumps and
at which there are multiple solutions.)

As observed by Henry-Labordère and Touzi [19], when µ and ν admit continuous
densities ρµ and ρν respectively, and Tu and Td are smooth, we find that they satisfy the

EJP 27 (2022), paper 147.
Page 10/46

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP868
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A construction of the left-curtain coupling

pair of coupled differential equations

ρµ(x)− T ′d(x)ρµ(Td(x)) = T ′u(x)ρν(Tu(x))− T ′d(x)ρν(Td(x))

xρµ(x)− T ′d(x)Td(x)ρµ(Td(x)) = Tu(x)T ′u(x)ρν(Tu(x))− T ′d(x)Td(x)ρν(Td(x)).

However, it remains to specify the initial conditions of the differential equations and
even in the case of smooth densities, Td may have downward jumps at locations which
depend on the global properties of µ and ν. In the special case where µ and ν satisfy
the dispersion assumption, see Hobson and Klimmek [24] or Hobson and Norgilas [27]
(see also [19, Section 3.4] for a closely related condition), in the sense that there exists
I> = (e−, e+) such that ρµ > ρν > 0 on I> and 0 ≤ ρµ ≤ ρν otherwise, then the situation
simplifies. In particular, Td(x) = x = Tu(x) for x ≤ e− and on [e−,∞), Td is strictly
decreasing, Tu is strictly increasing and together they solve

T ′d(x) =
Tu(x)− Td(x)

Tu(x)− x
(ρν − ρµ)(Td(x))

ρµ(x)
and T ′u(x) =

Tu(x)− Td(x)

x− Td(x)

ρν(Tu(x))

ρµ(x)

subject to Td(e−) = e− = Tu(e−) (see also [19, Equations (3.9) and (3.10)]).

Henry-Labordère and Touzi [19, Equations (3.15) and (3.16)]) are able to go further
and write Td(x) as the root of an integral equation, (and then Tu(x) can be deduced
from Td(x)). But the integral equation depends on the curve {Td(z); e− ≤ z ≤ x}.
They are also able to extend beyond the dispersion assumption case by defining Td
on intervals [mi, ni] where mi is an element of a certain set M0 = M0(µ, ν) which,
in the case where the densities are well defined, continuously differentiable and not
identically equal on an interval, is the set of points where ρµ = ρν and ρ′µ > ρ′ν . But,
the assumption that µ and ν are atom free is essential, and Henry-Labordère and Touzi
also assume that M0 is finite, and to move beyond the case where M0 can be written
as M0 = {mj , j ∈ N : i < j ⇔ mi < mj} (for example, to allow for accumulation points)
would require further arguments. The fundamental question of how to determine Td
and Tu remains, especially since Lemma 3.5 and Corollary 3.7 are purely existence
statements.

3.3 The left-curtain coupling in the presence of atoms

In the case with atoms previous work of the authors gives an existence result similar
in form to Corollary 3.7.

Theorem 3.8 (Hobson and Norgilas [27, Theorem 1]). Let (Ω,F ,P) = ((0, 1)×(0, 1),B(Ω),

Leb(Ω)). Let ω = (u, v) and let (U, V ) be the canonical random variables on (Ω,F ,P)

given by (U(ω), V (ω)) = (u, v) so that U and V are independent U(0, 1) random variables.
Let F = (F0 = {∅,Ω},F1 = σ(U),F2 = σ(U, V )}) and set M = (Ω,F ,F,P).

Fix µ ≤cx ν and let G = Gµ be a quantile function of µ.

Then there exists R,S : (0, 1) → R such that the pair (R,S) is left monotone with
respect to G on I = (0, 1) and such that if we define X(u, v) = X(u) = G(u) and
Y (u, v) ∈ {R(u), S(u)} by Y (u, v) = G(u) on R(u) = S(u) and

Y (u, v) = R(u)I{v≤S(u)−G(u)
S(u)−R(u)} + S(u)I{v>S(u)−G(u)

S(u)−R(u)} (3.5)

otherwise, then M = (µ̄,X(U), Y (U, V )) is a M-martingale for which L(X) = µ and
L(Y ) = ν.
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S

G

R

S

R
0 1

Td = R ◦G−1

Tu = S ◦G−1

Figure 2: Sketch of R,G, S and the corresponding Tu and Td. On the atoms of µ, G is
flat, and Td and Tu are multi-valued, but R and S remain well-defined.

Our goals in later sections are first to construct suitable candidate functions R and S
satisfying left-monotonicity with respect to G, and second to show that they do indeed
lead to a pair (X,Y ) with X ∼ µ and Y ∼ ν.

3.4 Lifted martingale transport plans

Just as Corollary 3.7 has an equivalent expression via Lemma 3.5, Theorem 3.8
has an equivalent expression in terms of transport plans, provided we generalise the
notion of a martingale transport plan. Let (µu)0≤u≤1 be a family of measures with
µu(R) = u, µ1 = µ and µu ≤ µv for 0 ≤ u ≤ v ≤ 1, and let λ denote Lebesgue measure
on the unit interval. Then a lift (Beiglböck and Juillet [8, 9]) of µ with respect to
(µu)0≤u≤1 is a probability measure µ̂ ∈ Π(λ, µ) such that, for all u ∈ [0, 1] and Borel
A ⊆ R, µ̂([0, u]×A) = µu(A). A lifted martingale transport plan is a probability measure
π̂ ∈ Π(µ̂, ν) such that

∫
R
yπ̂u,x(dy) = x, µ̂-a.e. (u, x), where π̂u,x denotes the disintegration

of π̂ ∈ Π(µ̂, ν) with respect to µ̂: π̂(du, dx, dy) = µ̂(du, dx)π̂u,x(dy).

One of the insights of Beiglböck and Juillet [8, 9] is that, for (µu)0≤u≤1 as above, the
shadow measure induces a family of martingale couplings. In particular the idea is that
for all u ∈ [0, 1], µu is mapped to Sν(µu). A crucial result making this possible is the fact
that if 0 < u < v < 1 and µu ≤ µv then Sν(µu) ≤ Sν(µv).

A natural choice for the lift µ̂ of µ is the quantile lift µ̂Q whose support is of the form
{(v,G(v)) : 0 < v < 1} where G is a quantile function of µ. Then µ̂Q(du, dx) = duδG(u)(dx)

and for a Borel set A, µ̂Q([0, w]×A) =
∫ w

0
duI{G(u)∈A}. Then, by Beiglböck and Juillet [9,

Theorem 1.1], there exists a unique lifted martingale transport plan π̂Q such that for all
u ∈ [0, 1] and BorelA,B ⊆ R, π̂Q([0, u]×A×R) = µu(A) and π̂Q([0, u]×R×B) = Sν(µu)(B).
This is the left-curtain martingale coupling.

By analogy with the correspondence between Lemma 3.5 and Corollary 3.7 we have
the following equivalent restatement of Theorem 3.8:

Corollary 3.9. Let µ, ν be probability measures in convex order and let µ̂Q be the
quantile lift of µ. Then there exists a pair of measurable functions R : R → R and
S : R → R such that (R,S) is left-monotone with respect to G = Gµ and such that if
π̂Q(du, dx, dy) = duδG(u)(dx)π̂Qu,x(dy) (recall µ̂ has support on {(u,G(u)) : 0 < u < 1}) then

π̂Qu,x(dy) = π̂Qu,G(u)(dy) = χR(u),G(u),S(u)(dy) and π̂Q is the lifted-left-curtain martingale
transport plan which transports a second marginal µ to third marginal ν.
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4 The geometric construction

Fix µ ≤cx ν. The goal of this section is to construct candidates for the functions R
and S of Theorem 3.8. Then, in Section 7 we will prove that they can indeed be used to
define a (left-monotone) martingale coupling of µ and ν.

Recall the definition of D(k) = Pν(k)− Pµ(k), k ∈ R. In what follows (and in the light
of Lemma 2.1 and the subsequent discussion) we assume that {k ∈ R : D(k) > 0} is an
(open) interval, and µ is supported on this set. Moreover, {k : D(k) > 0} = (`ν , rν).

Recall also the definition of the sub-differential ∂h(x) of a convex function h : R→ R

at x:
∂h(x) = {φ ∈ R : h(y) ≥ h(x) + φ(y − x) for all y ∈ R}.

We extend this definition to non-convex functions f so that the subdifferential of f at x is
given by

∂f(x) = {φ ∈ R : f(y) ≥ f(x) + φ(y − x) for all y ∈ R}.

If h is convex then ∂h is non-empty everywhere, but this is not the case for non-convex
functions. Instead we have that ∂f(x) is non-empty if and only if f(x) = f c(x) and then
∂fc(x) = ∂f(x).

Let G = Gµ be a quantile function of µ. (In Sections 6 and 7 we will take G to be the
left-continuous quantile function, but for now we let G be any quantile function.) For
each u ∈ (0, 1), define µu ∈M by

µu(A) = µ
(
A ∩

(
−∞, G(u)

))
+

(
u− µ

((
−∞, G(u)

)))
δG(u)(A), for all Borel A ⊆ R.

Then for u ∈ (0, 1), µu ≤ µ and µu(R) = u. Note that µu does not depend on the choice of
quantile function G.

We have Pµu(k) = Pµ(k) for k ≤ G(u), while Pµu(k) ≤ Pµ(k) for k > G(u). In
particular,

Pµu(k) = Pµ(k ∧G(u)) + u(k −G(u))+, k ∈ R,

and thus, Pµu(·) is linear on [G(u),∞) and u ∈ ∂Pµ(G(u)), so that P ′µ(G(u)−) ≤ u ≤
P ′µ(G(u)+).

For each u ∈ (0, 1) define Eu : R→ R+ by Eu = Pν − Pµu , so that for k ∈ R,

Eu(k) = Pν(k)− Pµu(k) = D(k) + Pµ(k)− Pµu(k).

Then, by Theorem 3.2, we have that

PSν(µu)(k) = Pν(k)− Ecu(k), k ∈ R.

The idea underlying this section is that we can hope to determine the functions charac-
terising the left-curtain coupling by considering the properties of Eu and Ecu.

Note that Eu(k) = D(k) for k ≤ G(u). Since Pµ − Pµu is non-negative on R, we have
that Eu(k) ≥ D(k) for k > G(u). Moreover, since Pµu is linear on [G(u),+∞), Eu is convex
on (G(u),+∞). It is also easy to see that k 7→ Eu(k)−D(k) is non-decreasing.

We now define candidate lower and upper functions. In fact we define two lower
functions, which differ on a set of measure zero, either of which could be used in
Theorem 3.8. One of the lower functions is in keeping with the definition of X in the
study of convex hulls, but it turns out that the other is more convenient in the proof of
Theorem 3.8.

The idea is that typically Eu is not convex, but we can define its convex hull. Moreover,
commonly Eu(G(u)) > Ecu(G(u)) in which case we can define Q(u) to be the largest point
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to the left of G(u) at which Eu and its convex hull agree, and S(u) to be the smallest
point to the right of G(u) where Eu and Ecu agree. Then, when Q(u) < S(u) we can define
φ(u) to be the slope of Ecu over this interval. Typically, Q(u) will be the only point k below
G(u) such that Eu(k) = Eu(S(u)) + (k − S(u))φ(u), but in exceptional cases there may be
other points with this property. In that case we let R(u) be the smallest such point. See
Figure 3. Our first goal is to formulate the descriptions in this paragraph precisely, and
in such a way that they apply to all situations, including pathological ones. The second
goal is prove that the various quantities have certain properties, especially as u varies.

Our motivation to study R(u) and S(u) stems from the fact that, at least in reg-
ular cases, by replacing (Td(x), x, Tu(x)) with (R(u), G(u), S(u)), the mass and mean
preservation conditions (3.3) and (3.4) hold. Indeed, suppose µ and ν are atomless with
positive densities everywhere, so that, for each u ∈ (0, 1), Eu is differentiable. Then if
R(u) < G(u) ≤ S(u), by construction (see Figure 3) we have that

E ′u(R(u)) = E ′u(S(u)) and Eu(R(u)) + E ′u(R(u))(S(u)−R(u)) = Eu(S(u)),

which can be easily shown to be equivalent to (3.3) and (3.4). Indeed, we have both

E ′u(R(u)) = P ′ν(R(u))− P ′µu(R(u)) = P ′ν(R(u))− P ′µ(R(u)) =

∫ R(u)

−∞
ν(dy)−

∫ R(u)

−∞
µ(dy),

E ′u(S(u)) = P ′ν(S(u))− P ′µu(S(u)) = P ′ν(S(u))− P ′µ(G(u)) =

∫ S(u)

−∞
ν(dy)−

∫ G(u)

−∞
µ(dy),

and therefore E ′u(R(u)) = E ′u(S(u)) is equivalent to the mass preservation condition (3.3).
Similarly, by writing

Eu(R(u)) = Pν(R(u))− Pµu(R(u)) = Pν(R(u))− Pµ(R(u))

=

∫ R(u)

−∞
(R(u)− y)ν(dy)−

∫ R(u)

−∞
(R(u)− y)µ(dy)

and

Eu(S(u)) = Pν(S(u))− Pµu(S(u))

= Pν(S(u))− {Pµ(G(u)) + P ′µu(G(u))(S(u)−G(u))}

=

∫ S(u)

−∞
(S(u)− y)ν(dy)−

{∫ G(u)

−∞
(G(u)−y)µ(dy) + (S(u)−G(u))

∫ G(u)

−∞
µ(dy)

}

=

∫ S(u)

−∞
(S(u)− y)ν(dy)−

∫ G(u)

−∞
(S(u)− y)µ(dy),

and using the mean preservation condition (3.3), we have that that

Eu(R(u)) + E ′u(R(u))(S(u)−R(u)) = Eu(S(u))

is equivalent to the mean preservation condition (3.4).

Define Q,S : (0, 1)→ R by

Q(u) := XEu(G(u)) (4.1)

S(u) := ZEu(G(u)) (4.2)

Lemma 4.1. Q(u) = G(u) if and only if S(u) = G(u).
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Proof. Fix u ∈ (0, 1). By continuity of Eu(·) we have Eu(Q(u)) = Ecu(Q(u)), and Eu(S(u)) =

Ecu(S(u)).
Suppose Q(u) = G(u). Then G(u) ∈ {z : z ≥ G(u), Ecu(z) = Eu(z)} and hence

S(u) = inf{z : z ≥ G(u), Ecu(z) = Eu(z)} = G(u).
The reverse implication follows by symmetry.

R(u) Q(u) G(u) S(u)

y 7→ Eu(y)

y 7→ D(y)

slope φ(u)

Figure 3: Plot of locations of R(u), Q(u), G(u) and S(u) in the case where R(u) < Q(u) <

G(u) < S(u). The dashed curve represents D. The dotted curve corresponds to the graph
of Eu. Note that D = Eu on (−∞, G(u)], while Eu is convex and D ≤ Eu on (G(u),∞). The
solid curve below Eu represents Ecu. The convex hull Ecu is linear on [R(u), S(u)], and its
slope is given by φ(u).

We want to introduce a function φ : (0, 1) → R which represents the slope of Ecu(·)
at G(u). If Q(u) < G(u) < S(u), then this slope is well defined. If Q(u) = G(u) or
G(u) = S(u) then the slope of Ecu may not be well defined at G(u). To cover all cases we
define:

Definition 4.2. φ : (0, 1)→ R is given by φ(u) = inf{ψ : ψ ∈ ∂Ecu(G(u))}.
Lemma 4.3. φ(u) = (Ecu)′(G(u)−) = (Ecu)′(S(u)−).

Proof. The first equality is immediate from the definition of φ, as is the second one
provided G(u) = S(u). On the other hand, if G(u) < S(u), then Ecu = LEuQ(u),S(u) on

[Q(u), S(u)] ⊃ {G(u)} and the second equality follows.

Now we can introduce our second candidate lower function.
Recall the definition of Lfa,b for any f : R→ R (see (2.3)), so that (in the case a < b)

Lfa,b is the line passing through (a, f(a)) and (b, f(b)). Define also Lf,ψa by Lf,ψa (y) =

f(a) + ψ(y − a) so that Lf,ψa is the line passing through (a, f(a)) with slope ψ. (Note that,
in the case a = b, Lfa,a = Lf,0a .) Define R : (0, 1)→ R by

R(u) := inf{k : k ≤ G(u), D(k) = L
Ecu,φ(u)

G(u) (k)}. (4.3)

If Q(u) < G(u) then the definition of R can be rewritten as R(u) = inf{k : k ≤
G(u), D(k) = LEuQ(u),S(u)(k)}. Note that Q(u) ∈ {k : k ≤ G(u), D(k) = L

Ecu,φ(u)

G(u) (k)} so

that R(u) exists in all cases and satisfies R(u) ≤ Q(u). See Figure 3.
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Recall that `ν and rν are the left- and right-hand endpoints of the interval {k : D(k) >

0}. The next lemma, the proof of which is postponed until Appendix A.2, shows that R
and S are finite on (0, 1).

Lemma 4.4. Fix u ∈ (0, 1). Either −∞ < `ν ≤ R(u) or −∞ = `ν < R(u). Similarly, either
S(u) ≤ rν < −∞ or S(u) < rν =∞.

