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Abstract

In this paper, we consider a class of generalized continuous-state branching processes
obtained by Lamperti type time changes of spectrally positive Lévy processes using
different rate functions. When explosion occurs to such a process, we show that the
process converges to infinity in finite time asymptotically along a deterministic curve,
and identify the speed of explosion for rate function in different regimes. To prove
the main theorems, we also establish a new asymptotic result for scale function of the
spectrally positive Lévy process.
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1 Introduction

A continuous-state branching process is a nonnegative real-valued Markov process
satisfying the additive branching property. It arises as time-space scaling limit of
discrete Bienaymé-Galton-Watson processes. On the other hand, it can also be obtained
by the Lamperti time change of a spectrally positive Lévy process stopped at hitting
0 for the first time. We refer to [24] and Chapter 12 of [18] for nice introductions on
continuous-state branching processes.

The classical Bienaymé-Galton-Watson branching processes had been generalized to
those with nonadditive branching mechanism; see for example, [25], [15], [7] and [8]. In
the same spirit, continuous-state branching processes with nonadditive branching have
been proposed in recent years. In particular, the continuous-state polynomial branching
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Explosion of nonlinear branching processes

process is introduced in [21] as the unique nonnegative solution to a generalized version
of the stochastic differential equation in [9], which can be identified as a continuous-state
branching process with nonadditive, population dependent branching mechanism. The
behaviors of extinction, explosion and coming down from infinity for such a process
are discussed in [21]. A more general class of continuous-state branching processes
is proposed in [12] via Lamperti type time change of stopped spectrally positive Lévy
processes using rate functions R defined on (0,∞), where the classical continuous-state
branching process corresponds to the linear rate function of R(x) = x and the model in
[21] corresponds to the rate function of R(x) = xθ. The above continuous-state nonlinear
branching processes are further generalized in [22] as solutions to more general versions
of the Dawson-Li equation.

For the continuous-state nonlinear branching processes, on one hand, the nonadditive
branching mechanism allows richer boundary behaviors such as coming down from
infinity; on the other hand, many classical techniques based on the additive branching
property fail to work. Criteria for extinction, explosion and coming down from infinity are
developed in [21], [22] and [12] for the respective continuous-state nonlinear branching
processes via a martingale approach and fluctuation theory for spectrally positive Lévy
processes.

The speed of coming down from infinity for such processes is studied in [12] by analyz-
ing the asymptotic behaviors of weighted occupation times for the associated spectrally
positive Lévy process. Sufficient conditions are found under which the continuous-state
nonlinear branching process comes down from infinity along a deterministic curve.

For the continuous-state nonlinear branching processes introduced in [12], explosion
occurs when the processX has a positive drift and the rate function increases fast enough
near infinity. In this paper we study the explosion behaviors for such a continuous-state
branching process X. In particular, we identify the speed of explosion that is defined
as the asymptotic of X(T+

∞ − t) as t→ 0+ for the explosion time T+
∞. We are not aware

of any previous results on the speed of explosion for general Markov processes or for
solutions to general stochastic differential equations with jumps. In addition, when
explosion happens, using techniques from [19] we also express the potential measure
of the process X using the generalized scale functions for the associated spectrally
negative Lévy process.

To find the speed of explosion, we treat separately two classes of rate functions, the
so called slow regime of rate functions that are perturbations of power functions and
the fast regime of rate functions that are perturbations of exponential functions. Our
approach relies on analyzing the weighted occupation time for spectrally positive Lévy
process. For the process X with rate function from the slow regime, given the explosion
occurs we can show that the normalization of random variable T+

∞ − T+
x converges to

1 in the conditional probability, where T+
x denotes the first upcrossing time of level

x. Similarly, if the rate function belongs to the fast regime, under the conditional
probability of explosion the random variable T+

∞ − T+
x , after rescaling, converges in

distribution to a random variable whose distribution can be specified using functionals
of spectrally positive Lévy process. The convergence results in both cases lead to
an asymptotic on the running maximum of the process near the explosion time. By
comparing values of the associated spectrally positive Lévy process with its running
maximum, we can show that for rate functions in both regimes the explosion occurs in
an asymptotically deterministic fashion. In particular, in the fast regime the speed of
explosion is asymptotically proportional to − log t as time t→ 0+.

Some parts of our approach resemble those in [12] and in [1] for studying the coming
down from infinity behaviors of the respective processes. But an additional difficulty
emerges in our work due to the overshoot when the nonlinear branching process first
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Explosion of nonlinear branching processes

upcrosses a level x at time T+
x . We remark that this difficulty seems to be essential and

we do not see schemes such as time reversal can easily get around the problem caused
by overshoot.

To overcome this difficulty, for the associated spectrally positive Lévy process we
identify the Laplace transform of its stationary overshoot distribution, and we obtain a
new asymptotic result on the corresponding scale function. For the case of fast regime,
instead of showing the convergence of Laplace transform for the weighted occupation
time as in [12], we apply the occupation density theorem to the weighted occupation time
and the properties of regularly varying functions to show the almost sure convergence
that eventually leads to the desired convergence in law.

We also want to point out that our condition on rate function, H2 in Section 3, for the
convergences of the rescaled explosion time can be more general than those in [12].

The rest of the paper is arranged as follows. In Section 2 we first introduce some pre-
liminary results on spectrally positive Lévy processes and the associated scale functions
together with the exit problems and the weighted occupation times. The continuous-state
nonlinear branching processes are also defined via the Lamperti type transforms in this
section. The main results are presented in Section 3. All the proofs are deferred to
Section 4. Several intermediate results are also posed and proved in Section 4.

2 Spectrally positive Lévy processes and continuous-state nonlin-
ear branching processes

Let ξ be a spectrally positive Lévy process (SPLP), that is, a real-valued stochastic
process with stationary independent increments and with no negative jumps, defined on
a filtered probability space (Ω,F , (Ft)t≥0,P). Its Laplace exponent is well-defined and
of the Lévy-Khintchine form, i.e. for s ≥ 0,

ψ(s) := t−1 logE
[

exp(−sξt)
]

=
σ2

2
s2 − µs+

∫ ∞
0

(
e−sx − 1 + sx1(x < 1)

)
Π(dx),

where µ ∈ R, σ ≥ 0 and the Lévy measure Π is a σ-finite measure on (0,∞) such that∫∞
0

(1 ∧ x2)Π(dx) < ∞. It is well-known that ψ(·) is continuous and strictly convex on
[0,∞), its right inverse is defined by Φ(t) := sup{s ≥ 0, ψ(s) = t}.

Denote by Px the probability law of ξ for ξ0 = x, and write P when ξ0 = 0. We denote
throughout this paper

p := Φ(0) and γ := E[ξ1] = −ψ′(0). (2.1)

Notice that γ <∞ if and only if
∫∞

0
(x∧x2)Π(dx) <∞, and in this case γ = µ+

∫∞
1
xΠ(dx).

If p > 0, then ψ′(0) ∈ [−∞, 0), ξ is transient and goes to∞ as t→∞, and the following
result holds.

Lemma 2.1. Write ξ̄t := sup0≤s≤t ξs for the running maximum process of ξ. For p > 0 we
have

ξt/ξ̄t −→
t→∞

1 and inf
s>t

ξs/ξt −→
t→∞

1 P-a.s.

Remark 2.2. If ψ′(0) = 0, then ξ oscillates and lim supt→∞ ξt/ξ̄t = 1 P-a.s.

For q ≥ 0, the q-scale function W (q) is a continuous and increasing function on [0,∞)

with W (q)(x) = 0 for x < 0, which satisfies∫ ∞
0

e−syW (q)(y) dy =
1

ψ(s)− q
for s > Φ(q).
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We write W (x) ≡W (0)(x) when q = 0. Define the first passage times of ξ as

τ−x := inf{t > 0, ξt < x} and τ+
x := inf{t > 0, ξt > x},

with the convention inf ∅ = ∞. Given the scale function, the following first passage
results can be found in Sections 8.1 and 8.2 of [18], for q ≥ 0 and c < x < b

Ex
[
e−qτ

−
c ; τ−c < τ−b

]
=
W (q)(b− x)

W (q)(b− c)
and Ex

[
e−qτ

−
c
]

= e−Φ(q)(x−c), (2.2)

with the convention e−∞ = 0. The potential measure of ξ killed upon leaving the interval
[0,∞) is given by

U(x, dy) :=

∫ ∞
0

Px(ξt ∈ dy; t < τ−0 )dt

=
(
e−pxW (y)−W (y − x)

)
dy =: u(x, y) dy for x, y > 0.

(2.3)

Change of measure is another useful tool for the fluctuation theory of Lévy processes.
For α ∈ R with ψ(α) <∞, the process (e−αξt−ψ(α)t)t≥0 is a martingale under P. Define
the probability measure P(α) by

dP(α)

dP

∣∣∣∣
Ft

= e−αξt−ψ(α)t for t > 0. (2.4)

It is well-known that ξ is still a SPLP under P(α). The associated Laplace exponent and
scale functions under P(α) are denoted similarly with subscripts α. A direct calculation
shows that

ψα(s) = ψ(α+ s)− ψ(α) and Φα(s) = Φ(ψ(α) + s)− α for s ≥ 0,

and W (q)
α (x) = e−αxW (q+ψ(α))(x). In particular, for the 0-scale function under P(p)

Wp(y) = e−pyW (y) ↑Wp(∞) = Φ′(0). (2.5)

We refer to [17] and [13] for a more detailed discussions and examples of scale functions.
The following limiting result on the resolvent density in (2.3) is useful in this paper,

and we refer to Theorem I.21 of [2] for a similar result called “renewal theorem”.

Lemma 2.3. If p, γ ∈ (0,∞), we have

lim
y→∞

(
epyΦ′(0)−W (y)

)
= γ−1.

A direct consequence of the limit above is that for any k ∈ R,

lim
y→∞

sup
x≥k

∣∣∣u(x, x+ y)− 1− e−px

γ

∣∣∣
= lim
y→∞

sup
x≥k

∣∣∣(e−pxW (x+ y)−W (y))− 1− e−px

γ

∣∣∣ = 0.

Remark 2.4. By change of measure, we obtain the following general result where a
light-tailed condition on Π is required. For q ≥ 0, let φ(q) be the left-root of t→ ψ(t)− q
and assume ψ′(φ(q)) ∈ (−∞, 0), i.e. φ(q) < Φ(q) with ψ(φ(q)) = q, then φ(q) ≤ 0 and

e−φ(q)y
(
e−Φ(q)xW (q)(x+ y)−W (q)(y)

)
−→
y→∞

e(φ(q)−Φ(q))x − 1

ψ′(φ(q))
,

where −φ(q) is also known as the unique nonnegative root of the Cramér-Lundberg
equation ψ(−t) = q in risk theory.
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Lemma 2.3 is proved based on the following result used in [10]; see also Theorem 5.7
of [18] and [3]. If γ ∈ (0,∞), then

P
(
ξ(τ+

y )− y ∈ dz
)

=⇒
y→∞

ρ(dz), (2.6)

for some non-degenerate weak limit ρ on [0,∞), called the stationary overshoot distribu-
tion in [10], which is characterized in the following lemma, see also Lemma 3 of [4] for
Lévy process in a half-line.

Lemma 2.5. If p, γ ∈ (0,∞), we have for s ≥ 0

ρ̂(s) :=

∫ ∞
0−

e−szρ(dz) =
pψ(s)

γs(s− p)
. (2.7)

In particular, ρ̂(p) = (γΦ′(0))−1.