If Q(u) < S(u), then by construction, Ecu < Eu on (Q(u), S(u)) and Ecu ≤ Eu on
[R(u), S(u)]. In particular, Ecu is linear on (R(u), S(u)), whilst Ecu(S(u)) = Eu(S(u)),
Ecu(Q(u)) = Eu(Q(u)) = D(Q(u)) and Ecu(R(u)) = Eu(R(u)) = D(R(u)). It follows that
if Q(u) < S(u) then

φ(u) =
Eu(S(u))−D(Q(u))

S(u)−Q(u)
=
Eu(S(u))−D(R(u))

S(u)−R(u)
.

Further, φ(u) is an element of each of ∂Eu(R(u)), ∂Eu(Q(u)) and ∂Eu(S(u)) together with
∂Ecu(R(u)), ∂Ecu(Q(u)) and ∂Ecu(S(u)).

Our goal is to prove first that (R,S) is left-monotone with respect to G on (0, 1) in the
sense of Definition 3.6 (Theorem 4.9 below) and second that they define a martingale
coupling of µ and ν (Theorem 7.9 below). Together, these results give an explicit
construction of a pair (R,S) which solve the problem in Theorem 3.8 above.

We begin with some preliminary lemmas and other results. We are interested in
properties of u 7→ Eu(k), for fixed k ∈ R. Let 0 < u < v < 1. Then, since µu ≤ µv,
Pµu ≤ Pµv and

Eu(k) ≥ Ev(k), k ∈ R. (4.4)

Indeed, for k ∈ R,

Eu(k)− Ev(k) = Pµv (k)− Pµu(k)

=


0, if k ≤ G(u);

Pµ(k)− Pµ(G(u))− u(k −G(u)), if G(u) < k ≤ G(v);

Pµ(G(v))− Pµ(G(u))− v(G(v)−G(u)) + (v − u)(k −G(u)), if k > G(v).

(4.5)

Note that, for 0 < u < v < 1 and k ≥ G(v), (4.5) can be written as

Eu(k)− Ev(k) = (v − u) (k −R(u)) + Γu,v, (4.6)

where

Γu,v = Pµ(G(v))− {Pµ(G(u)) + v(G(v)−G(u))} − (v − u)(G(u)−R(u))

does not depend on k. Convexity of Pµ ensures that Γu,v ≤ 0, and if R(u) < G(u) then
Γu,v < 0. Further, from (4.4) we also have that Ecv ≤ Ev ≤ Eu, so that Ecv is a convex
minorant of Eu and

Ecu(k) ≥ Ecv(k), k ∈ R. (4.7)

Finally, for any u ∈ (0, 1), Eu is defined as a difference of two convex functions, and thus
its left and right derivatives exist. It follows that for v > u and k ≥ G(v),

E ′u(k+)− E ′v(k+) = v − u. (4.8)

Again for v > u,

E ′u(k−)− E ′v(k−) =


v − u, if k > G(v);

P ′µ(k−)− u, if k ∈ (G(u), G(v)];

0, if k ≤ G(u).

(4.9)
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Lemma 4.5. Suppose k ∈ [G(v−), G(v+)], u < v and G(u+) < k. Suppose E ′v(k−) ≤
E ′v(k+) and ψ ∈ [E ′v(k−), E ′v(k+)]. Then E ′u(k−) ≤ ψ + (v − u) ≤ E ′u(k+).

Proof. The result follows easily from the fact that E ′v(k−) = P ′ν(k−)−P ′µv (k−) ≥ P ′ν(k−)−
v together with E ′v(k+) = P ′ν(k+)− v and E ′u(k±) = P ′ν(k±)− u.

The proof of the following lemma and its corollary are deferred until Appendix A.2.

Lemma 4.6. Fix v > u. Suppose Ecu(z) = Ecv(z) = Eu(z) for some z. Then Ecu = Ecv on
(−∞, z].
Corollary 4.7. Suppose v > u and S(u) = S(v) ≤ G(u+). Then Ecu = Ecv on (−∞, S(v)].
Further φ(u) = φ(v) and R(u) = R(v).

For 0 < u < v < 1 let ξu,v be given by

(v − u)ξu,v =

∫
(G(u),G(v))

xµ(dx) +G(u){µ(−∞, G(u)]− u}+G(v){v − µ(−∞, G(v))}.

Then ξu,v is the conditional mean of µ between the quantiles at u and v. It is easily
checked that ξu,v does not depend on the choice of quantile function G.

Lemma 4.8. We have

(i) Suppose k ∈ [G(v−), G(v+)] and u < v. Then the line passing through (k, Ev(k))

with slope P ′ν(k−)−v meets the line passing through (k, Eu(k)) with slope P ′ν(k−)−u
at a point with x-coordinate ξu,v, which does not depend on k.

(ii) Take k > G(v+) and suppose u < v. Then the line passing through (k, Ev(k)) with
slope E ′v(k−) meets the line passing through (k, Eu(k)) with slope E ′u(k−) at a point
with x-coordinate ξu,v, which does not depend on k.

(iii) Suppose k ∈ [G(w−), G(w+)], u < w, G(u+) < k, E ′w(k−) ≤ E ′w(k+) and ψ ∈
[E ′w(k−), E ′w(k+)]. Then the line passing through (k, Ew(k)) with slope ψ meets the
line passing through (k, Eu(k)) with slope ψ + (w − u) at a point with x-coordinate
ξu,v, which does not depend on k.

Proof. (i) The line L
Ev,P ′ν(k−)−v
k is given by

L
Ev,P ′ν(k−)−v
k (z) = Ev(k)+(P ′ν(k−)−v)(z−k) = Pν(k)+P ′ν(k−)(z−k)−(Pµv (k)+v(z−k)).

Similarly the line L
Eu,P ′ν(k−)−u
k is given by

L
Eu,P ′ν(k−)−u
k (z) = Eu(k)+(P ′ν(k−)−u)(z−k) = Pν(k)+P ′ν(k−)(z−k)−(Pµu(k)+u(z−k)).

These lines intersect at the point where the lines Pµv (k) + v(z − k) and Pµu(k) + u(z − k)

meet. But for k ≥ G(v−), Pµv (k)+v(z−k) = Pµv (G(v))+v(z−G(v)) and Pµu(k)+u(z−k) =

Pµu(G(u)) + u(z −G(u)).
It is easily checked that the lines Pµv (G(v)) + v(z−G(v)) and Pµu(G(v)) +u(z−G(u))

meet at z = ξu,v.
(ii) If k > G(v+) then from the definition of Pµv it follows that P ′µv (k−) = v and

therefore E ′v(k−) = P ′ν(k−)− v. Since k > G(v+) ≥ G(u), the same argument shows that
E ′u(k−) = P ′ν(k−)− u. Then (ii) follows exactly as in the proof of (i).

(iii) This follows similarly to (i).

Theorem 4.9. The pair R,S : (0, 1) → R, defined by (4.3) and (4.2) is left-monotone
with respect to G on (0, 1) in the sense of Definition 3.6.
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Proof. That R(u) ≤ Q(u) ≤ G(u) ≤ S(u), u ∈ (0, 1), follows by definition.
Fix 0 < u < v < 1.
If R(u) = G(u) then necessarily S(u) = G(u) (see Lemma 4.1). Then S(v) ≥ G(v) ≥

G(u) = S(u). Further, (R(u), S(u)) = ∅ so that R(v) /∈ (R(u), S(u)) by default.
There are two remaining cases, when R(u) < G(u) ≤ G(v) < S(u) and R(u) < G(u) ≤

S(u) ≤ G(v).
Case 1: Suppose R(u) < G(u) ≤ G(v) < S(u). We show that

Ev(k) > LEvR(u),S(u)(k)

for k ∈ (R(u), S(u)). Then it follows from Lemma 2.5 that R(v) ≤ Q(v) = XEv (G(v)) ≤
R(u) < S(u) ≤ ZEv (G(v)) = S(v) as required.

First, for k ∈ (R(u), G(u)] and since Eu ≥ Ev everywhere (with equality to the left of
G(u)),

Ev(k) = Eu(k) ≥ LEuR(u),S(u)(k) > LEvR(u),S(u)(k). (4.10)

with the strict inequality in (4.10) following from the fact that S(u) > G(v) and Ev < Eu
on (G(v),∞).

Second, from (4.9) we have that

E ′v(S(u)−) = E ′u(S(u)−)− (v − u)

≤ Eu(S(u))−D(R(u))

S(u)−R(u)
− (v − u)

=
Γu,v + (v − u)(S(u)−R(u)) + Ev(S(u))−D(R(u))

S(u)−R(u)
− (v − u)

<
Ev(S(u))−D(R(u))

S(u)−R(u)
(4.11)

where we use the fact that Γu,v < 0 for R(u) < G(u). We conclude that E ′v(S(u−)) <
Ev(S(u))−D(R(u))

S(u)−R(u) which is the slope of LEvR(u),S(u). Then from the convexity of Ev on

[G(v), S(u)] we have that Ev(k) > LEvR(u),S(u)(k) for k ∈ [G(v), S(u)).

It remains to show that Ev(k) > LEvR(u),S(u)(k) for k ∈ (G(u), G(v)). This will follow

from the following pair of inequalities which are valid on (G(u), G(v)):

D = Ev ≥ LEvR(u),G(v) > LEvR(u),S(u). (4.12)

The second of these inequalities is valid on (R(u), S(u)) and follows from the fact that Ev
is convex on (G(v), S(u)) and (4.11).

Consider, therefore, the first inequality in (4.12). We consider two subcases, namely
when D(G(v)) ≥ LEuR(u),S(u)(G(v)) and when D(G(v)) < LEuR(u),S(u)(G(v)).

Case 1a: D(G(v)) ≥ LEuR(u),S(u)(G(v)). Either D ≥ LEvR(u),G(v) on (G(u), G(v)) in which

case we are done, or there exists y with G(u) < y ≤ G(v) with D(y) = LEvR(u),G(v)(y) and

D′(y−) ≥ (LEvR(u),G(v))
′ whence

D′(y−) ≥ (LEvR(u),G(v))
′ ≥ (LEuR(u),S(u))

′ ≥ E ′u(S(u)−) ≥ E ′u(y+) ≥ E ′u(y−).

Indeed by minimality of S(u), (LEuR(u),S(u))
′ > E ′u(y+). Then, D′(y−) > E ′u(y−). But, this

would mean that P ′ν(y−)−P ′µ(y−) > P ′ν(y−)−P ′µu(y−) or equivalently u > P ′µ(y−). Since
y > G(u) we have P ′µ(y−) ≥ P ′µ(G(u)+) ≥ u, yielding a contradiction. Hence in Case 1a:

we have D ≥ LEvR(u),G(v) on (G(u), G(v)) as required.
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Case 1b: D(G(v)) < LEuR(u),S(u)(G(v)). Again, either D ≥ LEvR(u),G(v) on (G(u), G(v)) in

which case we are done, or there exists y with G(u) < y ≤ G(v) with D(y) = LEvR(u),G(v)(y)

and D′(y−) ≥ Ev(G(v))−D(R(u))
G(v)−R(u) which is the slope of LEvR(u),G(v). Let w ∈ (u, v] be such

that G(w−) ≤ y ≤ G(w+) and P ′µ(y−) = w. Then E ′w(y−) = P ′ν(y−) − w. Further, since
G(u) < y, we have P ′µu(y−) = u and therefore E ′u(y−) = P ′ν(y−)− u.

Now consider the lines L
D,P ′ν(y−)−w
y ≡ LEw,P

′
ν(y−)−w

y and L
Eu,P ′ν(y−)−u
y , and note that

D = Ew on (−∞, y]. Since D′(y−) ≥ (LEvR(u),G(v))
′, L

D,P ′ν(y−)−w
y lies on or below LEvR(u),G(v)

to the left of y and LEvR(u),G(v) lies on or below LEuR(u),S(u) on (R(u), G(v)). In contrast,

L
Eu,P ′ν(y−)−u
y lies above LEuR(u),S(u) to the left of y by convexity of Eu on [G(u),∞). Hence,

if L
Ew,P ′ν(y−)−w
y and L

Eu,P ′ν(y−)−u
y meet then they must do so outside (R(u), y]. But, by

Lemma 4.8(i) they meet at ξu,w ∈ [G(u), G(w)], and since ξu,w does not depend on the
choice of quantile function G we must have that ξu,w ∈ [G(u), G(w−)]; a contradiction.
Hence D ≥ LEvR(u),G(v) on (G(u), G(v)) as required.

Case 2: Now suppose R(u) < G(u) ≤ S(u) ≤ G(v). Then S(v) ≥ G(v) ≥ S(u) so that
all that remains to be shown is that R(v) /∈ (R(u), S(u)).

Suppose to the contrary that R(u) < R(v) < S(u). Consider the lines LEwR(w),S(w) for

w ∈ {u, v}. Recall that φ(w) is the slope of LEwR(w),S(w). Note that, since Ecw = LEwR(w),S(w) on

[R(w), S(w)], for w ∈ {u, v}, and Ecu ≥ Ecv everywhere, we have that LEuR(u),S(u) ≥ L
Ev
R(v),S(v)

on [R(v), S(u)].
Suppose first that D(R(v)) ≥ LEuR(u),S(u)(R(v)). (This will follow if, for instance, R(v) ≤

G(u+) for then since R(v) > R(u) by hypothesis, D(R(v)) = Eu(R(v)) ≥ LEuR(u),S(u)(R(v)).)

Then D(R(v)) = Ev(R(v)) = LEvR(v),S(v)(R(v)) ≤ LEuR(u),S(u)(R(v)) ≤ D(R(v)). Therefore

LEuR(u),S(u)(R(v)) = LEvR(v),S(v)(R(v)), and since LEuR(u),S(u) ≥ L
Ev
R(v),S(v) to the right of R(v),

we must have that φ(v) ≤ φ(u). If φ(v) < φ(u) then D(R(u)) = LEuR(u),S(u)(R(u)) <

LEvR(v),S(v)(R(u)) ≤ Ecv(R(u)) ≤ Ev(R(u)) = D(R(u)), a contradiction. On the other hand,

if φ(v) = φ(v) then the lines LEuR(u),S(u) and LEvR(v),S(v) are identical. But then R(u) = R(v),
a contradiction.

Now suppose D(R(v)) < LEuR(u),S(u)(R(v)). Since LEuR(u),S(u)(R(v)) ≤ Eu(R(v)) we

must have that G(u+) < R(v), and then by the minimality of S(u) it follows that
LEuR(u),S(u)(R(v)) < Eu(R(v)). Since v > u and R(v) < S(u) there exists w ∈ (u, v]

with G(w−) ≤ R(v) ≤ G(w+) and then we have from the twin facts that Ew(R(v)) =

D(R(v)) and Ecw ≥ Ecv ≥ L
D,φ(v)
R(v) that E ′w(R(v)−) ≤ φ(v) ≤ E ′w(R(v)+). It follows from

Lemma 4.8(iii) with k = R(v) and ψ = φ(v) that the line passing through (R(v), Ew(R(v)))

with slope φ(v) meets the line passing through (R(v), Eu(R(v))) with slope φ(v) + (w − u)

at a point with x-coordinate ξu,w ∈ [G(u), G(w)]. But since ξu,w does not depend on the
choice of quantile function G we have that ξu,w ∈ [G(u), G(w−)], and then by noting that
ξu,w 6= R(v) it follows that ξu,w ∈ [G(u), R(v)). But, from the convexity of Eu on [G(u),∞)

and the fact that by Lemma 4.5 E ′u(R(v)−) ≤ φ(v) + w − u ≤ E ′u(R(v)+), we have that

L
Eu,φ(v)+w−u
R(v) > LEuR(u),S(u) on (−∞, R(v)] and hence LD,φ(v)

R(v) ≡ LEvR(v),S(v) crosses LEuR(u),S(u)

in [G(u), R(v)). Then

Eu(R(u)) = Ev(R(u)) ≥ LEvR(v),S(v)(R(u)) > LEuR(u),S(u)(R(u)) = Eu(R(u)),

a contradiction.
We conclude that R(v) /∈ (R(u), S(u)).

It is possible to draw pairs of curves Eu and Ev which have most of the correct
properties (for example, Ev ≤ Eu with equality to the left of G(u+)) and for which
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R(v) ∈ (R(u), S(u)). See Figure 4. But crucially Ev and Eu in Figure 4 do not satisfy Eu−Ev
is convex. The extra structure described in (4.9) and Lemma 4.8 makes counterexamples
such as the one in the figure infeasible.

By definition G is increasing and by Theorem 4.9 the same property holds for S.
Further, for v > u, R(v) /∈ (R(u), S(u)), and so, except at places where R = G = S, and
except at points where R jumps upwards, we expect R to be decreasing. We now argue
that the set where G < S can be divided into a union of disjoint intervals on which R is
decreasing.

The functions G and S are monotonic, so we can define left and right limits. If
G(u+) < S(u−) then there exists v with v > u such that G(v+) < S(u−) ≤ S(v−).
Conversely, there exists w with w < u such that S(w−) > G(u+) ≥ G(w+). Then
{u : G(u+) < S(u−)} is open, and since each such interval contains a rational we can
write A< := {u : G(u+) < S(u−)} as a countable union of disjoint open sets:

A< := {u ∈ (0, 1) : G(u+) < S(u−)} =
⋃
n≥1

An<. (4.13)

As the next lemma shows, R is decreasing on each of these sets. Moreover, for u, v ∈ An<
with u < v, R(v) < G(u). The proof of Lemma 4.10 is given in Appendix A.2.

Lemma 4.10. For each n ≥ 1, R(·) is decreasing on An<.

S(v)R(v) G(v)

k 7→ Ev(k)

k 7→ D(k)

S(u)R(u)

k 7→ Eu(k)

G(u)

Figure 4: A potential counterexample to the left-monotonicity of R and S. In the
figure, for a pair of arbitrary curves (Eu, Ev), which are convex beyond G(u) and G(v)

respectively, we have R(v) ∈ (R(u), S(u)). But this is not a feasible pair since Eu and Ev
are not generated from a pair of distributions µ ≤cx ν, and, in particular, Eu − Ev is not
convex.

The results of this section (especially Theorem 4.9) give functions R,S which are
left-monotone with respect to G. The remaining task is to show that they define a
martingale transport for µ to ν, see Theorem 3.8. The next two sections give further
characterisations and regularity results on the functions φ, R and S.

Remark 4.11. The monotonicity of S (see Theorem 4.9) implies that S is (Borel) mea-
surable. On other hand, by Lemma 4.10, the restriction of R to A< is also measurable. It
turns out that, in order to prove Theorem 3.8, global measurability of R is not necessary
(see Section 7).
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5 Properties of φ

The goal in this section is to give some further representations and properties of
φ(·). In particular, although φ can jump upwards on (0, 1) it is decreasing and Lipschitz
continuous on A< and has a derivative almost everywhere on A< which we can identify
in terms of a rational function of R, G and S.

Lemma 5.1. We have

φ(u) = sup
k<G(u)

Eu(S(u))−D(k)

S(u)− k
, u ∈ (0, 1), (5.1)

and

φ(v) ≤ inf
k>G(v)

Ev(k)−D(R(v))

k −R(v)
, v ∈ (0, 1), (5.2)

with equality in (5.2) if R(v) < G(v). Moreover, if u, v ∈ An< for some n, with u < v, then
in (5.2) the infimum over k > G(v) can be extended to an infimum over k > G(u) and we
have

φ(v) = inf
k>G(v)

Ev(k)−D(R(v))

k −R(v)
= inf
k>G(u)

Ev(k)−D(R(v))

k −R(v)
. (5.3)

Proof. First consider (5.1).
If R(u) < G(u) then Eu ≥ Ecu ≥ LEuR(u),S(u) everywhere and Ecu = LEuR(u),S(u) on

[R(u), S(u)]. Then, for k < G(u),

Eu(S(u))− Eu(k)

S(u)− k
≤
LEuR(u),S(u)(S(u))− LEuR(u),S(u)(k)

S(u)− k
=
Eu(S(u))− Eu(R(u))

S(u)−R(u)
= φ(u)

(5.4)
so that (5.1) holds.

Now suppose that R(u) = G(u), and hence that Ecu(G(u)) = Eu(G(u)) and G(u) = S(u).
Let φ∗ = E ′u(G(u)−). We show φ(u) = φ∗ = E ′u(G(u)−) and that (5.1) holds. Clearly if

ψ ∈ ∂Ecu(G(u)) then ψ ≥ E
c
u(S(u))−Eu(k)

S(u)−k for k < G(u) and then

ψ ≥ sup
k<G(u)

Eu(G(u))−D(k)

G(u)− k
≥ lim
k↑G(u)

Eu(G(u))− Eu(k)

G(u)− k
= E ′u(G(u)−) = φ∗.

Hence, since φ(u) ∈ ∂Ecu(G(u)) by definition, to show that φ(u) = φ∗ it is sufficient to
show that φ∗ = E ′u(G(u)−) ∈ ∂Ecu(G(u)). We show

Eu(y) ≥ Eu(G(u)) + φ∗(y −G(u)), (5.5)

for y < G(u) and y > G(u) separately.
Suppose (5.5) fails for some r0 < G(u). Then there exists ε > 0 such that

Eu(r0) < Eu(G(u)) + (φ∗ + ε)(r0 −G(u)).

Let r1 be the largest solution (with r < G(u)) of Eu(r) = Eu(G(u))+(φ∗+ε)(r−G(u)). Then
from consideration of the slope of Eu nearG(u), r1 < G(u); further, from the property of r1

as the largest solution we have Eu > LEur1,G(u) on (r1, G(u)). Then Q(u) = Y Eu(G(u)) ≤ r1

by Lemma 2.5 and a fortiori R(u) < G(u). But, this contradicts our assumption that
R(u) = G(u).

Now we show (5.5) for y > G(u) in the case R(u) = G(u) = S(u). For y > G(u), since
Eu = Ecu on [G(u),∞),

Eu(y) = Ecu(y) ≥ Eu(G(u)) + (Ecu)′(G(u)+)(y −G(u))

≥ Eu(G(u)) + (Ecu)′(G(u)−)(y −G(u))

≥ Eu(G(u)) + φ∗(y −G(u))
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and we are done.
Hence φ(u) = φ∗. It remains to show (5.1). But

E ′u(G(u)−) = lim
k↑G(u)

Eu(G(u))− Eu(k)

G(u)− k
≤ sup
k<G(u)

Eu(S(u))− Eu(k)

S(u)− k
≤ φ(u) = φ∗

and (5.1) holds.
Now consider (5.2). If R(v) < G(v) then interchanging the roles of R and S, by

analogy with (5.4) we obtain for k ≥ G(v)

Ev(k)− Ev(R(v))

k −R(v)
≥ φ(v)

and (5.2) follows. By considering k = S(v) we see there is equality. If R(v) = G(v) = S(v),
then Ev(G(v)) = Ec(G(v)) and then if ψ ∈ ∂Ev(G(v)) we have that, for all k ∈ R,

Ev(k) ≥ Ev(G(v)) + ψ(k −G(v)) = Ev(R(v)) + ψ(k −R(v)).

Hence, for k > G(v) = R(v), we have that φ(v) ≤ ψ ≤ Ev(k)−Ev(R(v))
(k−R(v)) and (5.2) follows.

For the final part, fix u < v with u, v ∈ An<. Then R(v) ≤ Q(v) < G(v) < S(v) and

we have equality in (5.2) so that φ(v) = infk>G(v)
Ev(k)−Ev(R(v))

k−R(v) . Moreover, Ev ≥ Ecv on

[R(v), S(v)] and R(v) ≤ R(u) < G(u) so that Ev ≥ Ecv on [G(u), G(v)] and

inf
k∈[G(u),G(v)]

Ev(k)− Ev(R(v))

k −R(v)
≥ Ev(S(v))− Ev(R(v))

S(v)−R(v)
= φ(v).

Then the second equality in (5.3) follows.

Lemma 5.2. (i) limu↑1 φ(u) = 0.
(ii) For u, v ∈ (0, 1) with u < v we have φ(v) ≥ φ(u)− (v − u).

(iii) On each An<, n ≥ 1, for u, v ∈ An< with u < v, we have φ(v) ≤ φ(u) so that φ is
non-increasing.

In light of (i) above we may extend the domain of φ to (0, 1] by setting φ(1) = 0, and
(ii) still holds, even with v = 1.

Corollary 5.3. On each An< we have that φ is Lipschitz continuous. Moreover, φ is
absolutely continuous on An< and there exists a function φ′ : An< → R such that for
u, v ∈ An<,

φ(v)− φ(u) =

∫ v

u

φ′(w)dw.

Proof of Lemma 5.2. (i) First consider the limit on φ. We have 0 ≤ φ(u) ≤ E ′u(S(u)+) =

P ′ν(S(u)+)− u ≤ 1− u, and the result follows.

(ii) Suppose G(u) = S(v) and then G(u) = G(v) = S(u) = S(v). Then L
Ev,φ(v)
G(v) lies

below Ev, which in turn lies below Eu (with equality at G(u) = G(v)) and so φ(v) ∈
∂Eu(G(u)). Then φ(v) ≥ φ(u) ≥ φ(u)− (v − u).

Suppose G(u) < S(v) and R(u) < G(v). Then from Lemma 5.1,

φ(v) = sup
k<G(v)

Ev(S(v))−D(k)

S(v)− k

≥ Ev(S(v))−D(R(u))

S(v)−R(u)

=
Eu(S(v))−D(R(u))

S(v)−R(u)
− Eu(S(v))− Ev(S(v))

S(v)−R(u)

≥ inf
k>G(u)

Eu(k)−D(R(u))

k −R(u)
− (v − u)− Γu,v

S(v)−R(u)

≥ φ(u)− (v − u),
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where we use R(u) < G(v) for the first inequality, (4.6) and G(u) < S(v) for the second
and (5.2) and Γu,v ≤ 0 for the third.

Finally, suppose G(u) < S(v) and R(u) = G(v). Then, R(u) = Q(u) = G(u) = G(v) =

S(u) < S(v). Since L
Eu,φ(u)
G(u) lies below Eu everywhere, while L

Ev,φ(v)
S(v) lies below Ev

everywhere, using (4.9) together with the fact that S(v) > G(v) = G(u) we have that
φ(v) ≥ E ′v(S(v)−) = E ′u(S(v)−)− (v − u) ≥ φ(u)− (v − u).

(iii) Fix n ≥ 1 and let u, v ∈ An< with u < v. Then R(v) < G(u) < S(u) and we have

φ(u) = sup
k<G(u)

Eu(S(u))−D(k)

S(u)− k

≥ Eu(S(u))−D(R(v))

S(u)−R(v)

≥ inf
k>G(u)

Ev(k)−D(R(v))

k −R(v)
= φ(v),

where we used that Eu ≥ Ev everywhere for the second inequality and (5.3) for the last
equality.

Fix n ≥ 1 and let u ∈ An<. Then

D(R(u))−R(u)φ(u) = Eu(S(u))− φ(u)S(u)

= {Pν(S(u))− S(u)(φ(u) + u)} − {Pµ(G(u))−G(u)u}. (5.6)

Recall that φ(u) is an element of both ∂Eu(R(u)) and ∂Eu(S(u)). Moreover, u ∈ ∂Pµu(G(u)),
but since Pµu(·) is linear on [G(u),+∞), we also have that u ∈ ∂Pµu(S(u)). Since the
subdifferential of the sum of two functions is equal to the sum of individual subdiffer-
entials (at least provided both subdifferentials are non-empty, as in our case) and since
Pν(S(u)) = Eu(S(u)) + Pµu(S(u)), we have that (φ(u) + u) ∈ ∂Pν(S(u)).

Lemma 5.4. For each n ≥ 1 and u, v ∈ An< with u < v, we have that

1. D(R(u))−R(u)φ(u)− {D(R(v))−R(v)φ(v)} =
∫ v
u
φ′(w)R(w)dw,

2. Pµ(G(u))−G(u)u− {Pµ(G(v))−G(v)v} =
∫ v
u
G(w)dw,

3. Pν(S(u))− (φ(u) + u)S(u)− {Pν(S(v))− (φ(v) + v)S(v)} =
∫ v
u

(φ′(w) + 1)S(w)dw.

Proof. Let A< be as in (4.13) and for each n ≥ 1 write An< := (un−, u
n
+). Recall that R is

decreasing on each An<. Furthermore, since R ≤ G everywhere, R(u) ≤ G(un−+) for all
u ∈ An<.

Define, for each n ≥ 1, conjugate functions CnD, C
n
Pν
, CnPµ : (−1, 1)→ R by

CnD(θ) = inf
−∞<x≤G(un−+)

{D(x)− θx},

CnPν (θ) = inf
x∈R
{Pν(x)− θx},

CnPµ(θ) = inf
x∈R
{Pµ(x)− θx}.

Note that all three conjugates are concave and thus differentiable almost everywhere.
We prove the first statement, the other two being similar. Fix u, v ∈ An< with u < v.

Since φ(u) ∈ ∂Eu(R(u)) and φ(v) ∈ ∂Ev(R(v)), and Eu(R(u)) = D(R(u)) and Ev(R(v)) =

D(R(v)),

D(R(u))−R(u)φ(u)− {D(R(v))−R(v)φ(v)} = CnD(φ(u))− CnD(φ(v))

= −
∫ φ(v)

φ(u)

(CnD)′(χ)dχ

= −
∫ v

u

φ′(w)(CnD)′(φ(w))dw,
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where we used that, by Corollary 5.3, φ(·) is differentiable almost everywhere on An<.
Moreover, (CnD)′(φ(w)) = −(D′)−1(φ(w)) = −R(w) Lebesgue almost everywhere, and

hence

D(R(u))−R(u)φ(u)− {D(R(v))−R(v)φ(v)} =

∫ v

u

φ′(w)R(w)dw,

as required.

Using (5.6) and Lemma 5.4 we have that for u < v with u, v ∈ An<,∫ v

u

φ′(w)R(w)dw =

∫ v

u

(φ′(w) + 1)S(w)dw −
∫ v

u

G(w)dw.

Since n ≥ 1 and u, v ∈ An< were arbitrary, φ′(w)R(w) = (φ′(w) + 1)S(w)−G(w) Lebesgue
almost everywhere on each An<. Hence,

φ′(w) = −S(w)−G(w)

S(w)−R(w)
almost everywhere on A<.

6 Left continuity

In Sections 4 and 5 we allowed G to be any quantile function. To help simplify the
analysis going forward, from now on we assume that G is the left-continuous quantile
function associated with µ.

Proposition 6.1. Suppose G is left-continuous.

(i) S is left-continuous.

(ii) φ is left-continuous: φ(v−) := limu↑v φ(u) = φ(v). Moreover, for each v ∈ (0, 1) the
right limit φ(v+) exists and φ(v+) := limw↓v φ(w) = limw↓v(Ecv)′(S(w)−).

(iii) R satisfies R(v) ≤ lim infu↑v R(u).

Before proving Proposition 6.1 we record a couple of lemmas whose proofs are given
in Appendix A.3.

Lemma 6.2. For each v ∈ (0, 1),

lim
u↑v
Eu(k) = lim

u↓v
Eu(k) = Ev(k) and lim

u↑v
Ecu(k) = lim

u↓v
Ecu(k) = Ecv(k) for all k ∈ R. (6.1)

Lemma 6.3. Suppose that f : (0, 1)→ R is non-decreasing. Then

lim
u↑v
Ecu(f(u)) = Ecv(f(v−)).

If in addition, for each u ∈ (0, 1), Eu is non-decreasing on (f(u),∞), then

lim
u↑v
Eu(f(u)) = Ev(f(v−)).

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1(i). By definition, G ≤ S, while by Theorem 4.9, S is non-
decreasing. Furthermore, Eu is non-decreasing on (S(u),∞), and therefore Lemma 6.3
applies with f = S.

Fix u, v ∈ (0, 1) with u < v. Then G(u) ≤ S(u) ≤ S(v) and therefore

G(v) ≤ S(v−) ≤ S(v).
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We will now show that S(v) ≤ S(v−). Since Ecu(S(u)) = Eu(S(u)), letting u ↑ v on both
sides and using Lemma 6.3, we have that

Ecv(S(v−)) = lim
u↑v
Ecu(S(u)) = lim

u↑v
Eu(S(u)) = Ev(S(v−)),

which implies that
S(v−) ∈ {k : k ≥ G(v), Ecv(k) = Ev(k)}.

It follows that
S(v−) ≥ inf{k : k ≥ G(v), Ecv(k) = Ev(k)} = S(v).

We now turn to the continuity properties of φ. The proof of Proposition 6.1(ii) is based
on the following lemma.

Lemma 6.4. For u, v ∈ (0, 1) with u < v, and all k ∈ R,
(i) (Ecu)′(k−)− (v − u) ≤ (Ecv)′(k−) ≤ (Ecu)′(k−),
(ii) (Ecu)′(k+)− (v − u) ≤ (Ecv)′(k+) ≤ (Ecu)′(k+).

Proof. (i) First we show that for u, v ∈ (0, 1) with u < v, (Ecv)′(k−) ≤ (Ecu)′(k−), for all
k ∈ R.

Fix k ∈ R and suppose θ ∈ ∂Ecu(k). We show that (Ecv)′(k−) ≤ θ and then since
θ ∈ ∂Ecu(k) is arbitrary,

(Ecv)′(k−) ≤ inf{θ : θ ∈ ∂Ecu(k)} = (Ecu)′(k−)

as required.
Note that θ ∈ (0, 1−u). If θ ∈ [1− v, 1−u) then we have (Ecv)′(k−) ≤ 1− v ≤ θ. Hence

in what follows we may assume k and θ are such that θ ∈ ∂Ecu(k) and θ < 1− v.
Consider the case k > R(u). Given θ ∈ ∂Ecu(k) there exists j ≥ k such that Eu(j) =

Ecu(j) and θ ∈ ∂Ecu(j). (If R(u) < k ≤ S(u) then j = S(u) is one choice and since j > R(u)

we may assume j ≥ S(u)). Thus

Eu(`) ≥ Eu(j) + θ(`− j), for all ` ∈ R. (6.2)

By the remarks in the previous paragraph we may assume θ ∈ (0, 1− v). Then we can
find m such that both Ecv(m) = Ev(m) and θ ∈ ∂Ecv(m), and then

Ev(`) ≥ Ev(m) + θ(`−m), for all ` ∈ R. (6.3)

Then Eu(m) ≥ Eu(j) + θ(m− j) and Ev(j) ≥ Ev(m) + θ(j −m) and adding

Ev(j)− Eu(j) ≥ Ev(m)− Eu(m).