The continuous-state nonlinear branching process X considered in this paper is
defined in [21] by time changing a spectrally positive Lévy process. More precisely, for a
Borel function R(·) on (0,∞), which is positive and locally bounded away from 0, define
an additive functional

η(t) :=

∫ t

0

1

R(ξs)
ds for t < τ−0 , (2.8)

and η(∞) := limt→∞ η(t) on the event {τ−0 =∞}. Its right inverse function is defined as
η−1(t) := inf{s > 0, η(s) > t} for t < η(τ−0 ). Then the process X is defined, stopped at
time η(τ−0 ) ≤ ∞, by letting

Xt := ξ(η−1(t)) for t ∈ [0, η(τ−0 )). (2.9)

It is true that X is a well-defined positive-valued Markov process with absorbing states
{0,∞}. Define the first passage times of X by

T−x := inf{t > 0, Xt < x}, T+
x := inf{t > 0, Xt > x},

for x ∈ (0,∞) and

T−0 := lim
x→0+

T−x and T+
∞ := lim

x→∞
T+
x , (2.10)

with the convention inf ∅ =∞. The following identities on the first passage times follow
immediately from the Lamperti type transform. For any x > 0 we have

T+
x = η(τ+

x ) on the event {τ+
x < τ−0 } and T−x = η(τ−x ) on the event {τ−x <∞}. (2.11)

In addition, for the absorbing time η(τ−0 ), we have

η(τ−0 ) =

{
T−0 = η(τ−0 ) on the event {τ−0 <∞},
T+
∞ = η(∞) on the event {τ−0 =∞}. (2.12)

More precisely, at η(τ−0 ), the process X becomes extinct at the finite time T−0 = η(τ−0 )

with X(T−0 ) = 0 on the event {η(τ−0 ) < ∞, τ−0 < ∞}; it becomes extinguishing when
limt→∞X(t) = 0 on the event {η(τ−0 ) = ∞, τ−0 < ∞}; it explodes at the finite time
T+
∞ = η(∞) with X(T+

∞) =∞ on the event {η(∞) <∞, τ−0 =∞}; and it drifts to infinity
when limt→∞X(t) = ∞ on the event {η(∞) = ∞, τ−0 = ∞}. T−0 is called the extinction
time of X if T−0 <∞, and T+

∞ is called the explosion time of X if T+
∞ <∞.

We first characterize the extinction and explosion conditions for the process X using
integral tests. Note that similar results are obtained in [21] for power function R.
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Proposition 2.6. Extinction occurs for the process X with a positive probability, i.e.

Px(η(τ−0 ) <∞, τ−0 <∞) > 0 if and only if

∫
0+

W (z)

R(z)
dz <∞.

Moreover, in this case, Px(η(τ−0 ) < ∞|τ−0 < ∞) = 1 and the extinction probability is
Px
(
T−0 <∞

)
= e−px for all x > 0.

If p, γ ∈ (0,∞), the process X explodes with a positive probability, i.e.

Px(η(∞) <∞, τ−0 =∞) > 0 if and only if

∫ ∞ 1

R(z)
dz <∞.

Moreover, in this case, Px(η(∞) < ∞|τ−0 = ∞) = 1 and the explosion probability is
Px
(
T+
∞ <∞

)
= 1− e−px for all x > 0.

We remark here that by definition of explosion time in (2.10), the first passage
identities (2.11), (2.12) and the boundary behaviors for process X specified thereafter,
the event of explosion is equivalent to the finiteness of the so-called perpetual integrals
of spectrally negative Lévy processes on the set {τ−0 = ∞}, which has been studied
under different conditions; c.f. [10, 23, 16] and the references therein.

In the paper, we first introduce the following assumptions on the rate function R.

H0:
∫∞ dy

R(y) <∞ and H1:
∫∞

0+
Wp(y)
R(y) dy <∞ for p ≥ 0.

By Proposition 2.6, condition H0 can be referred to as the explosion condition, under
which we denote by

ϕ(x) :=
1

γ

∫ ∞
x

dy

R(y)
for x > 0. (2.13)

Remark 2.7. Observe that condition H1 implies condition H0. Further, if p > 0, then
Wp(∞) <∞ and the condition H1 is equivalent to∫ 1

0+

W (y)

R(y)
dy +

∫ ∞
1

1

R(y)
dy <∞,

which, although stronger than the explosion condition H0, allows to find explicit expres-
sions for general R for further analysis; c.f. Corollary 4.5, Remarks 4.6 and 4.8.

Remark 2.8. For a general rate function R, {T+
∞ <∞} = {T+

∞ < T−0 },{
T−0 =∞

}
=
{
τ−0 =∞

}
∪
(
{τ−0 <∞} ∩ {η(τ−0 ) =∞}

)
,

and {
T+
∞ =∞

}
=
{
τ−0 <∞

}
∪
(
{τ−0 =∞} ∩ {η(∞) =∞}

)
.

We may have P
(
{T+
∞ =∞}∩{T−0 =∞}

)
> 0 for someR. In such a case, there is a positive

probability that the process ξ either reaches 0 or goes to ∞ before reaching 0, where
the associated X either extinguishes or drifts to∞ respectively. Proposition 2.6 shows
that, under condition H0 we have {T+

∞ <∞} = {τ−0 =∞}, and under stronger condition
H1, we have {T−0 <∞} = {τ−0 <∞}, which gives P

(
{T+
∞ <∞} ∪ {T−0 <∞}

)
= 1.

Remark 2.9. By Proposition VII.10 in [2], Wp(x) � 1
xψp(1/x) , we have∫

0+

W (z)

R(z)
dz <∞ if and only if

∫ ∞ 1

zψp(z)R(1/z)
dz <∞,

and ∫ ∞ Wp(z)

R(z)
dz <∞ if and only if

∫
0+

1

zψp(z)R(1/z)
dz <∞.
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In particular, for R(z) = zθ, by change of variable, we have from Proposition 2.6 that

Px
(
T−0 <∞

)
> 0 if and only if

∫ ∞ zθ−1

ψp(z)
dz <∞,

which coincides with Theorem 1.8 of [21]. If p, γ ∈ (0,∞), then

Px
(
T+
∞ <∞

)
> 0 if and only if θ > 1,

which coincides with Theorem 1.10(1) of [21].

3 Main results

Under the condition H1, the explosion time T+
∞ has finite exponential moment.

Theorem 3.1. Assume p > 0 and the condition H1 holds for function R. Then mn(x) :=

Ex
[
(T+
∞)n;T+

∞ < T−0
]

is finite and can be obtained recursively by

mn(x) = n

∫ ∞
0

u(x, y)
mn−1(y)

R(y)
dy with m0(x) = 1− e−px, (3.1)

where u is the potential density in (2.3). For |q| <
( ∫∞

0+
Wp(z)
R(z) dz

)−1

, we have for x > 0

Ex
[
eq·T

+
∞ ;T+

∞ < T−0
]

=

∞∑
n=0

qn

n!
mn(x) <∞.