But Ev(·)−Eu(·) is decreasing, and strictly decreasing on (G(u+),∞). Therefore, provided
j > G(u+), m ≥ j. Then (Ecv)′(k−) ≤ (Ecv)′(j−) ≤ (Ecv)′(m−) ≤ θ as required.

If S(u) ≤ j ≤ G(u+) we can find m as above with Ecv(m) = Ev(m) and θ ∈ ∂Ecv(m).
If m ≥ j then the above argument still works and (Ecv)′(k−) ≤ (Ecu)′(k−). So, suppose
m < j. We begin by arguing that in this case we must have Ev(j) = Ev(m) + θ(j −m). If
not then by (6.3) Ev(j) > Ev(m) + θ(j −m). But m < j ≤ G(u+) and on (−∞, G(u+)] we
have Eu = Ev. Hence Eu(j) > Eu(m) + θ(j −m), or equivalently Eu(m) < Eu(j) + θ(m− j)
contradicting (6.2). It follows that we must have Ev(j) = Ev(m) + θ(j −m) and hence

Ev(`) ≥ Ev(m) + θ(`−m) = Ev(j) + θ(`− j), for all ` ∈ R

and Ecv(j) = Ev(j) and θ ∈ ∂Ecv(j). In particular we could take m = j, and for this choice
of m we have (Ecv)′(k−) ≤ (Ecv)′(j−) ≤ θ and since θ ∈ ∂Ecu(k) is arbitrary, (Ecv)′(j−) ≤
(Ecu)′(k−).
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Now suppose k ≤ R(u)∧R(v). Since Ecu = Ecv on (−∞, R(u)∧R(v)] we have (Ecv)′(k−) =

(Ecu)′(k−).
Finally, suppose R(v) < k ≤ R(u) ≤ S(v). If ψ = (Ecv)′(k−) then ψ ∈ ∂Ecv(R(v))

and since Ecv(R(v)) = Ecu(R(v)) it follows that ψ ∈ ∂Ecu(R(v)). Then, since k > R(v), if
θ ∈ ∂Ecu(k) we must have θ ≥ ψ. Then (Ecu)′(k−) ≥ (Ecv)′(k−).

The proof that (Ecu)′(k−)− (v − u) ≤ (Ecv)′(k−) is similar, but based on the fact that
Eu(k)− Ev(k)− k(v − u) is decreasing in k.

(ii) Given that (Ecw)′(k+) = limj↓k(Ecw)′(j−) the result follows from (i) by taking limits
from above.

Proof of Proposition 6.1(ii). Fix v ∈ (0, 1). Consider the left limit φ(v−) = limu↑v φ(u).
We have, using Lemma 6.4 and the last representation of Lemma 4.3,

φ(v) = (Ecv)′(S(v)−) = lim
u↑v

(Ecv)′(S(u)−)

≤ lim
u↑v

(Ecu)′(S(u)−) = lim
u↑v

φ(u) = φ(v−)

≤ lim
u↑v

(Ecu)′(S(v)−)

≤ lim
u↑v

[(Ecv)′(S(v)−) + (v − u)]

= (Ecv)′(S(v)−) = φ(v).

The proof of the result for the right limit is similar. We have

lim
v↓u

(Ecu)′(S(v)−) ≤ [lim
v↓u

(Ecv)′(S(v)−) + (v − u)]

= lim
v↓u

(Ecv)′(S(v)−) = lim
v↓u

φ(v) = φ(u+)

≤ lim
v↓u

(Ecu)′(S(v)−).

Proof of Proposition 6.1(iii). We are left to prove the lower semi-continuity (from the
left) of R. Fix v ∈ (0, 1). Since R ≤ G everywhere, lim infu↑v R(u) ≤ G(v). Moreover,
for u ∈ (0, 1) with u < v, by the left-monotonicity we have that R(v) /∈ (R(u), S(u)), and
therefore

R(v) /∈ ( inf
u<v

R(u), sup
u<v

S(u) = S(v)).

Then, if R(v) < G(v) ≤ S(v), R(v) ≤ infu<v R(u) ≤ lim infu↑v R(u), and we are done. So,

suppose that R(v) = G(v) = S(v). Let L = L
Ev,φ(v)
G(v) . Then D > L to the left of G(v) and

{k : k < G(v), D(k) = L(k)} = ∅. Furthermore, if G(w) = G(v) for some w ∈ (0, v), then,
for all u ∈ (w, v), G(w) = G(u) = S(u) = G(v) = S(v), and Ecu = Eu = Ev = Ecv at G(v).
Then, by Lemma 4.6, Ecu = Ecv on (−∞, G(v)]. Then R(u) = G(u) = S(u) = G(v) = R(v)

and it follows that lim infu↑v R(u) = R(v).
Hence suppose that R(v) = G(v) = S(v) and G(u) < G(v) for all u ∈ (0, v). There are

two cases to consider.
First, suppose that D = Ev > Ecv on an interval to left of G(v), and such that this

interval cannot be made larger without violating Ev > Ecv . Then Ecv is linear on this interval,
and this interval must be finite since Ev ≥ Ecv ≥ 0 and Ecv can only change slope at points

where Ev = Ecv . But, if the interval is finite, {k : k ≤ G(u), D(k) = L
Eu,φ(u)
G(u) (k)} 6= ∅, a

contradiction.
Second, suppose that, for each u ∈ (0, v) there exists ku ∈ (G(u), G(v)) such that

D(ku) = Ecv(ku). We first argue that, for all u ∈ (0, v), Ecv is not linear on (G(u), G(v)).
Suppose there exists u0 ∈ (0, v) such that Ecv is linear on (G(u0), G(v)). Let (k0, G(v)] ⊇
(G(u0), G(v)] be the largest interval of the form (k,G(v)] on which Ecv is linear. As
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in the first case we must have that k0 is finite, but then R(v) = k0 < G(v), a con-
tradiction. Hence Ecv is not linear to the left of G(v). Now, let k̄u := sup{k ≥ ku :

Ecv(k) = L
Ecv ,(E

c
v)′(ku−)

ku
(k)}. Then D ≥ Ecv > L

Ecv ,(E
c
v)′(ku−)

ku
on (k̄u, G(v)) and k̄u ∈ (G(u), ȳu),

where ȳu ∈ (G(u), G(v)) is the point where L
Ecv ,(E

c
v)′(ku−)

ku
crosses L. (Note that neither

k̄u = ȳu < G(v) nor k̄u < ȳu = G(v) can happen, since then either Ecv = L on (ȳu, G(v)) or

Ecv = L
Ecv ,(E

c
v)′(ku−)

ku
on (ku, G(v)), respectively. But this contradicts the fact that Ecv is not

linear to the left of G(v).) Then, G(u) < k̄u ≤ R(w) ≤ R(v) = G(v) for all w ∈ (Fµ(k̄u), v),
and therefore G(u) ≤ lim infz↑v R(z) ≤ R(v) = G(v). Using the left-continuity of G we
conclude that lim infu↑v R(u) = R(v).

In the next section we will need further two results.

Corollary 6.5. If S(w) > S(v+) for all w > v then φ(v+) = (Ecv)′(S(v+)+). Otherwise,
if S(w) = S(v+) for some w > v then φ(v+) = (Ecv)′(S(v+)−). In either case φ(v+) ≥
(Ecv)′(S(v+)−).

Proof. If S(w) > S(v+) for all w > v then limw↓v(Ecv)′(S(w)−) = (Ecv)′(S(v+)+) where
we use the fact that, for a convex function f , limy↓x f

′(y−) = f ′(x+). Otherwise, if
S(w) = S(v+) for some w > v then limw↓v(Ecv)′(S(w)−) = (Ecv)′(S(v+)−).

Let S−1 be the right-continuous inverse to the increasing function S. By our con-
ventions, for y ∈ R, S(S−1(y)) ≤ y with equality whenever S is continuous at S−1(y).
Moreover, if w > S−1(y) then S(w) > y.

Corollary 6.6. For y ∈ R, φ(S−1(y)) ≤ (EcS−1(y))
′(y−) ≤ (EcS−1(y))

′(y+) ≤ φ(S−1(y)+).

Proof. Since S(S−1(y)) ≤ y ≤ S(S−1(y)+),

φ(S−1(y)) = (EcS−1(y))
′(S(S−1(y))−) ≤ (EcS−1(y))

′(y−) ≤ (EcS−1(y))
′(y+),

where we use Lemma 4.3 for the equality.
Moreover, if y = S(S−1(y+)) then (EcS−1(y))

′(y+) = (EcS−1(y))
′(S(S−1(y)+)+) and

S(w) > y = S(S−1(y)+) for all w > S−1(y), so that by Corollary 6.5, φ(S−1(y)+) =

(EcS−1(y))
′(S(S−1(y)+)+) and (EcS−1(y))

′(y+) = φ(S−1(y)+). Otherwise, if y < S(S−1(y)+)

then, by Corollary 6.5, (EcS−1(y))
′(y+) ≤ (EcS−1(y))

′(S(S−1(y)+)−) ≤ φ(S−1(y)+).

7 The candidate coupling is an embedding

We are now almost ready to prove Theorem 3.8. Let U, V ∼ U(0, 1) be two independent
uniform random variables. Then X = G(U) ∼ µ. On the other hand, Y (U, V ), if defined as
in (3.5), may not be a random variable since R may not be measurable (see Remark 4.11).
In order to deal with this, we introduce T : (0, 1)→ R given by

T (u) =

{
G(u), if S(u) = G(u)

R(u), if S(u) > G(u)
u ∈ (0, 1). (7.1)

The proof of the following lemma is postponed until Appendix A.4.

Lemma 7.1. Let T, S : (0, 1) → R be defined by (7.1) and (4.2). Then T is (Borel)
measurable and the pair (T, S) is left-monotone with respect to G on (0, 1) in the sense
of Definition 3.6.

Define Y : (0, 1)2 → R by Y (u, v) = G(u) on {(u, v) ∈ (0, 1)2 : T (u) = S(u)} and

Y (u, v) = T (u)I{v≤S(u)−G(u)
S(u)−T (u)} + S(u)I{v>S(u)−G(u)

S(u)−T (u)} (7.2)
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otherwise. Then Y (U, V ) is a random variable and the martingale property (see the
statement of Theorem 3.8) is a direct consequence of the definition of Y , see (7.2). We
are left to show that Y (U, V ) has law ν.

Note that with our choice of left-continuous quantile function the definition of A<
becomes A< = {u ∈ (0, 1) : G(u+) < S(u)} = ∪n≥1A

n
<. Also recall that S−1 denotes the

right-continuous inverse to the increasing function S.
Let χ = L(Y (U, V )). We want to show that χ = ν. We begin by describing the

strategy of our proof. Fix y ∈ R. Then, since P(Y (u, V ) ≤ y) = S(u)−G(u)
S(u)−T (u) whenever

T (u) ≤ y < S(u),

χ((−∞, y]) = P[Y (U, V ) ≤ y] = P[U ≤ S−1(y)] + P[Y (U, V ) ≤ y, U > S−1(y)]

= S−1(y) +

∫ 1

S−1(y)

S(u)−G(u)

S(u)− T (u)
I{T (u)≤y<S(u)}du

= S−1(y) +

∫ 1

S−1(y)

S(u)−G(u)

S(u)− T (u)
I{T (u)≤y}du, (7.3)

where for the last equality we used that, since S−1 is right-continuous, S(u) > y for all
u > S−1(y).

We are free to include a multiplicative term I{S(u)>G(u)} in the integrand since off

this set S(u)−G(u)
S(u)−T (u) = 0. (Recall that T = R on {S(u) > G(u)}.) But {S(u) > G(u)} and

A< differ only by a countable (and thus null) set and on A< we have S(u)−G(u)
S(u)−R(u) = −φ′(u).

Hence, we are interested in integrals of the form −
∫ 1

a
φ′(u)I{R(u)≤y}du. If I = (u−, u+)

is an interval over which R(·) > y (and I cannot be made any larger without violating
R(·) > y) then we expect that φ(u−) = φ(u+). Adding in such intervals would allow us
to replace −

∫ 1

a
φ′(u)I{R(u)≤y}du with −

∫ 1

a
φ′(u)du = φ(a) − φ(1) = φ(a) since φ(1) = 0.

Then
P[Y (U, V ) ≤ y] = S−1(y) + φ(S−1(y)). (7.4)

Further, for each v ∈ (0, 1), since φ(v) ∈ ∂Ev(S(v)) and v ∈ ∂Pµv (S(v)) we have (v +

φ(v)) ∈ ∂Pν(S(v)), and then, if S(v) is a continuity point of ν, v + φ(v) = P ′ν(S(v)) =

ν((−∞, S(v)]). Hence, provided y is a continuity point of ν and S(S−1(y)) = y, we have

χ((−∞, y])=P[Y (U, V ) ≤ y] = S−1(y)+φ(S−1(y)) = P ′ν(S(S−1(y))) = P ′ν(y) = ν((−∞, y])

as desired.
There are at least three issues we must overcome to complete this analysis. First,

the derivative φ′ need not exist everywhere. Second, there may be a countably infinite
number of intervals Am< = (um− , u

m
+ ) which we must add, on each of which R(·) > y. Third,

we need a refined argument to cover the case where S(S−1(y)) < y.
To deal with the issues about φ we introduce a family of modified functions ψv,x,

each member of which is monotonically decreasing and Lipschitz, and therefore has
a derivative almost everywhere. The introduction of the monotonic function ψ also
allows us to easily add the missing intervals since ψ is constant on those intervals by
construction; moreover the intervals where ψ is decreasing are precisely the intervals
where R(·) ≤ y. The case where S(S−1(y)) < y requires a careful definition of the initial
value of ψ and an additional argument.

Note that it is sufficient to prove χ((−∞, y]) = ν((−∞, y]) at continuity points of ν
only. Indeed it is sufficient to prove χ((−∞, y]) = ν((−∞, y]) on a dense set of values of
y, so we may also restrict attention to y which are continuity points of µ also.

Lemma 7.2. Suppose y is a continuity point of ν. Then φ(S−1(y)) ≤ P ′ν(y) − S−1(y) ≤
φ(S−1(y)+).
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Proof. We have EcS−1(y) = ES−1(y) on [S(S−1(y)),∞) and y ≥ S(S−1(y)) so that EcS−1(y)(y)=

ES−1(y)(y) and (EcS−1(y))
′(y+) = E ′S−1(y)(y+). Also, since y is a continuity point of ν,

E ′S−1(y)(y+) = P ′ν(y+) − S−1(y) = P ′ν(y) − S−1(y). Then the result follows by Corol-
lary 6.6.

Definition 7.3. For v ∈ (0, 1) and x ∈ [0, 1), define ψv,x : [v, 1] → [0, 1] by ψv,x(w) =

x ∧ infv<u≤w{φ(u)}.
Here we use the fact that we have extended the domain of φ to (0, 1] whence also

ψv,x(1) = 0. Note that the only relevant cases are when x ∈ [φ(v), φ(v+)]. See Figure 5.

0

1

0 1v

φ(v)

φ(v+)

x

w 7→ φ(w)

w 7→ ψv,x(w)

Figure 5: Construction of ψ (solid curve) from φ (dotted curve). φ can have jumps,
but only upwards, and for x ∈ [φ(v), φ(v+)], w 7→ ψv,x(w) = x ∧ infv<u≤w{φ(u)} is
monotonically decreasing and Lipschitz with Lipschitz constant 1.

The proof of the following lemma is quite straightforward but is deferred to Ap-
pendix A.4.

Lemma 7.4. For v ∈ (0, 1) and x ∈ [φ(v), φ(v+)], ψv,x is decreasing and absolutely
continuous.

It follows from a combination of Lemma 7.2 and Lemma 7.4 that ψS−1(y),P ′ν(y)−S−1(y)

is decreasing and absolutely continuous on (S−1(y), 1), and hence ψ′S−1(y),P ′ν(y)−S−1(y) is

defined almost everywhere on (S−1(y), 1).
The next lemma says that the places {u : u ∈ (S−1(y), 1)} where ψS−1(y),P ′ν(y)−S−1(y)

decreases are essentially the places where ψS−1(y),P ′ν(y)−S−1(y)(u) = φ(u) and S(u) >

G(u+).

Lemma 7.5. For u ∈ (0, 1) and x ∈ [φ(u), φ(u+)] the following set inclusion holds:

{w : w > u,ψ′u,x(w) < 0}
⊆ ({w : w > u, S(w) > G(w+)} ∩ {w : w > u,ψu,x(w) = φ(w)}) ∪Nu (7.5)

where Nu is a set of measure zero.

Proof. Let

Nu = {w ∈ [u, 1) such that S(w+) > S(w) or G(w+) > G(w) or ψ′u,x(w) does not exist}.
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To prove the lemma we need to show that if w ∈ N c
u and S(w) = G(w) then ψ′u,x(w) = 0

and also that if w ∈ N c
u and φ(w) > ψu,x(w) then ψ′u,x(w) = 0. The second of these is

immediate: if φ(w)− ψu,x(w) > ε > 0, then for 0 < δ ≤ ε we have φ(w + δ) ≥ φ(w)− δ >
ψu,x(w), and hence ψu,x(w + ε) = ψu,x(w). Hence ψ′u,x(w+) = 0 and if ψ′u,x(w) is defined
— as it must be since w ∈ N c

u — it must take the value 0.

Hence, to complete the proof of the lemma it is sufficient to show that if w is such that
S and G are continuous at w and ψ′u,x(w) exists, then S(w) = G(w) implies ψ′u,x(w) = 0.

We split into two cases: R(w) < G(w) = S(w) and R(w) = G(w) = S(w).

Case 1: R(w) < G(w) = S(w). Using (5.1) and (5.2) for the inequalities we have that

φ(w + h) ≥ Ew+h(S(w + h))−D(R(w))

S(w + h)−R(w)

=
Ew(S(w + h))−D(R(w))

S(w + h)−R(w)
+
Ew+h(S(w + h))− Ew(S(w + h))

S(w + h)−R(w)

≥ φ(w) +
Ew+h(S(w + h))− Ew(S(w + h))

S(w + h)−R(w)
.

It is sufficient to show that lim infh↓0
φ(w+h)−φ(w)

h ≥ 0. This will follow if

lim
h↓0

1

h
(Ew(S(w + h))− Ew+h(S(w + h))) ≤ 0.

But, by (4.5), Ew(S(w + h)) − Ew+h(S(w + h)) = h(S(w + h) − G(w)) + Pµ(G(w + h)) −
Pµ(G(w))− (w + h)(G(w + h)−G(w)). Moreover, Pµ(G(w + h))− Pµ(G(w)) = w̃(G(w +

h)−G(w)) for some w̃ ∈ [w,w + h] and then |Pµ(G(w + h))− Pµ(G(w))− (w + h)(G(w +

h)−G(w))| ≤ h(G(w + h)−G(w)). We conclude | 1h (Ew(S(w + h))− Ew+h(S(w + h))) | ≤
S(w + h)−G(w) +G(w + h)−G(w)→ 0, by the continuity of S and G at w and the fact
that S(w) = G(w).

Case 2: R(w) = G(w) = S(w). Then φ(w) = D′(G(w)−) and LEw,φ(w)
G(w) ≤ Ecw ≤ Ew. Note

that D = Ew to the left of G(w).

Pick θ ∈ (0, φ(w)). Define zθ = sup{z : θ ∈ ∂Ecw(z)}. Then zθ < G(w). Note that
θ ∈ ∂Ecw(zθ) and D(zθ) = Ecw(zθ). If G(u+) = G(w) then φ(v) = φ(w) for all v ∈ (u,w], and
thus ψu,x = x on [u,w]. It follows that ψ′u,x(w) = ψ′u,x(w−) = 0. Otherwise G(u+) < G(w),
and by choosing θ large enough we may assume zθ > G(u+).

Let uθ = Fµ(zθ). Then u < uθ < w, and either G(uθ) = zθ or G(uθ) < zθ < G(uθ+).
We claim that φ(uθ) ≤ θ. If G(uθ) = zθ then by Lemma 4.6 we have that Ecuθ = Ecw on
(−∞, G(uθ) = zθ], and therefore φ(uθ) = inf{z : z ∈ ∂Ecw(zθ)} ≤ θ. Suppose G(uθ) < zθ <

G(uθ+). If Euθ (G(uθ)) = D(G(uθ)) = Ecw(G(uθ)) then using the same argument (i.e., by
Lemma 4.6) we have that φ(uθ) = inf{z : z ∈ ∂Ecw(G(uθ))}. But, by the monotonicity
of the subdifferential of Ew, inf{z : z ∈ ∂Ecw(G(uθ))} ≤ inf{z : z ∈ ∂Ecw(zθ)} ≤ θ. Hence
φ(uθ) ≤ θ. Finally, if Euθ (G(uθ)) = D(G(uθ)) > Ecw(G(uθ)), then since Euθ is convex
and coincides with D on [G(uθ), G(uθ+)], it follows that S(uθ) ≤ zθ and Euθ (S(uθ)) =

D(S(uθ)) = Ecw(S(uθ)). Then Ecuθ = Ecw on (−∞, S(uθ)] and, by Lemma 4.3, we again have
that φ(uθ) = (Ecu)′(S(uθ)−) = (Ecw)′(S(uθ)−) ≤ (Ecw)′(zθ−) ≤ θ.

Therefore in all cases ψu,x(w) ≤ φ(uθ) ≤ θ < φ(w). By Lemma 5.2(ii) we than have
that φ(v) > ψu,x(w) for v ∈ (w,w+φ(w)−ψu,x(w)) and thus ψ is constant on this interval.

It follows that if ψ′u,x(w) exists, then ψ′u,x(w) = 0.

The final result we need identifies the set where R(v) ≤ y with the set where ψ = φ.
The proof of this result has to cover several cases and consequently is quite long and
technical. For this reason the proof is postponed to Appendix A.5.
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Proposition 7.6. Suppose y is a continuity point of µ and ν. Then

{v : v > S−1(y), R(v) ≤ y} = {v : v > S−1(y), ψS−1(y),Pν(y)−S−1(y)(v) = φ(v)}. (7.6)

We are now ready to prove the main results.

Proposition 7.7. Suppose y is a continuity point of both µ and ν. Then∫ 1

S−1(y)

S(v)−G(v)

S(v)− T (v)
I{T (v)≤y}dv = P ′ν(y)− S−1(y). (7.7)

Proof. From Proposition 7.6 we know that under the hypotheses of the proposition

{u : u > S−1(y), R(u) ≤ y} = {u : u > S−1(y), ψ<y>(u) = φ(u)}. (7.8)

where ψ<y> is shorthand for ψS−1(y),P ′ν(y)−S−1(y).
Then, using the fact that A< ⊆ {v : G(v) < S(v)} but the difference is a set of measure

zero,∫ 1

S−1(y)

S(v)−G(v)

S(v)− T (v)
I{T (v)≤y}dv =

∫ 1

S−1(y)

S(v)−G(v)

S(v)−R(v)
I{R(v)≤y}I{G(v)<S(v)}dv

=

∫ 1

S−1(y)

S(v)−G(v)

S(v)−R(v)
I{R(v)≤y}IA<dv

= −
∫ 1

S−1(y)

φ′(v)I{R(v)≤y}IA<dv

= −
∫ 1

S−1(y)

φ′(v)I{ψ<y>(v)=φ(v)}IA<dv

= −
∫ 1

S−1(y)

ψ′<y>(v)I{ψ<y>(v)=φ(v)}IA<dv

= −
∫ 1

S−1(y)

ψ′<y>(v)
[
I{ψ<y>(v)=φ(v)}IA< + IN

]
dv,

where N is some set of measure zero.
For any absolutely continuous, decreasing function g we have∫ b

a

g′(z)dz =

∫ b

a

g′(z)I{g′(z)<0}dz +

∫ b

a

g′(z)I{g′(z)=0}dz =

∫ b

a

g′(z)IAdz

for any set A ⊇ {g′(z) < 0}. We saw in Lemma 7.5 that

{u : u > S−1(y), ψ′<y>(u) < 0}
⊆
(
{u : u > S−1(y), S(u) > G(u+)} ∩ {ψ<y>(u) = φ(u)}

)
∪NS−1(y)

(7.9)

for a well chosen set NS−1(y) of measure zero. Then,∫ 1

S−1(y)

ψ′<y>(v)
(
I{ψ<y>(v)=φ(v)}I{G(v+)<S(v)} + INS−1(y)

)
dv

=

∫ 1

S−1(y)

ψ′<y>(v)dv = ψ<y>(1)− ψ<y>(S−1(y)) = −(P ′ν(y)− S−1(y))

with the last equality following from Lemma 5.2 and the fact that ψ<y>(1) = φ(1) = 0.
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Proposition 7.8. Suppose that y is a continuity point of both µ and ν. Then χ((−∞, y]) =

ν((−∞, y]).

Proof. Combining (7.3) and (7.7) we find P(Y (U, V ) ≤ y) = P ′ν(y).

Theorem 7.9. Define T and S as in (7.1) and (4.2). Then they are left-monotone with
respect to G and define a construction as in Theorem 3.8 such that L(Y ) = ν, where Y
is as in 7.2. In particular, T and S define the (lifted) left-curtain coupling.

Proof. This follows immediately from Lemma 7.1 and Proposition 7.8, where we note
that it is sufficient to show that χ((−∞, y]) = ν((−∞, y]) on a dense subset of the reals
and we may exclude non-continuity points of µ and ν.

A Proofs

A.1 Convex hull

Proof of Lemma 2.2. Without loss of generality we assume that f c is not equal to −∞
everywhere. Since f > f c, we also cannot have that f c =∞ everywhere.

We first deal with the case when a, b ∈ R with a < b. Suppose f c is not a straight line
on (a, b). Then, by the convexity of f c, for all x ∈ (a, b) we have

f c(x) <
b− x
b− a

f c(a) +
x− a
b− a

f c(b) = Lf
c

a,b(x). (A.1)

Let η = infy∈(a,b){f(y) − Lf
c

a,b(y)}. If η ≥ 0 then f ≥ Lf
c

a,b on (a, b) and f ≥ f c ∨ Lf
c

a,b,
contradicting the maximality of f c as a convex minorant of f .

Now suppose that η < 0. Since f is lower semi-continuous, f −Lf
c

a,b is also lower semi-

continuous, and therefore attains its infimum on [a, b]. Fix z ∈ arginfy∈[a,b]{f(y)−Lf
c

a,b(y)}.
Since f(k)− Lf

c

a,b(k) = f(k)− f c(k) ≥ 0 for k ∈ {a, b}, a, b /∈ arginfy∈[a,b]{f(y)− Lf
c

a,b(y)},
and thus z ∈ (a, b). Then since f > f c on (a, b) we have 0 > η = f(z) − Lf

c

a,b(z) >

f c(z) − Lf
c

a,b(z). Then f c ∨ (Lf
c

a,b + η) is convex, is a minorant of f and is strictly larger
than f c (in particular at z) again contradicting the maximality of f c as a convex minorant
of f . The case when one (or both) of the endpoints of (a, b) are infinite can be reduced
to the previous finite case. Indeed, suppose f > f c on (a,∞) (resp. (−∞, b)) with a ∈ R
(resp. b ∈ R). If f c is not a straight line on (a,∞) (resp. (−∞, b)), then there exists b ∈ R
(resp. a ∈ R) with a < b such that f c is not a straight line on (a, b) and (A.1) holds for
all x ∈ (a, b). The rest of the argument remains the same. Finally, if f > f c on R but
f c is not linear, then we can find a, b ∈ R with a < b such that f c is not linear on (a, b)

and (A.1) holds. We conclude as before.

Proof of Lemma 2.4. If f =∞ on R then f c =∞, X(y) = y = Z(y), and LfX(y),Z(y)(y) =

∞ = f c(y). Henceforth we exclude this degenerate case.
By continuity of f and necessarily of f c, if X(y) > −∞ then f c(X(y)) = f(X(y));

similarly, if Z(y) <∞ then f c(Z(y)) = f(Z(y)).
Fix y ∈ R. If X(y) = y = Z(y) then f c(y) = f(y) = Lfy,y(y) = LfX(y),Z(y)(y), as

required.
So we may suppose X(y) < Z(y). Suppose for now that −∞ < X(y) < Z(y) < ∞.

By definition f > f c on (X(y), Z(y)). Then, by Lemma 2.2, f c is linear on (X(y), Z(y))

and, by continuity of f , f c(X(y)) = f(X(y)) and f c(Z(y)) = f(Z(y)). Then f c(k) =

Lf
c

X(y),Z(y)(k) = LfX(y),Z(y)(k) on [X(y), Z(y)]. Applying this result at k = y we have

f c(y) = LfX(y),Z(y)(y) as required.
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We want to extend this result to the case where one, or both, of {X(y), Z(y)} is
infinite. Suppose −∞ < X(y) < Z(y) = ∞ (the case of −∞ = X(y) < Z(y) < ∞ can
be treated symmetrically). By Lemma 2.2, f c is a straight line on (X(y),∞) and by
continuity of f , f(X(y)) = f c(X(y)). Then f c(k) = f(X(y)) + θ(k −X(y)) on [X(y),∞),
for some θ to be determined. Let φ = lim infk↑∞ f(k)/k; we show that φ = θ for then
f c(y) = LfX(y),∞(y). We have

θ = lim
k↑∞

[
f c(k)− f(X(y))

k −X(y)

]
≤ lim inf

k↑∞

[
f(k)− f(X(y))

k −X(y)

]
= lim inf

k↑∞

f(k)

k
= φ.

If θ < φ then let J = infk(f(k)− φk). Then f c ∨ (J + φk) is convex, is a minorant of f and
is greater than f c for large enough k, contradicting the maximality of f c. Hence θ = φ,
and then f c(y) = LfX(y),Z(y)(y).

Finally, suppose −∞ = X(y) < Z(y) =∞. Then, by Lemma 2.2, f c is a straight line,
and either f c(y) = α + θy with α, θ ∈ R, or f c = −∞ or f c =∞. The latter is ruled out
since f c ≤ f and at least for some x, f <∞ by non-degeneracy.

Suppose ψ + φ > 0. Then both ψ, φ > −∞. We first show that f c 6= −∞. Suppose
that ψ, φ ∈ R. Let ε be given by 2ε = ψ + φ > 0. Then f(y)− (φ− ε)y is bounded below
on R+ by β+ ∈ R say and f(y)− (ψ − ε)|y| is bounded below on R− by β− ∈ R. Then, if
β = β+ ∧ β−, f(y) ≥ f c ≥ β + (φ − ε)y > −∞, for all y ∈ R. If ψ = φ = ∞, then by the
continuity of f and since f <∞ for some x ∈ R, f is bounded below on R by some α ∈ R,
and then f c ≥ α everywhere. Finally, suppose that ψ =∞ and φ ∈ R (the case of ψ ∈ R
and φ =∞ follows by symmetry). Then, if ε > 0, f(y)− (φ− ε)y is bounded below on R,
and it follows that we cannot have f c = −∞.

So suppose ψ + φ > 0 and f c(y) = α+ θy ≤ f(y), y ∈ R. We show that this leads to a
contradiction (to the fact that−∞ = X(y) < Z(y) =∞). If ψ+φ > 0 then either ψ > −θ or
φ > θ (or both). Suppose φ > θ (the case of ψ > −θ can be treated similarly). Then, there
exists y0 ∈ R such that for y ≥ y0, f(y) ≥ f c(y0) + φ(y − y0) > f c(y0) + θ(y − y0) = f c(y).
But then (α+ θy) ∨ (f c(y0) + φ(y − y0)) is a convex minorant of f which is greater than
f c.

Now suppose ψ + φ < 0. Choose zn ↑ ∞ such that f(zn)/zn → φ and xm ↓ −∞ such
that f(xm)/|xm| → ψ. By (5) (i.e., the result of Rockafellar that f c(y) = infx≤y≤z L

f
x,z(y)),

for big enough m and n, we have f c(y) ≤ Lfxm,zn(y). Hence, if −∞ < φ + ψ < 0, then

−∞ ≤ f c(y) ≤ limm(limn L
f
xm,zn(y)) = limm L

f
xm,∞(y) = Lf−∞,∞(y) = −∞.

Similarly, if φ = −∞, then Lfx,∞(y) = −∞ for x < y and limm L
f
xm,∞(y) = −∞,

irrespective of the value of ψ. If on the other hand, ψ = −∞, then we reverse the order
of taking limits and use f c(y) ≤ limn(limm L

f
xm,zn(y)) = limn L

f
−∞,zn(y) = −∞. Thus, if

φ+ ψ = −∞ we have both Lf−∞,∞ = −∞ and f c = −∞ and then f c = LfX(y),Z(y).

Finally, suppose φ + ψ = 0 and Lf−∞,∞(y) = γ + φy. For any k ∈ R we have that

γ ≤ f(k)− φk and hence Lf−∞,∞(k) = γ + φk ≤ f(k). Hence Lf−∞,∞ is a convex minorant
of f .

Suppose γ = −∞, so that Lf−∞,∞ = −∞. Let g be any convex function with g ≤ f .
We show that g is identically equal to −∞. Suppose not. Then there exists k such that
g(k) > −∞ and by the convexity of g, g(y) ≥ g(k) + (y − k)g′(k−). Dividing by y and
letting y →∞ we conclude φ ≥ g′(k−). Dividing by |y| and letting y → −∞ we conclude
ψ ≥ −g′(k−). Then −ψ = φ ≥ g′(k−) ≥ −ψ and f(y) ≥ g(y) ≥ g(k) + φ(y − k). Then
infw(f(w)− φw) ≥ g(k)− φ(k) > −∞, contradicting the fact that γ = −∞. Finally, since
g = −∞ is the only convex minorant of f we have that f c = −∞ = Lf−∞,∞.

Now suppose γ ∈ R. We first show that f c must be linear. Suppose not. Then, since
f c ≥ Lf−∞,∞, either there exists k+ ∈ R such that f c > Lf−∞,∞ on (k+,∞) or there exists
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k− ∈ R such that f c > Lf−∞,∞ on (−∞, k−) (or both). In either case f c(k) > f(k) for
some (large or small enough) k ∈ R, a contradiction.