Recall p, γ defined in (2.1) and ϕ defined in (2.13). To study the asymptotic behavior
of the process X near time T+

∞ on {T+
∞ < ∞}, we always assume p, γ ∈ (0,∞), the

explosion condition H0 and the following condition hold, for some λ ∈ [0,∞) and every
x > 0

H2: ϕ(x+y)
ϕ(y) −→

y→∞
e−λx.

Denote by
Qt(x,A) := Px(Xt ∈ A) = Px(Xt ∈ A, t < T−0 ∧ T+

∞),

and under condition H0,

Q↑x(B) := Qx
(
B
∣∣T+
∞ <∞

)
= Px

(
B
∣∣τ−0 =∞

)
=: P↑x

(
B
)
,

for x > 0, t ≥ 0, A ∈ B(0,∞) and B ∈ σ{Xt, t ≥ 0} ⊂ σ{ξs, s ≥ 0}. Then Qt defines the
semigroup of X before absorption, Q↑x defines the probability law of X conditioned on
explosion, and P↑x denotes the probability law of ξ conditioned to stay positive, where
under condition H0 and p > 0, Q↑x is meaningful with Q↑x = P↑x by Remark 2.8.

Remark 3.2. Recall that, a positive function f on (0,∞) is regularly varying with index
α ∈ R at∞ if for any s > 0,

f(sx)/f(x)→ sα as x→∞,

and is slowly varying at∞ if α = 0.
The condition H2 is equivalent to function x→ ϕ(log x) being regularly varying with

index −λ ∈ (−∞, 0]. If there exists a positive function f such that

ϕ(x+ y)

ϕ(y)
−→
y→∞

f(x) for all x > 0,

EJP 26 (2021), paper 148.
Page 7/25

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP715
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Explosion of nonlinear branching processes

then condition H2 necessarily holds; see Theorem 1.4.1 of [5]. Moreover, under condition
H2 we have

logϕ(x+ y)− logϕ(y) −→
y→∞

−λx.

It follows from Lemma 1.4.5 of [5] that

ϕ(x) = e−(λ+ε(x))x for some function ε satisfying ε(x)→ 0 as x→∞,

which can also be obtained from a representation of regularly varying function.
A sufficient condition for the condition H2 is that function x → R(log x) varies

regularly with index λ ≥ 0, which can be proved by applying Karamata’s theorem,
c.f. Theorem 1.5.11 and Proposition 1.5.9.b of [5]. An interesting example for R is a
power-like function satisfying the condition H0 with λ = 0. If

lim inf
x→∞

xαR(x) > 0 and lim sup
x→∞

xβR(x) <∞,

for some constants α ≥ β with α − β < 1, then H2 holds with λ = 0. Actually, under
condition H0, we must have β < −1, thus for some constant c > 0 and x large enough,

ϕ(x)− ϕ(x+ a)

ϕ(x)
=

∫ x+a

x
1

R(y) dy∫∞
x

1
R(y) dy

≤ c
∫ x+a

x
yα dy∫∞

x
yβ dy

≤ −ca
1 + β

xα−β−1 → 0.

We are ready to present our results on explosion whose proofs are deferred to
Section 4. Recall from Proposition 2.6 that, if p, γ ∈ (0,∞) and H0 holds, Q↑x

(
T+
∞ <∞

)
=

1.
We first present the asymptotic of the residual explosion time after first uncrossing a

level.

Theorem 3.3. Suppose that p, γ ∈ (0,∞) and R satisfies the conditions H0 and H2, and
let λ ≥ 0 be the constant in H2.

(A) If λ = 0, then for every x > 0

T+
∞ − T+

z

ϕ(z)
→ 1 in Q↑x as z →∞. (3.2)

(B) If λ ∈ (0,∞) and lim supx→∞
1

ϕ2(x)

∫∞
x

1
R2(y) dy <∞, then as z →∞

ϕ(X(T+
z ))

ϕ(z)

∣∣∣
Q
↑
x

D
=⇒ e−λ%,

T+
∞ − T+

z

ϕ(X(T+
z ))

∣∣∣
Q
↑
x

D
=⇒ λγ

∫ ∞
0

e−λξt dt

and
T+
∞ − T+

z

ϕ(z)

∣∣∣
Q
↑
x

D
=⇒ λγe−λ%

∫ ∞
0

e−λξt dt,

(3.3)

where Z|
Q
↑
x

denotes the law of Z under Q↑x, and where % is a random variable
independent of ξ with probability law ρ specified in (2.7).

Remark 3.4. By (4.14) in the proof of Theorem 3.3 we see that, under conditions H1

and H2, the stronger L2(Q↑x) convergence holds for assertion (A) of Theorem 3.3, that is,

lim
z→∞

Q↑x

[(T+
∞ − T+

z

ϕ(z)
− 1
)2]

= 0.

Remark 3.5. If x→ R(log x) is a regularly varying function with index λ > 0 as x→∞,
it follows from Karamata’s theorem that∫ ∞

x

R2(x)

R2(y)
dy → (2λ)−1 and

∫ ∞
x

R(x)

R(y)
dy → λ−1 as x→∞,
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thus,
1

ϕ2(x)

∫ ∞
x

1

R2(y)
dy → γ2λ

2
.

In particular, if R(x)e−λx is a regularly varying function, then x→ R(log x) is regularly
varying with index λ.

We now present the following main result concerning the speed of explosion.

Theorem 3.6. Suppose that p, γ ∈ (0,∞) and R satisfies the conditions H0 and H2.

(a) If λ = 0 and lim infy→∞
ϕ(y)
ϕ(hy) ∈ (1,∞] for every h > 1, then we have for every x > 0

X(T+
∞ − t)

ϕ−1(t)

∣∣∣∣
Q
↑
x

→ 1 and
inf0<s<tX(T+

∞ − s)
ϕ−1(t)

∣∣∣∣
Q
↑
x

→ 1 as t→ 0+,

where ϕ−1(t) := sup{s > 0, ϕ(s) > t} is the right inverse of ϕ.

(b) If λ > 0 and limx→∞
1

ϕ(x)2

∫∞
x

1
R2(y)dy <∞, then we have

X(T+
∞ − t)
− log t

∣∣∣∣
Q
↑
x

→ λ−1 and
inf0<s<tX(T+

∞ − s)
− log t

∣∣∣∣
Q
↑
x

→ λ−1 as t→ 0+.