Hence suppose f c(y) = α + θy, y ∈ R, for some α, θ ∈ R. We aim to show that
θ = φ and α = γ so that f c = Lf−∞,∞. Suppose θ < φ. Then for large enough y,

f c(y) < Lf−∞,∞(y), so that f c ∨ Lf−∞,∞ is a convex minorant of f which is bigger than f c,
thus contradicting the maximality of f c. θ > φ can be ruled out similarly by considering
large negative y; hence θ = φ. Finally, choose kn such that f(kn) − φkn ↓ γ. Then
0 ≤ f(kn)− f c(kn) = f(kn)− φkn − α→ γ − α. Hence γ ≥ α and f c ≤ Lf−∞,∞ ≤ f . Since

f c is the largest convex minorant we conclude γ = α and f c = Lf−∞,∞.

Proof of Lemma 2.5. Fix y ∈ R and suppose (x, z) ∈ B(y) are such that f(k) > Lfx,z(k) for
all k ∈ (x, z). If X(y) = −∞, then we trivially have that X(y) = −∞ ≤ x. Now suppose
that X(y) is finite. Using again that f ≥ f c and f c is convex we have that

f(k) > Lfx,z(k) ≥ Lf
c

x,z(k) ≥ f c(k), k ∈ (x, z).

Therefore, if X(y) ∈ (x, z), we have a contradiction since f(X(y)) = f c(X(y)). A symmet-
ric argument shows that z ≤ Z(y).

A.2 The Geometric construction

Proof of Lemma 4.4. First note that, since {k : D(k) > 0} = (`ν , rν) ⊇ (`µ, rµ) and by
hypothesis µ({`ν}) = 0 (resp. µ({rµ}) = 0) in the case `µ = `ν (resp. rµ = rν), we have
that G(u) ∈ (`ν , rµ) for all u ∈ (0, 1). Hence S(u) < rν (resp. `ν < R(u)) in the case
G(u) = S(u) (resp. R(u) = G(u)). Recall that if R(u) = G(u), then R(u) = Q(u) = G(u) =

S(u) (see Lemma 4.1).
If −∞ ≤ R(u) < `ν (or −∞ = R(u) = `ν), then Ecu(R(u)) = Eu(R(u)) = D(R(u)) = 0

(or limk↓R(u) Eu(R(u)) = limk↓R(u) Ecu(R(u)) = limk↓R(u)D(k) = 0). In both cases we

have that L
Ecu
R(u),S(u) has zero slope. It follows that either S(u) < −∞ and Ecu(S(u)) =

Eu(S(u)) = D(S(u)) = 0 or S(u) =∞ and then Ecu ≡ 0. In the former case we must have
that rν ≤ S(u) < ∞. But then Ecu is linear on (R(u), S(u)), and thus (see Corollary 3.3)
ν − Sν(µu) does not charge [`ν , rν). It follows that we have (µ− µu) ≤cx (ν − Sν(µu)) ≤
ν({rν}), and then (µ− µu) must be a point mass at rν which is excluded by hypothesis,
since µ places no mass there. In the latter case, since Ecu ≡ 0, Corollary 3.3 implies that
ν = Sν(µu). But ν(R) = 1 > u = µu(R) = Sν(µu)(R), a contradiction. We conclude that
either −∞ < `ν ≤ R(u) or −∞ = `ν < R(u).

Now we deal with S(u). Suppose that either rν < S(u) ≤ ∞ or rν = S(u) =∞. Then,
by Theorem 3.2, linearity of Ecu on (R(u), S(u)) implies that ν − Sν(µu) does not charge
(R(u), rν ], so that supp(ν − Sν(µu)) ⊆ (−∞, R(u)]. On the other hand, supp(µ − µu) ⊆
[G(u),∞). But, S(u) > G(u), and therefore, by Lemma 4.1, R(u) ≤ Q(u) < G(u). This
contradicts the fact that (µ− µu) ≤cx (ν − Sν(µu)). It follows that either S(u) ≤ rν <∞
or S(u) < rν =∞.

Proof of Lemma 4.6. We have Ev(z) ≤ Eu(z) = Ecv(z) ≤ Ev(z) so that Ev(z) = Eu(z).
Consider Ẽ : R→ R given by Ẽ = Ecu on (−∞, z] and Ẽ = Ecv on (z,∞). If we can show

that Ẽ ≤ Ev and Ẽ is convex then Ẽ ≤ Ecv everywhere and therefore Ecu ≤ Ecv on (−∞, z].
But Ecv ≤ Ecu everywhere, and in particular Ecu = Ecv on (−∞, z].

To show that Ẽ ≤ Ev note that Ev < Eu on (G(u+),∞) and so we must have z ≤ G(u+).
Then, for x ∈ (−∞, z], Ẽ(x) = Ecu(x) ≤ Eu(x) = D(x) = Ev(x) whereas for x > z,
Ẽ(x) = Ecv(x) ≤ Ev(x).

To show that Ẽ is convex note that if x < y ≤ z then for λ ∈ (0, 1), by convexity of Ecu,

Ẽ(λx+ (1− λ)y) = Ecu(λx+ (1− λ)y) ≤ λEcu(x) + (1− λ)Ecu(y) = λẼ(x) + (1− λ)Ẽ(y).
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We obtain a similar inequality for z ≤ x < y using the convexity of Ecv .
So suppose x < z < y. Suppose λ is such that λx+ (1− λ)y ≥ z. Then

Ẽ(λx+ (1− λ)y) = Ecv(λx+ (1− λ)y) ≤ λEcv(x) + (1− λ)Ecv(y)

≤ λEcu(x) + (1− λ)Ecv(y) = λẼ(x) + (1− λ)Ẽ(y).

Finally suppose that x < z < y and λx + (1 − λ)y < z. For x < r < k consider
f = f(k, r) given by

f(k, r) = Ecu(x) +
r − x
k − x

(Ecv(k)− Ecu(x)).

Since Ecu(x) ≥ Ecv(x) and Ecv is convex it is easily seen that f(k, r) is increasing in k. Then

λẼ(x) + (1− λ)Ẽ(y) = Ecu(x) + (1− λ)(Ecv(y)− Ecu(x))

= f(y, λx+ (1− λ)y)

≥ f(z, λx+ (1− λ)y)

= Ecu(x) +
(1− λ)(y − x)

z − x
(Ecv(z)− Ecu(x))

=

(
1− (1− λ)(y − x)

z − x

)
Ecu(x) +

(1− λ)(y − x)

z − x
Ecu(z)

≥ Ecu
((

1− (1− λ)(y − x)

z − x

)
x+

(1− λ)(y − x)

z − x
z

)
= Ecu(λx+ (1− λy)) = Ẽ(λx+ (1− λy)).

Proof of Corollary 4.7. Set s = S(u) = S(v). Then G(u+) ≤ G(v) ≤ S(v) = s ≤ G(u+) so
that G(u+) = G(v) = s also.

By Lemma 4.6, in order to conclude that Ecu = Ecv on (−∞, S(v)] it is sufficient to
show that Ecu(s) = Ecv(s) = Ev(s). But Ecu(s) = Eu(s) since s = S(u), Eu(s) = Ev(s) since
s ≤ G(u+) and Ev(s) = Ecv(s) since s = S(v), and we are done.

Inspection of the proof of Lemma 5.1 shows that provided we replace D(r) with
Eu(r) in the expression for φ(u) in (5.1), the supremum over k < G(u) can be replaced
by a supremum over k < S(u). (The two cases can be considered separately, and if
G(w) = S(w) there is nothing to prove.) Then, since S(u) = s = S(v) and Eu = Ev on
(−∞, s],

φ(u) = sup
r<S(u)

Eu(S(u))− Eu(r)

S(u)− r
= sup
r<S(v)

Ev(S(v))− Ev(r)
S(v)− r

= φ(v).

Further, since Ecu = Ecv on (−∞, S(u) = s = S(v)] and R(·) depends on E· only through Ec·
on (−∞, S(·)], we have R(u) = R(v).

Proof of Lemma 4.10. Fix n ≥ 1 and u, v ∈ An< with u < v. We have that R(u) < G(u) ≤
G(u+) < S(u−) ≤ S(u). Furthermore, by Theorem 4.9, R(v) /∈ (R(u), S(u)). We will
show that R(v) ≤ R(u).

Suppose not, so that S(u) ≤ R(v). We aim to find a contradiction. Define ū := inf{w ∈
(u, v] : S(u) ≤ R(w)} and note that, since v ∈ {w ∈ (u, v] : S(u) ≤ R(w)}, ū is well-defined
in [u, v].

First note that ū > u. Indeed, since G(u+) < S(u), there exists ε̄ > 0 such that
G(u+) ≤ G(u + ε) < S(u) for all 0 ≤ ε ≤ ε̄. But then R(u + ε) ≤ G(u + ε) < S(u) for all
0 ≤ ε ≤ ε̄. It follows that ū > u.

We claim that R(·) is decreasing on [u, ū). Let u1, u2 ∈ [u, ū) with u1 < u2. For
w ∈ {u1, u2} R(w) < S(u) and then by the results of the previous paragraph and left-
monotonicity, R(w) ≤ R(u) < S(u) ≤ S(u1) ≤ S(u2). Since R(u2) /∈ (R(u1), S(u1)) it
follows that R(u2) ≤ R(u1), which proves the claim.
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Now observe that R(ū) /∈ (R(w), S(w)) for all w ∈ [u, ū), and therefore, by the
monotonicity of R(·) and S(·) on [u, ū), we have that R(ū) /∈ (R(ū−), S(ū−)). But ū ∈ An<,
so that G(ū) ≤ G(ū+) < S(ū−). Hence, since R(ū) ≤ G(ū), we must have that R(ū) ≤
R(ū−) and therefore R(ū) < S(u). In particular, ū < v.

Finally, we have that R(ū) < G(ū) ≤ G(ū+) < S(ū−) ≤ S(ū) and we can pick ε̃ > 0

such that G(ū + ε) < S(ū) for all 0 ≤ ε ≤ ε̃. But then R(ū + ε) ≤ G(ū + ε) < S(ū) and
therefore R(ū + ε) ≤ R(ū) < S(u) for all 0 ≤ ε ≤ ε̃, contradicting the definition of ū as
the infimum of points in {w ∈ (u, v] : S(u) ≤ R(w)}. This is the desired contradiction and
we conclude that R(v) ≤ R(u).

A.3 Left continuity

Proof of Lemma 6.2. By the left-continuity of G we have

lim
u↑v
Eu(k) = lim

u↑v
{Pν(k)− Pµ(k ∧G(u)) + u(k −G(u))+}

= Pν(k)− Pµ(k ∧G(v)) + v(k −G(v))+ = Ev(k).

Also, for all u ∈ (0, 1) with v < u, by (4.5) we have that

0 ≤ Ev(k)−Eu(k) ≤ Pµ(G(u))−Pµ(G(v))− u(G(u)−G(v)) + (u− v)(k−G(v))+, k ∈ R.

But, since µ does not charge (G(v), G(v+)) (provided G(v) < G(v+)), Pµ is linear on
(G(v), G(v+)) with slope v, and we have that

lim
u↓v
{Pµ(G(u))−Pµ(G(v))−u(G(u)−G(v))} = Pµ(G(v+))−Pµ(G(v))−v(G(v+)−G(v)) = 0.

It follows that, for each k ∈ R, Eu(k) ↑ Ev(k) as u ↓ v.
For convergence of convex hulls note that, for u ∈ (0, 1) with u < v, Eu(k) ≥ Ev(k) ≥

Ecv(k) and therefore Eu(k) ≥ Ecu(k) ≥ Ecv(k), k ∈ R. Then

Ev(k) = lim
u↑v
Eu(k) ≥ lim

u↑v
Ecu(k) ≥ Ecv(k), k ∈ R.

Since a point-wise limit of convex functions is convex, limu↑v Ecu is a convex minorant of
Ev. Hence Ecv ≥ limu↑v Ecu and equality follows. Similarly, for u ∈ (0, 1) with v < u, we
have that Ev ≥ Eu ≥ Ecu, and therefore Ecv ≥ limu↓v Ecu.

It remains to show that Ecv ≤ limu↓v Ecu. First note that if sn → s and vn ↓ v

then Evn(sn) → Ev(s). To see this note that Evn(sn) ≤ Ev(sn) and so limn Evn(sn) ≤
limn Ev(sn) = Ev(s) by the continuity of Ev. Conversely, since |Eu(k)−Eu(j)

j−k | ≤ 1 for all j 6= k

and u ∈ (0, 1), Evn(sn) ≥ Evn(s)− |sn − s| and limn Evn(sn) ≥ limn Evn(s) = Ev(s).
Fix k such that D(k) > 0. Either there exists a sequence vn ↓ v such that Ecvn(k) =

Evn(k) or there exists a sequence vn ↓ v such that for each n there exists rn = rn(k) and
sn = sn(k) with rn < k < sn with

Ecvn(k) = Evn(rn)
(sn − k)

sn − rn
+Evn(sn)

(k − rn)

sn − rn
= Evn(sn)− Evn(sn)− Evn(rn)

sn − rn
(sn−k). (A.2)

In the former case we have

Ecv(k) ≤ Ev(k) = lim
n
Evn(k) = lim

vn↓v
Ecvn(k).

In the latter case we can choose a subsequence such that sn → s ≥ k and rn → r ∈
[−∞, k]. If s = k then from (A.2) and using |Evn (sn)−Evn (rn)

sn−rn | ≤ 1,

lim
n
Ecvn(k) = lim

n
Evn(sn) = Ev(k) ≥ Ecv(k).
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Otherwise, if s > k, then taking limits in (A.2),

lim
n
Ecvn(k) = Ev(s)−

Ev(s)− Ev(r)
s− r

(s− k) = Ev(r)
s− k
s− r

+ Ev(s)
k − r
s− r

≥ Ecv(k).

Proof of Lemma 6.3. Fix u, v ∈ (0, 1) with u < v. Since Eu ≥ Ev, Eu(f(u)) ≤ Eu(k) for all
k ≥ f(u), and f is non-decreasing, using (6.1) we have that

Ev(f(v−)) = lim
u↑v
Ev(f(u)) ≤ lim

u↑v
Eu(f(u)) ≤ lim

u↑v
Eu(f(v−)) = Ev(f(v−)). (A.3)

Equation (A.3) still holds when E is replaced by Ec (note that Ecu is non-decreasing
everywhere for each u ∈ (0, 1)), which concludes the proof.

A.4 The candidate coupling is an embedding

Proof of Lemma 7.1. First we argue that (T, S) is left-monotone with respect to G. We
need to show that if v > u then T (v) /∈ (T (u), S(u)).

If S(u) = G(u) then (T (u), S(u)) = ∅ so there is nothing to prove. So take T (u) = R(u).
Suppose first that G(v) = S(v). Then T (v) = G(v) = S(v) ≥ S(u). Alternatively suppose
G(v) < S(v). Then T (v) = R(v). Finally, properties of R (see Theorem 4.9) imply that
either T (v) = R(v) ≥ S(u) and T (v) ≥ S(u) or T (v) = R(v) ≤ R(u) = T (u).

Measurability of T now follows easily. We have (0, 1) = (∪n≥1A
n
<) ∪ (u : G(u) <

G(u+), G(u) ≤ S(u) ≤ G(u+)) ∪ (u : G(u) = S(u) = G(u+)). Then (T (u) ≤ t) =

(∪n≥1A
n
< ∩ {u : T (u) ≤ t}) ∪ {u : G(u) < G(u+), G(u) ≤ S(u) ≤ G(u+), T (t) ≤ t} ∪ {u :

G(u) = S(u) = G(u+), T (u) ≤ t}.
But T is decreasing on An< and so An< ∩ {u : T (u) ≤ t} is a Borel subset of (0, 1); {u :

G(u) = S(u) = G(u+), T (u) ≤ t} = {u : G(u) = S(u) = G(u+), G(u) ≤ t} is Borel from
the measurability of G and S, and {u : G(u) < G(u+), G(u) ≤ S(u) ≤ G(u+), T (t) ≤ t} is
countable. Hence T is measurable.

Proof of Lemma 7.4. From Lemma 5.2(ii) we have φ(v+) ≥ φ(v). Further, for v ≤ w ≤
u ≤ 1 we have φ(w) − φ(u) ≤ u − w. Introduce φ̃ : [v, 1] → [0, 1] by φ̃(v) = x and
φ̃(w) = φ(w) for w ∈ (v, 1]. Then, for v < u ≤ 1, φ̃(v)− φ̃(u) ≤ limn↑∞ φ(v + 1/n)− φ(u) ≤
limn↑∞{u− (v + 1/n)} = u− v. By checking the easy cases w = v = u and v < w ≤ u ≤ 1

separately we conclude φ̃(w)− φ̃(u) ≤ u− w for all v ≤ w ≤ u ≤ 1.

By construction, ψv,x(w) = infv≤u≤w{φ̃(u)}. Then ψv,x is decreasing, ψv,x(v) = φ̃(v) =

x and ψv,x ≤ φ̃ on [v, 1]. Fix w and u with v ≤ w < u. Let (um)m≥1 with v ≤ um ≤ u be
such that limm↑∞ φ̃(um) ↓ ψv,x(u). Taking a convergent subsequence if necessary we
may assume um → ũ ∈ [v, u]. Then, if w < ũ,

0 ≤ ψv,x(w)− ψv,x(u) ≤ φ̃(w)− lim
m
φ̃(um) = lim

m

{
φ̃(w)− φ̃(um)

}
≤ lim

m
{um − w} = ũ− w ≤ u− w.