Remark 3.7. If for some M,m > 0 and α > 1, mxα < R(x) < Mxα for all x large enough,
then for every h > 1 we have

ϕ(x)− ϕ(xh)

ϕ(x)
=

∫ xh
x

1
R(y) dy∫∞

x
1

R(y) dy
≥
m
∫ xh
x

y−α dy

M
∫∞
x
y−α dy

=
m

M

(
1− h1−α) > 0,

and the corresponding function R satisfies the condition (a) in Theorem 3.6.

Remark 3.8. For the asymptotic functions in Theorems 3.3 and 3.6,

• if R(x) = (c+ x)θ for θ > 1 and any constant c > 0, then

ϕ(x) =
(x+ c)1−θ

γ(θ − 1)
and ϕ−1(t) ∼ (γ(θ − 1)t)

1
1−θ as t→ 0+;

• if R(x) = eλx for λ > 0, then ϕ(x) = (λγ)−1e−λx and ϕ−1(t) ∼ −λ−1 log t as
t→ 0+.

Remark 3.9. Studying the explosion behaviors of X for rate function R with arbitrary
behavior near∞ seems to be rather challenging since the explosion may allow different
speeds when the explosion time is approached in different ways. To this end, we assume
H2 on the asymptotic behavior of the rate function, which is similar to those assumptions
in [1] and [12].

Remark 3.10. We assume that γ ∈ (0,∞) in both Theorem 3.3 and Theorem 3.6. It
remains open to identify the speed of explosion for continuous-state nonlinear processes
with big jumps in the sense that

∫∞
1
xΠ(dx) =∞.

4 Proofs

This Section is dedicated to the proofs of the main results. Lemmas 2.1, 2.3 and 2.5
for SPLP are of independent interest and are proved first. They will be applied in the
proofs of main results thereafter. Recall p and γ defined in (2.1).
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4.1 Proofs of Lemmas 2.1, 2.3 and 2.5

Our proof of Lemma 2.1 is based on the Itô excursion theory, where the compensation
formula and the exponential formula for Poisson point process are applied; c.f. Chapter O
of [2]. Here we use the standard notions in the fluctuation theory of Lévy process from
[2]. Let χ := ξ̄ − ξ be the Lévy process reflected at its running maximum, where
ξ̄t = sups≤t ξs is the running maximum process of ξ. Let l be a local time process of χ at
0 and l−1 be its right inverse. Since limt→∞ ξ(t) =∞, χ is a recurrent Markov process.
In addition,

(
l−1
s , ξ(l−1

s )
)
s≥0

defines a proper bivariate subordinator on (0,∞), called the
ladder process in Chapter VI of [2], with a version of its Laplace exponent given by
κ̂(α, β) = α−ψ(β)

Φ(α)−β . The excursion process (εs)s≥0 of χ away from 0, defined by

εs :=

{ {
χ(t+ l−1

s−), 0 ≤ t < l−1
s − l−1

s−
}

if l−1
s− < l−1

s ,

∆ otherwise,
(4.1)

for some isolated point ∆, is a Poisson point process with characteristic measure n. The
associated excursion height process is denoted by (ε̄s)s≥0, that is,

ε̄s :=

{
supl−1

s−<t<l
−1
s
χ(t) if l−1

s− < l−1
s ,

∆ otherwise.
(4.2)

Then (ε̄s)s≥0 is a R+-valued Poisson point process and we occasionally drop index s.

Proof of Lemma 2.1. Assume p > 0, then P(τ+
1/ε <∞) = 1 for every ε ∈ (0, 1). If t > τ+

1/ε

and ξ̄(t)− ξ(t) ≥ ε · ξ̄(t), we have t ∈ (l−1(s−), l−1(s)) with s = l(t). Then we have for this
excursion ε, ε̄s > 1 and ε̄s > ε · ξ̄(t) = ε · ξ̄(l−1

s−). Therefore, counting the number of those
excursions gives{

ε < lim sup
t→∞

ξ̄(t)− ξ(t)
ξ̄(t)

}
=
{

#
{
s > 0

∣∣ε̄s > 1, ε̄s > ε · ξ̄(l−1
s−)
}

:= Nε =∞
}
.

On the other hand, since the process χ has no positive jumps, the law of ε̄ given ε̄ > 1

under n(·) is identical to the law of | inft<τ+
0
ξ(t)| under P−1, that is, for y > 1

n(ε̄ > y|ε̄ > 1) = P−1

(
inf
t<τ+

0

ξ(t) < −y
)

= P−1(τ−−y < τ+
0 ) =

W (1)

W (y)
.

Notice that similar to Lemma VI.2 of [2], the excursion height process
(
ε̄s, s > 0

)
is

independent of
(
ξ̄(l−1

s−), s > 0
)
. Therefore, conditioning on (ξ̄(l−1

s−), s > 0), Nε is Poisson
distributed with parameter (∫ ∞

0

n(ε̄ > 1)W (1)

W
(
1 ∨ ε · ξ̄(l−1

s−)
)ds). (4.3)

Since W (x) = epxWp(x) ≥Wp(1)epx for x ≥ 1, and P-a.s. ξ̄(l−1
s−) = ξ̄(l−1

s ) = ξ(l−1
s ) for

almost every s > 0, by the right-continuity of ξ and the definition of l−1, we have from
Fubini’s theorem that

E

[ ∫ ∞
0

Wp(1)

W
(
1 ∨ ε · ξ̄(l−1

s−)
)ds] ≤ ∫ ∞

0

E
[
e−pε·ξ(l

−1
s )
]
ds =

p(1− ε)
−ψ(εp)

<∞,

where in the equality above we use the fact that ξ(l−1
s ) is a subordinator with Laplace

exponent −ψ(β)
p−β . Therefore, P almost surely, we have∫ ∞

0

n(ε̄ > 1)W (1)

W
(
1 ∨ ε · ξ̄(l−1

s−)
)ds <∞ ⇔ Nε <∞ ⇔ lim sup

t→∞

ξ̄(t)− ξ(t)
ξ̄(t)

≤ ε,

EJP 26 (2021), paper 148.
Page 10/25

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP715
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Explosion of nonlinear branching processes

and finish the proof of the first assertion.
For the second limit, for every ε > 0, suppose t > 0 such that ξt ≥ (1 + ε) infs>t ξs > 0.