On the other hand, if ũ < w, ψv,x(w) ≤ limm φ̃(um) = ψv,x(u) so that ψv,x(w) = ψv,x(u).
Finally, if ũ = w then either there exists a sequence um → ũ with limm φ̃(um) = ψv,x(u)

and um ≥ ũ, or there exists a sequence um → ũ with limm φ̃(um) = ψv,x(u) and um ≤ ũ

(or both). In either case the corresponding proof shows that ψv,x(w) = ψv,x(u). It follows
that 0 ≤ ψv,x(w)− ψv,x(u) ≤ u− w so that ψv,x is absolutely continuous on [v, 1] (and not

just on [v, 1] ∩A<) and has a derivative ψ′ such that
∫ b
a
ψ′v,x(u)du = ψv,x(b)− ψv,x(a), for

all v ≤ a ≤ b ≤ 1.
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A.5 Proof of Proposition 7.6

Our goal is to show that R(·) ≤ y is equivalent to ψ(·) = φ(·) for a well-chosen element
ψ = ψv,x. In particular, we want to show

{v : v > S−1(y), R(v) ≤ y} = {v : v > S−1(y), ψS−1(y),(Ec
S−1(y)

)′(y−)(v) = φ(v)} (A.4)

in a sufficiently rich set of circumstances, with the ultimate aim of proving Proposi-
tion 7.6. We begin with a partial result, valid in the case where w = S−1(y) is such that
R(w) < S(w). Later the issue will be to show that (A.4) holds also for both y such that
R(S−1(y)) = S(S−1(y)) and for y which are not of the form y = S(w) for some w.

Lemma A.1. Suppose w is such that R(w) < S(w). Then

{v : v > w,R(v) ≤ R(w)} = {v : v > w,ψw,φ(w)(v) = φ(v)}.

Proof. Let IRw = {v : v > w,R(v) ≤ R(w)} and Iφw = {v : v > w,ψw,φ(w)(v) = φ(v)}.
First we argue that, for all u, v ∈ (0, 1) with u < v, φ(u) < φ(v) implies R(v) ≥ S(u).

Suppose u < v and φ(u) < φ(v). Suppose (S(v), Ev(S(v))) lies on or below the line LEu,φ(u)
S(u) .

Then L
Ev,φ(v)
S(v) < L

Eu,φ(u)
S(u) ≤ Eu on (−∞, S(v)) ⊇ (−∞, S(u)) and L

Ev,φ(v)
S(v) < Eu = D on

(−∞, G(u+)). Hence R(v) ≥ G(u+) and by left-monotonicity R(v) ≥ S(u). Conversely,

if (S(v), Ev(S(v)) lies above LEu,φ(u)
S(u) (S(v)) then L

Ev,φ(v)
S(v) (S(u)) ≤ Ev(S(u)) ≤ Eu(S(u)) =

L
Eu,φ(u)
S(u) (S(u)). Then L

Ev,φ(v)
S(v) (k) < L

Eu,φ(u)
S(u) (k) ≤ Eu(k) = Ev(k) for k < G(u) ≤ G(v)

and since L
Ev,φ(v)
S(v) (R(v)) = Ev(R(v)) we must have R(v) ≥ G(u). If R(u) < S(u) then

R(v) ≥ G(u) > R(u) and then by left-monotonicity R(v) ≥ S(u). Similarly, if R(u) = S(u)

then R(v) ≥ G(u) = R(u) = S(u) and again R(v) ≥ S(u).
Now we show that IRw ⊆ Iφw. Suppose v > w but v /∈ Iφw. Then there exists u ∈ [w, v)

such that φ(u) < φ(v). Then by the above argument, R(v) ≥ S(u) ≥ S(w) > R(w) so that
v /∈ IRw . Hence IRw ⊆ Iφw.

For the converse we show that if v > w but v /∈ IRw (so that R(v) > R(w)) then there
exists u ∈ [w, v) such that φ(u) < φ(v) and hence v /∈ Iφw.

So, suppose R(v) > R(w). By left-monotonicity we deduce that R(v) ≥ S(w). Note
also that since R(w) < G(w+) and w < v, Ev(R(w)) = Ew(R(w)) = D(R(w)).

If Ev(S(v)) > L
Ew,φ(w)
S(w) (S(v)) then since R(w) < R(v) ≤ G(v), by Lemma 5.1 we have

φ(v) ≥ Ev(S(v))− Ev(R(w))

S(v)−R(w)
>
L
Ew,φ(w)
S(w) (S(v))− LEw,φ(w)

S(w) (R(w))

S(v)−R(w)
= φ(w).

It follows that φ(v) > φ(w).

If Ev(S(v)) = L
Ew,φ(w)
S(w) (S(v)) then, since L

Ev,φ(v)
S(v) ≤ Ecv ≤ Ecw everywhere, we must

have that φ(v) ≥ φ(w). But if φ(w) = φ(v) then LEv,φ(v)
S(v) and LEw,φ(w)

S(w) coincide and hence

R(v) = R(w), a contradiction to our hypothesis that R(v) > R(w). It follows again that
φ(v) > φ(w).

Finally consider the case where Ev(S(v)) = L
Ev,φ(v)
S(v) (S(v)) < L

Ew,φ(w)
S(w) (S(v)). If

Ev(R(v)) = L
Ev,φ(v)
S(v) (R(v)) ≥ L

Ew,φ(w)
S(w) (R(v)) then R(w) < R(v) < S(v) and we must

have L
Ev,φ(v)
S(v) (R(w)) > L

Ew,φ(w)
S(w) (R(w)). Then Ew(R(w)) = Ev(R(w)) ≥ L

Ev,φ(v)
S(v) (R(w)) >

L
Ew,φ(w)
S(w) (R(w)) = Ew(R(w)), a contradiction. Hence we must have

Ev(R(v)) < L
Ew,φ(w)
S(w) (R(v)).

Consider Ecv . There exists an interval [x1, x2] with x1 ≤ R(w) < G(w+) < x2 such
that Ecv is linear on [x1, x2], Ecv(x1) = Ev(x1) = D(x1) and Ecv(x2) = Ev(x2). Necessarily
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Ev(x1) ≥ L
Ew,φ(w)
S(w) (x1) and Ev(x2) < L

Ew,φ(w)
S(w) (x2). There exists u such that G(u) ≤

x2 ≤ G(u+). Note that since x2 > G(w+) we have u > w. Also x2 ≤ R(v) ≤ G(v), else
R(v) ≤ x1 ≤ R(w) which contradicts our assumption that R(v) > R(w) and hence we may
take u ≤ v. Finally, we must have u < v since if u = v we find R(v) = R(u) = x1 ≤ R(w),
again a contradiction. In summary, u ∈ (w, v).

Since x2 ≤ G(u+) ≤ G(v) ≤ S(v) by the convexity of Ecv we have (Ecv)′(x2−) ≤
(Ecv)′(S(v)−). If there is equality here then Ecv is linear on (x1, S(v)) and R(v) ≤ x1 ≤ R(w),
a contradiction. Hence there is strict inequality and φ(u) = (Ecv)′(x2−) < (Ecv)′(S(v)−) =

φ(v). Hence ψw,φ(w)(v) ≤ φ(u) < φ(v) and v /∈ Iφw.

Now we introduce a condition which will allow us to prove an analogue of (A.4) in a
wider set of circumstances.

Definition A.2. Fix x ∈ R and v ∈ (S−1(x), 1). Define A(v, x) = {w : S−1(x) < w ≤
v,R(w) < x}. Then Condition A(x) is that A(v, x) is non-empty for each v ∈ (S−1(x), 1).

Lemma A.3. Suppose D(y) < ES−1(y)(y). Then Condition A(y) holds.

Proof. It is clear that D(y) < ES−1(y)(y) if and only if G(S−1(y)+) < y.

Choose h0 > 0 such that G(S−1(y) + h0) < y. Then for all 0 < h ≤ h0 we have
R(S−1(y) + h) ≤ G(S−1(y) + h) ≤ G(S−1(y) + h0) < y.

Lemma A.4. Suppose y is a continuity point for both µ and ν. Suppose further that
D(y) = ES−1(y)(y) and for all v ∈ (S−1(y), 1), there exists k such that

Ev(k) < L
ES−1(y),(E

c
S−1(y)

)′(y−)

y (k).

Then, Condition A(y) holds.

Proof. Write L as shorthand for L
ES−1(y),(E

c
S−1(y)

)′(y−)

y . Fix h0 > 0 and choose k > y such
that ES−1(y)+h0

(k) < L(k). Such a k exists under the assumptions of the lemma. See
Figure 6.

Since y is a continuity point of both µ and ν we have (EcS−1(y))
′(y−) = (EcS−1(y))

′(y+)

and (EcS−1(y))
′(y) = E ′S−1(y)(y) = D′(y). For j ∈ (y, k] define f(j) =

ES−1(y)+h0
(j)−D(y)

j−y .

Then f is continuous on (y, k] with f(y+) = E ′S−1(y)(y) and f(k) < L(k)−D(y)
k−y = (EcS−1(y))

′(y).
In particular f attains its minimum value. Let f be this minimal value and let j be the
smallest value at which it is attained. Then j > y.
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G(v)y

k 7→ L(k)

k 7→ ES−1(y)(k)

k 7→ EcS−1(y)(k)

k 7→ Ev(k)

k 7→ D(k)

Figure 6: Plot of ES−1(y) (dotted curve), EcS−1(y) (solid curve below ES−1(y)), D (dashed

curve), Ev (dash-dotted curve) and L ≡ L
ES−1(y),(E

c
S−1(y)

)′(y−)

y (line tangent to EcS−1(y)

at y) under the assumptions of Lemma A.4. In the figure, R(S−1(y)) = G(S−1(y)) =

S(S−1(y)) = y and, for all v ∈ (S−1(y), 1), Ev(k) < L(k) for some k > y. Furthermore,
E ′S−1(y)(y) and (EcS−1(y))

′(y) both exist, and φ(S−1(y)) = E ′S−1(y)(y) = (EcS−1(y))
′(y) is the

slope of L.

Suppose j ≥ G(S−1(y)+h0). Then the line L̂ = L
ES−1(y)+h0
y,j joining (y, ES−1(y)+h0

(y)) to

(j, ES−1(y)+h0
(j)) lies below L on (y, j), but strictly above L on an interval to the left of y. If

follows that we can find small enough ε > 0 and y̌ < y such that L
ES−1(y)+h0

,f+ε

j (y̌) = D(y̌)

and ES−1(y)+h0
> L̂ on (y̌, j). Then R(S−1(y) + h0) ≤ Q(S−1(y) + h0) ≤ y̌ < y < j ≤

S(S−1(y) + h0). In particular, R(S−1(y) + h0) < y.
Now suppose j < G(S−1(y) + h0). Then there exists h ∈ (0, h0] such that G(S−1(y) +

h) ≤ j ≤ G((S−1(y) + h)+). It follows that ES−1(y)+h(j) = D(j). Then, exactly as before

we can find ε > 0 and y̌ < y such that L
ES−1(y)+h,f+ε

j (y̌) = D(y̌) and D ≡ ES−1(y)+h >

L
ES−1(y)+h,f+ε

j on (y̌, j). As before it follows that R(S−1(y) + h) < y.

Lemma A.5. Suppose x ∈ R is such that Condition A(x) holds. Then

{v : v > S−1(x), R(v) ≤ x} = {v : v > S−1(x), ψS−1(x),(Ec
S−1(x)

)′(x−)(v) = φ(v)}. (A.5)

Remark A.6. It will follow from the proof of Lemma A.5 that if x is such that Condition
A(x) holds then also

{v : v > S−1(x), R(v) < x} = {v : v > S−1(x), ψS−1(x),(Ec
S−1(x)

)′(x−)(v) = φ(v)}. (A.6)

The equivalence of the left-hand-sides of (A.5) and (A.6) can also be seen directly. It
is sufficient to argue that if Condition A(x) holds then {v : v > S−1(x), R(v) = x} = ∅.
To see this, given v > S−1(x) choose w ∈ (S−1(x), v). Then, since A(w, x) is non-empty
there exists u ∈ (S−1(x), w] such that R(u) < x < S(u). Then R(v) /∈ (R(u), S(u)) and in
particular R(v) 6= x.

Proof of Lemma A.5. We begin with a definition which will be useful in both the forward
and reverse implication of (A.5).
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Fix v > S−1(x). Define z = sup{w : w ∈ A(v, x)}. Note that by assumption A(v, x)

is non-empty and S−1(x) < z ≤ v. We show that z ∈ A(v, x). If this is not immediately
the case then since z > S−1(x) there exists (zm)m≥1 with zm ↑ z and R(zm) < x.
Then, by Proposition 6.1 we have that R(z) ≤ lim infu↑z R(u) ≤ x. Moreover, R(z) /∈
(R(zm), S(zm)) ⊇ {x}. Hence R(z) < x and z ∈ A(v, x). We also have R(z) < S(z).

Let HS−1(x),z = {w ∈ (S−1(x), z] : φ(w) = ψS−1(x),φ∗(w)} where φ∗ is shorthand for
(EcS−1(x))

′(x−). We claim that φ(z) ≤ (EcS−1(x))
′(x−) = φ∗ and z ∈ HS−1(x),v.

For the first of these claims, suppose to the contrary that φ(z) > φ∗. Then, for k < x,
Ez(x) + φ(z)(k − x) < ES−1(x)(x) + φ∗(k − x) ≤ D(k), since φ∗ ∈ ∂EcS−1(x)(x). Since also
Ez(S(z)) + φ(z)(x− S(z)) ≤ Ez(x), Ez(S(z)) + φ(z)(k− S(z)) ≤ Ez(x) + φ(z)(k− x) < D(k)

for all k ∈ (−∞, x). In particular, R(z) ≥ x. But we saw above that R(z) < x, and this is
our contradiction.

Now we show z ∈ HS−1(x),v. Suppose not, i.e. suppose ψS−1(x),φ∗(z) < φ(z). Let
(zm)m≥1 be such that φ(zm) ↓ ψS−1(x),φ∗(z) < φ(z). Pick m such that S−1(y) < zm < z

with φ(zm) < φ(z). Then by the left-monotonicity of R (and S) we have that R(z) /∈
(R(zm), S(zm)). Since S(zm) > x and R(z) < x we have R(z) ≤ R(zm) ≤ S(zm) ≤
S(z). If R(zm) = R(z) < x < S(zm), then Eczm(S(zm)) = Ezm(S(zm)) = Ezm(R(zm)) +

φ(zm)(S(zm)−R(zm)) < Ez(R(z)) + φ(z)(S(zm)−R(z)) = L
Ez
R(z),S(z)(S(zm)) = Ecz(S(zm)),

a contradiction to Eczm ≥ E
c
z . On the other hand, if R(z) < R(zm), by convexity of

Eczm we must have that D(R(z)) = Ezm(R(z)) ≥ Ezm(S(zm)) − φ(zm)(S(zm) − R(z)) >

Ecz(S(zm))− φ(z)(S(zm)−R(z)) = L
Ez
R(z),S(z)(R(z)) = D(R(z)), again a contradiction. We

conclude that we cannot have φ(z) > ψS−1(x),φ∗(z) and hence z ∈ HS−1(x),v as claimed.

Forward implication: First we show that {v : v > S−1(x), ψS−1(x),φ∗(v) = φ(v)} ⊆
{v : v > S−1(x), R(v) ≤ x}. In fact we show the apparently stronger result that {v :

v > S−1(x), ψS−1(x),φ∗(v) = φ(v)} ⊆ {v : v > S−1(x), R(v) < x}, although by Remark A.6
these implications are equivalent.

We wish to show that if v > S−1(x) and R(v) ≥ x then φ(v) > ψS−1(x),φ∗(v).

Suppose R(v) ≥ x. We argue that φ(z) < φ(v) and therefore that ψS−1(x),φ∗(v) < φ(v).

Temporarily let L = L
Ez
R(z),S(z).

Since R(v) ≥ x we have that z < v. First, we claim that S(z) ≤ G(z+) (and then also
Ez = D on [G(z), G(z+)] ⊇ [G(z), S(z)], since Pµ is linear on (G(z), G(z+)) as µ does not
charge (G(z), G(z+))). Suppose not: then S(z) > G(z+) and there exists h ∈ (0, v − z)
such that G(z + h) < S(z). But R(z + h) ≤ G(z + h) and, by the left-monotonicity result
(Theorem 4.9), R(z + h) /∈ (R(z), S(z)). It follows that R(z + h) ≤ R(z) < x contradicting
the supposed maximality of z. We conclude that S(z) ≤ G(z+).

Second we claim that, for a sufficiently small h > 0, Ez+h ≥ L. Suppose to the contrary

that there exists 0 < h < v − z and ε > 0 such that L
Ez,φ(z)−ε
R(z) intersects Ez+h to the right

of S(z). Then, letting k̃ = k̃(z, h) be the x-coordinate of the smallest intersection point to

the right of S(z) we have Ez+h > L
Ez+h
R(z),k̃

on (R(z), k̃). If G(z+h) ≤ k̃ then Q(z+h) ≤ R(z)

and so R(z+h) ≤ Q(z+h) ≤ R(z) < x. This contradicts the maximality of z. Otherwise, if
G(z + h) > k̃ then by an argument very similar to the last part of the proof of Lemma A.4
we can again conclude that there exists 0 < h1 ≤ h for which R(z + h1) < x. Again this
contradicts the maximality of z.