There exists r > t such that
√

1 + ε · infs>t ξs ≥ ξr. Then for this r we have

sup
s≤r

ξs ≥ ξt ≥ (1 + ε) inf
s>t

ξs ≥
√

1 + ε · ξr.

The first assertion is then applied to prove the second assertion.

We now prove Lemma 2.5 before Lemma 2.3.

Proof of Lemma 2.5. The proof is based on the observation that ξ and its ladder height
process have the same overshoot when first up-crossing a level. Thus, the stationary
overshoot is identical in law to the limit of the overshoot of the ladder process, and
where we need the assumption of γ = E[ξ1] ∈ (0,∞).

More specifically, consider a ladder height process of ξ, which is a subordinator with
a version of Laplace exponent κ̂(β) = ψ(β)

β−p , c.f. Theorem VII.4 of [2]. Let δ and ν(dz)

be the associated drift parameter and jump measure, respectively. Then we have from
Theorem 5.7 of [18] that

ρ̂(s) :=

∫ ∞
0−

e−szρ(dz) =

∫ ∞
0

dy

∫ ∞
0

e−sz

µ
ν(dz + y) +

δ

µ

=
1

µ

(
δ +

1

s

∫ ∞
0

(1− e−sz)ν(dz)
)

=
κ̂(s)

µs
=

ψ(s)

µs(s− p)
,

where µ = κ̂′(0) = ψ′(0)
−p ∈ (0,∞), which finishes the proof.

Remark 4.1. From the Lévy-Khintchine formula, for the case p, γ ∈ (0,∞),

ρ̂(s) =
pσ2

2γ
+
p

γ

∫ ∞
0

e−sz
(∫ ∞

0

e−ρyΠ̄(y + z)dy
)
dz.

We are now ready to prove Lemma 2.3 by applying Lemma 2.5.

Proof of Lemma 2.3. For y > 0, define the hitting time of ξ by

τ{y} = inf{t > 0, ξt = y}.

Since the process X has no positive jumps, τ{y} = τ+
y + τ−y ◦ θτ+

y
. Applying (2.2), (2.6)

and Lemma 2.5, we have

P(τ{y} <∞) = E
[
e−p(ξ(τ

+
y )−y)

]
−→
y→∞

∫ ∞
0−

e−pzρ(dz) = (γΦ′(0))−1. (4.4)

On the other hand, it is proved in Lemma 3.1 of [20] that

Px
(
τ{y} < τ+

b ∧ τ
−
c

)
=
W (b− x)

W (b− y)
− W (y − x)

W (y − c)
W (b− c)
W (b− y)

,

for x, y ∈ (c, b). Letting b→∞ and c→ −∞, it follows from (2.5) that

P(τ{y} < τ−c ) =
epcW (y − c)−W (y)

Wp(y − c)
for y > c, (4.5)

P
(
τ{y} <∞

)
= epy − W (y)

Wp(∞)
=

1

Φ′(0)

(
epyΦ′(0)−W (y)

)
.

Applying (4.4) the proof is completed.

Remark 4.2. For the case of linear Brownian motion with ψ(s) = σ2

2 s
2 − µs for some

constants σ, µ > 0, we have γ = −ψ′(0) = µ, p = 2µ
σ2 and Φ′(0) = (ψ′(p))−1 = µ−1. Then

γΦ′(0) = 1. On the other hand, since the Brownian motion has no jumps and due to the
positive drift, we always have P(τ{y} <∞) = 1 for every y > 0.
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4.2 Proof of Proposition 2.6

Since the processes X and ξ are connected via the Lamperti type time transform,
in the proofs of our main results, we focus ourself on the study of ξ and its integral
functional. In the proof, we write

ϑ(·) :=
1

R(·)
.

The process η(·) in (2.8) is then written as

η(t) =

∫ t

0

1

R(ξs)
ds =

∫ t

0

ϑ(ξs)ds,

and called the weighted occupation time process in [19], where fluctuation theory of
the ϑ-killed spectrally one-sided Lévy processes is studied. In this paper, ϑ is always
assumed to be positive and locally bounded on (0,∞). Recall that p and γ are constants
defined in (2.1), respectively, and the Lamperti type identities between the first passage
times for X and ξ in (2.11).

For the proof of Proposition 2.6, the condition of explosion is an immediate conse-
quence of the following result from [10]: if E[ξ1] ∈ (0,∞) and f is a positive locally

integrable function, then P

(∫∞
0
f(ξs) ds <∞

)
∈ {0, 1} and

P

(∫ ∞
0

f(ξs) ds <∞
)

= 0 ⇐⇒
∫ ∞

f(x) dx =∞. (4.6)

Even for γ = ∞, one can find from the proof for sufficiency in [10] that the identity
on the right hand side of (4.6) is still a sufficient condition for the left hand side to
hold. Therefore, we only focus on the proof of extinction condition in the first state-
ment of Proposition 2.6, where we need the following result that extends the classical
result of (2.2) and leave the proof to interested readers; also see Remark 4 in [19] and
Lemma 4.2 of [20].

Proposition 4.3. For any b > x > c > 0, we have

Ex

[
e−η(τ−c ); τ−c < τ+

b

]
=
W (ϑ)(b, x)

W (ϑ)(b, c)
,

where W (ϑ) is defined as the unique locally bounded function satisfying

W (ϑ)(x, y) = W (x− y) +

∫ x

y

W (x− z)ϑ(z)W (ϑ)(z, y) dz (4.7)

= W (x− y) +

∫ x

y

W (ϑ)(x, z)ϑ(z)W (z − y) dz. (4.8)

Note that if ϑ ≡ q for some q > 0, then η(τ−c ) = qτ−c and W (ϑ)(x, y) = W (q)(x − y),
and the identity in the proposition above exactly reduces to the classical result (2.2). For
the W (ϑ)(x, y) defined above, we have the following asymptotic results.

Lemma 4.4. For any x, y > 0, we have

W (ϑ)(x, 0+) := lim
y→0+

W (ϑ)(x, y) <∞ if and only if

∫ 1

0+

ϑ(z)Wp(z) dz <∞,

and H(ϑ)(y) := lim
x→∞

W (ϑ)(x, y)

W (x)
<∞ if and only if

∫ ∞
1

ϑ(z)Wp(z) dz <∞.
(4.9)
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Moreover, the function H(ϑ) defined above satisfies

H(ϑ)(y) = e−py +

∫ ∞
y

e−pzϑ(z)W (ϑ)(z, y) dz

= e−py +

∫ ∞
y

H(ϑ)(z)ϑ(z)W (z − y) dz.

(4.10)

Therefore, if ϑ satisfies H1, then H(ϑ)(0+) := limy→0+H
(ϑ)(y) <∞.

Proof of Lemma 4.4. We start from the existence of the limits in (4.9).
For x > y > 0, we have from (4.7) that

W (ϑ)(x, y)

W (x)
=
W (x− y)

W (x)
+

∫ x

y

W (x− z)
W (x)

ϑ(z)W (ϑ)(z, y) dz (4.11)

≤ 1 +

∫ x

y

e−pzϑ(z)W (ϑ)(z, y) dz. (4.12)

Put G(x) := exp(−
∫ x

1
ϑ(z)Wp(z) dz). Then G is absolutely continuous with respect to

Lesbegue measure with G′(x) = −ϑ(x)Wp(x)G(x) for a.e. x, and for a.e. x

∂

∂x

(
G(x)

(
1 +

∫ x

y

e−pzϑ(z)W (ϑ)(z, y) dz
))

= G(x)
(
e−pxϑ(x)W (ϑ)(x, y)− ϑ(x)Wp(x)

(
1 +

∫ x

y

e−pzϑ(z)W (ϑ)(z, y) dz
))

= G(x)ϑ(x)Wp(x)
(W (ϑ)(x, y)

W (x)
−
(
1 +

∫ x

y

e−pzϑ(z)W (ϑ)(z, y)dz
))
≤ 0,

by (4.12). Thus, for x > y > 0

G(x)
(

1 +

∫ x

y

e−pzϑ(z)W (ϑ)(z, y) dz
)
≤ G(y).

Making use of (4.12) again gives

W (ϑ)(x, y)

W (x)
≤ G(y)

G(x)
= exp

(∫ x

y

ϑ(z)Wp(z) dz
)

for x > y > 0.

From the inequality above, if
∫∞

1
ϑ(z)Wp(z) dz < ∞, the function x 7→ W (ϑ)(x,y)

W (x) is
bounded from above for every fixed y > 0, which, together with the fact of being in-
creasing in x by (4.11), gives the existence and finiteness of H(ϑ)(y) on (0,∞). The
equations (4.10) for H(ϑ) follow from (4.7) and (4.8) by applying the monotone conver-
gence theorem. The “if” part in the first assertion on W (ϑ)(x, 0+) also follows from the
inequality above.

On the other hand, since W (ϑ)(x, y) ≥W (x− y), we have from (4.8) that,

W (ϑ)(x, y) ≥
∫ x

y

W (x− z)ϑ(z)W (z − y) dz

≥ ep(x−y)Wp(x− c)
∫ c

y

ϑ(z)Wp(z − y) dz for every c ∈ (y, x).

It follows that, W (ϑ)(x, 0+) =∞ if
∫ 1

0+
ϑ(z)Wp(z) dz =∞. Moreover, for every c > y,

lim inf
x→∞

W (ϑ)(x, y)

W (x)
≥ e−py

∫ c

y

ϑ(z)Wp(z − y) dz.
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Thus,

lim inf
x→∞

W (ϑ)(x, y)

W (x)
=∞ if

∫ ∞
1

ϑ(z)Wp(z) dz =∞,

which proves the “only if” part in the assertions. H(ϑ)(0+) <∞ under H1 also follows.
This completes the proof.

Proof of Proposition 2.6(extinction condition). Letting c → 0+ in Proposition 4.3, we
have

Ex

[
e−η(τ−0 ); τ−0 < τ+

b

]
= lim
c→0+

W (ϑ)(b, x)

W (ϑ)(b, c)
=

W (ϑ)(b, x)

W (ϑ)(b, 0+)
,

for every b > x > 0. By Lemma 4.4,

Px
(
η(τ−0 ) <∞, τ−0 <∞

)
> 0 if and only if

∫ 1

0+

ϑ(z)Wp(z) dz <∞.

On the other hand, if
∫ 1

0+
ϑ(z)Wp(z) dz <∞, we also have for every q > 0,

Ex
[
e−q·η(τ−0 ); τ−0 < τ+

b

]
=
W (qϑ)(b, x)

W (qϑ)(b, 0)
> 0,

where W (qϑ) is the generalized scale function in (4.7) with respect to qϑ(·). By the scale
function identity, for every x, y, q, r > 0,

W (qϑ)(x, y)−W (rϑ)(x, y) = (q − r)
∫ x

y

W (qϑ)(x, z)ϑ(z)W (rϑ)(z, y) dz,

c.f. Lemma 4.3 of [20], we have that q →W (qϑ)(x, y) is increasing. It is not hard to find
that W (qϑ)(x, y)→W (x− y) as q → 0+, which shows

Px(η(τ−0 ) <∞, τ−0 < τ+
b ) = Px

(
τ−0 < τ+

b

)
,

and the second assertion is proved.

Applying Lemma 4.4 to Proposition 4.3 by letting b → ∞, we also have the the
following results on the downward passage time of X and H(ϑ), and we leave the proof
to interested readers. Notice that the result holds for the case that either p = 0 or
limz→∞Wp(z) = Φ′(0) ≤ ∞.

Corollary 4.5. Let H(ϑ) be defined in (4.9) and assume that
∫∞

1
ϑ(z)Wp(z) dz <∞. Then

Ex

[
e−T

−
c ;T−c <∞

]
=
H(ϑ)(x)

H(ϑ)(c)
,

for every x > c > 0. If R satisfies H1, then the identity also holds for c = 0.