Define z = sup{z : Ez ≥ L on R}. Then since limz↑z Ez(k) = Ez(k) it follows that Ez ≥ L
and there exists k > S(z) such that Ez(k) = L(k), and then R(z) = R(z) and φ(z) = φ(z).
Then R(z) < x and, by the maximality of z, we have that v < z (note that v = z is excluded
since R(v) ≥ x > R(z)). Since v < z, Ev ≥ L on (S(z),∞) and Ev(S(v)) > L(S(v)) (note
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that if Ev(S(v)) = L(S(v)) then R(v) ≤ R(z) < x, a contradiction). Hence

φ(v) ≥ Ev(S(v))−D(R(z))

S(v)−R(z)
>
L(S(v))−D(R(z))

S(v)−R(z)
= φ(z) ≥ ψS−1(x),φ∗(v).

Reverse implication:
Now we show that {v : v > S−1(x), R(v) ≤ x} ⊆ {v : v > S−1(x), ψS−1(x),φ∗(v) = φ(v)}.
We suppose that v > S−1(x) and ψS−1(x),φ∗(v) < φ(v) and show that R(v) > x.

From the opening comments of the proof of the lemma we have that S−1(x) < z ≤ v,
R(z) < x and z ∈ HS−1(x),v. Then the assumption that ψS−1(x),φ∗(v) < φ(v) implies that
z < v so that z ∈ (S−1(x), v).

Let z = sup{w : w ∈ HS−1(x),v}. We will see that z (respectively z introduced below)
plays a very similar role to z (respectively z) from the forward implication.

We have z ≥ z > S−1(x). If z = v then there exists a sequence (zn)n≥1 with zn ↑ v and
φ(zn) = ψS−1(y),φ∗(zn). Then, by Proposition 6.1 and the left-continuity of φ and ψS−1(x),φ∗ ,
φ(v) = lim inf φ(zn) = lim inf ψS−1(x),φ∗(zn) = ψS−1(x),φ∗(v) which is a contradiction.
Hence we may conclude S−1(x) < z ≤ z < v and ψS−1(x),φ∗(v) = φ(z) < φ(v).

First we show that S(z) ≤ G(z+). Suppose to the contrary and take 0 < h < v − z
such that G(z + h) < S(z). We claim that φ(z + h) < φ(z), contradicting the maximality
of z.

We have R(z+h) ≤ R(z) < G(z) ≤ G(z+h) < S(z) ≤ S(z+h), so that Ecw = LEwR(w),S(w)

on [R(w), S(w)] for w ∈ {z, z + h}. Since G(z + h) < S(z), Ez(S(z)) > Ez+h(S(z)) ≥

Ecz+h(S(z)), and therefore L
Ez
R(z),S(z) = L

Ez,φ(z)

S(z) > L
Ecz+h,φ(z)

S(z) everywhere. Then for ψ ≥

φ(z), D ≥ L
Ez
R(z),S(z) > L

Ecz+h,ψ
S(z) on (−∞, G(z)] ⊃ (−∞, R(z + h)]. But D(R(z + h)) =

L
Ez+h
R(z+h),S(z+h)(R(z + h)) = L

Ecz+h,φ(z+h)

S(z) (R(z + h)) and therefore we conclude that φ(z +

h) < φ(z). It follows that S(z) ≤ G(z+) as claimed.

Second we show that Ez+h ≥ L
Ez,φ(z)

R(z) for a sufficiently small h > 0. If this is not

the case then for any ε > 0 there exists some h ∈ (0, ε ∧ (v − z)) we have that δ =

infk>S(z){Ez+h(k) − L
Ez,φ(z)

R(z) (k)} < 0. Let Lδ be given by Lδ(k) = L
Ez,φ(z)

R(z) (k) + δ and

let s > S(z) be such that Lδ(s) = Ez+h(s). We have Ez+h ≥ Ecz+h ≥ Lδ and Ez+h(s) =

Ecz+h(s) = Lδ(s). It follows that (Ecz+h)′(s−) ≤ φ(z).

Suppose G(z + h) ≤ s. Then S(z + h) ≤ s and

φ(z + h) = (Ecz+h)′(S(z + h)−)≤(Ecz+h)′(s−) ≤ φ(z).

Then z is not maximal in HS−1(x),v, a contradiction. Now suppose G(z + h) > s. Then
there exists u ∈ (z, z + h) with G(u) ≤ s ≤ G(u+) for which Eu = Ez+h on (−∞, s].
Then by the same argument as in the case G(z + h) ≤ s but with z + h replaced by u
we find that φ(u) ≤ φ(z) again contradicting the maximality of z in HS−1(x),v. Indeed
Eu ≥ Ecu ≥ Lδ and Eu(s) = Ecu(s) = Lδ(s) so that S(u) ≤ s and (Ecu)′(s−) ≤ φ(z). Then

φ(u) = (Ecu)′(S(u)−) ≤ (Ecu)′(s−) ≤ φ(z).

Now let L ≡ L
Ez,φ(z)

R(z) and introduce

z = sup{z : z > z such that Ez ≥ L on R}.

It is clear that {z : z > z such that Ez ≥ L on R} is non-empty and thus z is well-defined.
It follows similarly to the forward implication that φ(z) = φ(z) and R(z) = R(z). Then

we must have v < z since otherwise z is not maximal. Then Ev > Ez on (G(z),∞) and
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Ev(S(v)) > L(S(v)) since otherwise φ(v) ≤ φ(z) which was ruled out above. It follows that
the line joining (S(z), Ev(S(z))) to (S(v), Ev(S(v))) has slope steeper than φ(z). Further,
this line lies strictly below Ev ≡ D to the left of S(z). Hence R(v) ≥ S(z). Finally, by the
right-continuity of S−1 we have S(z) > x and hence R(v) > x as required.

We are now ready to prove Proposition 7.6.

Proof of Proposition 7.6. SupposeD(y) < ES−1(y)(y) then the result follows by combining
Lemmas A.3 and A.5.

Suppose D(y) = ES−1(y)(y) and for all v > S−1(y) there exists k such that Ev(k) <

L
ES−1(y),(E

c
S−1(y)

)′(y−)

y (k). Then the result follows from Lemma A.4 and Lemma A.5.
The remaining case is if D(y) = ES−1(y)(y) and there exists v0 > S−1(y) such that

Ev0 ≥ L where L = L
ES−1(y),(E

c
S−1(y)

)′(y−)

y . Since y is a continuity point of µ and ν, (EcS−1(y))
′

and E ′S−1(y) exist at y and L = L
ES−1(y),(E

c
S−1(y)

)′(y)

y = L
ES−1(y),E

′
S−1(y)

(y)

y .

Define z̃ = sup{u : u > S−1(y), Eu ≥ L} and note that it is well-defined due to
the existence of v0. Then, R(z̃) ≤ y and φ(z̃) = E ′S−1(y)(y) = D′(y). Further, by the

right-continuity of S−1 we must have z̃ ≤ z where z := S−1(S(z̃)).
Recall that ψ<y> is shorthand for ψS−1(y),P ′ν(y)−S−1(y). We will prove (7.6) by proving

that
{v : v ∈ I,R(v) ≤ y} = {v : v ∈ I, ψ<y>(v) = φ(v)} (A.7)

for each of I = (S−1(y), z̃], I = (z̃, z] and I = (z, 1) separately.

Case I = (S−1(y), z̃].
First note that if v ∈ (S−1(y), z̃] then since Ev ≥ L, we have that ES−1(y) ≥ Ev ≥ Ecv ≥ L

with all inequalities being equalities at y. Since the subdiferential of Ecv is non-decreasing
and y < S(v), we have that φ(v) ≥ E ′S−1(y)(y) and therefore ψ<y>(v) = E ′S−1(y)(y). It

follows that ψ<y>(v) = φ(z̃) = E ′S−1(y)(y) = P ′ν(y) − S−1(y). Further, if ψ<y>(v) = φ(v)

we must have that Ev(S(v)) = L(S(v)) and consequently R(v) ≤ y.
On the other hand, suppose v ∈ (S−1(y), z̃] and R(v) ≤ y. As v > S−1(y) we have

y < S(v). Further, since EcS−1(y)(y) = Ecv(y) = ES−1(y)(y) = Ev(y) = D(y), by Lemma 4.6
we have that Ecv = EcS−1(y) on (−∞, y]. If R(v) = y then φ(v) = (Ecv)′(y) = D′(y) = ψ<y>(v).
Otherwise, ifR(v) < y we have φ(v) = (Ecv)′(R(v)+) = (EcS−1(y))

′(R(v)+) ≤ (EcS−1(y))
′(y) =

ψ<y>(v) ≤ φ(v). Again we conclude φ(v) = ψ<y>(v) = D′(y) as required.
For future reference note that ψ<y>(z̃) = φ(z̃).

Case I = (z̃, z].
Recall z = S−1(S(z̃)). Throughout this section we assume z̃ < z else there is nothing

to prove.
Let s = S(z). By construction S is constant on (z̃, z] and z = S−1(S(z)). Further,

S(z) > s if and only if z > z. We show that both {v : v ∈ (z̃, z], R(v) ≤ y} = (z̃, z] and
{v : v ∈ (z̃, z], ψ<y>(v) = φ(v)} = (z̃, z].

We have S(z̃) ≤ s and L(S(z̃)) = Ez̃(S(z̃)). We show that we must have Ez̃(s) = L(s)

so that if S(z̃) < s then Ez̃ = L on [S(z̃), s]. Suppose for a contradiction that Ez̃(s) >
L(s). Then either Ez̃(s) = D(s) > L(s) or both Ez̃(s) > D(s) and Ez̃(s) > L(s). In the
former case we can find small enough z̆ ∈ (z̃, 1) such that Ez̆ ≥ L, contradicting the
maximality of z̃. In the second case G(z̃+) < s (since Ez̃(s) > D(s)), S(z̃) < s (since
Ez̃(s) > L(s)), and there must exist z1 ∈ (z̃, z] such that, for all z ∈ (z̃, z1), G(z) < s and
Ez̃(s) > Ez(s) > L(s) ∨ D(s). Then by the maximality of z̃ there must be k1 ∈ (G(z̃), s)

such that Ez1(k1) < L(k1). Fix z ∈ (z̃, z1) and let φ1 = infx>y
Ez(x)−Ez(y)

x−y and let the
infimum be attained at x1. Then φ1 < φ(z̃) and x1 ∈ (G(z̃), s). If G(z) ≤ x1 then
x1 ≤ S(z) ≤ s1 = sup{s : s > x1, Ez(s) ≤ L(s)} < s, a contradiction since S(z) = S(z) = s.
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Conversely, if x1 < G(z) then there exists z2 ∈ (z̃, z) such that G(z2) ≤ x1 ≤ G(z2+).
Then if s2 = sup{s : s > x1, Ez2(s) ≤ L(s)} we have s2 < s and S(z2) ≤ s2 < s, again a
contradiction. Hence we must have Ez̃(s) = L(s).

Note that for v ∈ (z̃, z], S(v) = S(S−1(S(z̃))) = S(z) = s. Furthermore, we must
have that G(z̃) ≤ G(z̃+) < s. (If G(z̃+) ≥ s, then, for all v ∈ (z̃, z], G(z̃+) ≤ G(v) ≤
S(v) = s ≤ G(z̃+) and hence G(v) = S(v). Then using (4.5) we deduce that Ev = Ez̃ on
(−∞, s = S(v)]. Then Ecv(s) = Ev(s) = Ez̃(s) = L(s) = Ecz̃(s) which implies by Lemma 4.6
that Ecv = Ecz̃ on (−∞, s]. Then, since L = Ecv on an interval to the left of s we have
L ≤ Ecv everywhere, contradicting the maximality of z̃.) It follows by (4.5) again that
Ev(s) < Ez̃(s) = L(s) for all v ∈ (z̃, z].

First suppose that G(z̃) ≤ S(z̃) ≤ G(z̃+) < s and continue to take v ∈ (z̃, z]. Since
Ez̃ ≡ L on [G(z̃+), s] and Pµz̃ is linear on [G(z̃+),∞), we have that Pν = Ez̃ + Pµz̃ is also
linear on [G(z̃+), s]. Then D = Pν−Pµ must be concave and below L on (G(z̃+), s] (recall
that D(s) ≤ Ev(s) < L(s)). If R(v) ∈ [S(z̃), G(z̃+)], then Ev(R(v)) = D(R(v)) = L(R(v))

and LEvR(v),s must cross L at R(v). If R(v) ∈ (G(z̃+), s) then, since D is concave and equal

to or below L at R(v), LEvR(v),s crosses L at some k ∈ [G(z̃+), s). In both cases we have

that Ecz̃ = L < LEvR(v),s ≤ E
c
v on an interval to the left of the corresponding crossing point,

a contradiction to Ecv ≤ Ecz̃ . Hence, since R(v) /∈ (R(z̃), S(z̃)), either R(v) ≤ R(z̃) ≤ y or
R(v) = G(v) = S(v) = s. However the latter cannot happen due to concavity of D on
[G(z̃+), s]. Hence {v : v ∈ (z̃, z], R(v) ≤ y} = (z̃, z].

We now show that φ is non-increasing on (z̃, z], and hence, since ψ<y>(z̃) = φ(z̃), that
ψ<y>(v) = φ(v) on (z̃, z]. Take z̃ < v < w ≤ z. Since R(w) < S(w) = S(v) = s we have
R(w) ≤ R(v) < S(v). Then, since ∂Ecz̃ is non-decreasing, and using Lemma 6.4 for the
second inequality,

φ(w) = (Ecw)′(R(w)+) ≤ (Ecw)′(R(v)+) ≤ (Ecv)′(R(v)+) = φ(v)

and the result follows.
Now suppose G(z̃+) < S(z̃). Then {v ∈ (z̃, z] : G(v) < S(z̃)} is non-empty. Define

ẑ := sup{v ∈ (z̃, z] : G(v) < S(z̃)} and note that z̃ < ẑ ≤ z. We now show that

{v ∈ (z̃, ẑ] : R(v) ≤ y} = {v ∈ (z̃, ẑ] : ψ<y>(v) = φ(v)} = (z̃, ẑ]. (A.8)

For u ∈ (z̃, ẑ), R(u) /∈ (R(z̃), S(z̃)) and R(u) ≤ G(u) < S(z̃), and therefore R(u) ≤ R(z̃) ≤
y. Then by Proposition 6.1(iii), R(ẑ) ≤ lim infu↑ẑ R(u) ≤ y. On the other hand, the same
argument shows that R(v) ≤ R(u) ≤ y for u, v ∈ [z̃, ẑ) with u < v. Then we must have that
Ecz(R(z)) = Ecz̃(R(z)) for z ∈ {u, v}. Since the subdifferential of Ecz̃ is non-decreasing and
Ecu(S(u)) = Eu(S(u)) > Ev(S(v)) = Ecv(S(v)), for z̃ ≤ u < v < ẑ we have that φ(u) ≥ φ(v).
Then since φ(z̃) = ψ<y>(z̃) we have ψ<y>(z̃) ≥ φ(u) ≥ φ(v) ≥ limu↑ẑ φ(u) = φ(ẑ), which
proves the claim.

Now, if ẑ = z, then (A.7) follows for I = (z̃, z]. Therefore, suppose that ẑ < z. We
claim that

{v ∈ (ẑ, z] : R(v) ≤ y} = {v ∈ (ẑ, z] : ψ<y>(v) = φ(v)} = (ẑ, z].

Indeed, using the definition of ẑ, we have that G(v) = s for all v ∈ (ẑ, z], and therefore
G(ẑ+) = s. Then by (4.5), for all v ∈ (ẑ, z], Ev = Eẑ on (−∞, s = S(v)]. It follows
from Corollary 4.7 with u = ẑ that for all v ∈ (ẑ, z] we have R(v) = R(ẑ) ≤ y and
ψ<y>(ẑ) = ψ<y>(v) = φ(v). We conclude that (A.7) holds for I = (ẑ, z], and hence,
given (A.8), for I = (z̃, z].

Case v ∈ (S−1(S(z̃)), 1).
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In the case z̃ = z then z̃ = z = S−1(S(z)) = S−1(S(z̃)) and then from the first case
R(z) = R(z̃) ≤ y < S(z) and ψ<y>(z) = ψ<y>(z̃) = φ(z̃) = φ(z). In the case where z̃ < z

then again we have z = S−1(S(z)) and then from the second case R(z) ≤ y < S(z) and
ψ<y>(z) = φ(z).

By the left-monotonicity of R, for v > z we have R(v) /∈ (R(z), S(z)). Since R(z) ≤
y < S(z) we conclude R(v) ≤ y is equivalent to R(v) ≤ R(z). Then {v : v > z,R(v) ≤
y} = {v : v > z,R(v) ≤ R(z)}.

Note that for v > z we have that ψ<y>(v) = ψz,φ(z)(v). Hence to show (A.7) for
I = (z, 1) we need to show that

{v : v > z,R(v) ≤ R(z))} = {v : v > z, ψz,φ(z)(v) = φ(v)}. (A.9)

But, since R(z) < S(z) this is immediate from Lemma A.1.
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