Remark 4.6. If
∫∞

1
ϑ(z)Wp(z) dz < ∞, we can always express H(ϑ) as a series of inte-

grals from (4.10). On the contrary, if
∫∞

1
ϑ(z)Wp(z)dz = ∞, the Laplace transform in

Corollary 4.5 holds for some increasing H̃(ϑ) on (0,∞) satisfying the singular equation

H̃(ϑ)(x) =

∫ ∞
x

H̃(ϑ)(z)ϑ(z)W (z − x)dz.

To evaluate H(ϑ), if ϑ(x) =
∫∞

0
e−xtµ(dt) = 1

R(x) for some positive measure µ on (0,∞)

such that the condition H1 is fulfilled, that is,∫ ∞
0+

Wp(y)

R(y)
dy =

∫ ∞
0+

ϑ(y)Wp(y) dy =

∫ ∞
0+

µ(dt)

∫ ∞
0

e−ytWp(y) dy =

∫ ∞
0

µ(dt)

ψp(t)
<∞,
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then H(ϑ)(y) =
∫∞

0
e−ysν(ds) for some positive measure ν on [p,∞) such that

ν(ds) = δ{p}(ds) +
ν ∗ µ(ds)

ψ(s)
for s ≥ p.

If µ(ds)=h(s)ds for some measurable h≥0 on (0,∞), then H(ϑ)(y)=e−py+
∫∞
p
e−ysk(s) ds

where k is a locally integrable function on (p,∞) satisfying a Volterra equation

k(s) =
1

ψ(s)

(
h(s) +

∫ s

p

h(s− r)k(r) dr
)

for s > p.

4.3 Proof of Theorem 3.1

An application of Proposition 2.6 shows that, under the condition p, γ ∈ (0,∞) and H0,
{T+
∞ <∞} = {τ−0 =∞} and has a positive probability, the moment function mn defined

in Theorem 3.1 can now be written in terms of ξ as

mn(x) = Ex
[
ηn(∞); τ−0 =∞

]
≤ ∞ for n ∈ N and x ≥ 0.

The following proposition on mn is frequently used in our proofs. Similar result can be
found in Lemma 8.11.1 of [5], and here we provide a proof for readers’ convenience.

Proposition 4.7. Let U be defined in (2.3). We have m0(x) = 1− e−px and

mn(x) = n

∫ ∞
0

U(x, dy)ϑ(y)mn−1(y) for x ≥ 0 and n ≥ 1.

Proof of Proposition 4.7. The expression for m0(x) follows from (2.2) by taking q = 0.
Since τ−0 = t+ τ−0 ◦ θt on the set {t < τ−0 } for the shifting operator θt, we have from

dη(t) = ϑ(ξt) dt that, on the set {τ−0 =∞},

ηn(∞) · 1(τ−0 =∞) = n

∫ ∞
0

(
η(∞)− η(t)

)n−1
ϑ(ξt) · 1(t < τ−0 =∞) dt

= n

∫ ∞
0

(
ηn−1(∞)1(τ−0 =∞)

)
◦ θt · ϑ(ξt) · 1(t < τ−0 ) dt.

By the Markov property at time t > 0 and Fubini’s theorem, we complete the proof.

Remark 4.8. If γ ∈ (0,∞), applying Lemma 2.3 to Proposition 4.7 we have

Ex
[
η(∞); τ−0 =∞

]
<∞ if and only if

∫ ∞
0+

ϑ(y)
(
1 ∧ (yWp(y))

)
dy <∞.

Using the idea similar to Proposition 4.7 in the following, we have for x > 0,

Ex
[
η(τ−0 ); τ−0 <∞

]
=

∫ ∞
0

U(x, dy)ϑ(y)Py(τ−0 <∞).

Then Lemma 2.3 shows that if γ ∈ (0,∞),

Ex
[
η(τ−0 ); τ−0 <∞

]
<∞ if and only if

∫ ∞
0+

ϑ(y)
(
e−py ∧Wp(y)

)
dy <∞,

and Ex
[
η(τ−0 )

]
<∞ if and only if

∫ ∞
0+

ϑ(y)Wp(y) dy <∞.

We refer to [23] for more detailed discussions on the related results. Notice that the 0-1
law in the first part of Proposition 2.6 can also be proved by showing that

E
[
η(τ−0 ); τ−0 < τ+

b

]
<∞ if and only if

∫ 1

0+

ϑ(z)Wp(z) dz <∞.
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We are now ready to prove Theorem 3.1. Notice that ϑ = 1
R in Theorem 3.1 is

assumed to satisfy H1, which fulfills the condition of Lemma 4.4, and under which

η(τ−0 ) = η(τ−0 )1(τ−0 <∞) + η(∞)1(τ−0 =∞) <∞ Px-a.s.,

for every x > 0 as shown in Proposition 2.6.

Proof of Theorem 3.1. The recursive identity (3.1) on the moments of T+
∞ is obtained

from Proposition 4.7. From (4.5), we know that the density of U is bounded by

u(x, y) = e−pxW (y)−W (y − x) ≤Wp(y) for all x, y > 0.

Therefore, with m0(x) = 1− e−px ≤ 1, we have

mn(x) ≤ n
∫ ∞

0

ϑ(y)Wp(y)mn−1(y) dy ≤ n!×
(∫ ∞

0

ϑ(y)Wp(y)
)n

for all n ≥ 1.

Since Carleman’s condition on the moments is satisfied, the distribution of T+
∞ = η(∞)

on the set {T+
∞ < T−0 } = {τ−0 =∞} = {T−0 =∞} = {T+

∞ <∞} under the condition H1 is
uniquely determined by its moments (mn)n≥0, and the desired conclusion follows.

4.4 Proofs of Theorems 3.3 and 3.6

To compare the asymptotic behaviors of functions at infinity, we write as usual

f(x) ∼ g(x) as x→∞ if lim
x→∞

f(x)/g(x) = 1,

and
f(x) = o(g(x)) as x→∞ if lim

x→∞
f(x)/g(x) = 0,

where g(x) 6= 0 for x large enough. We always assume that p, γ ∈ (0,∞) and the weight
function ϑ satisfies H0 and H2. We prove in Proposition 4.10 the asymptotic results about
the tail integrals for functions of this kind, that is,∫ ∞

x+y

f(z) dz

/∫ ∞
y

f(z) dz → exp(−λx) as y →∞, (4.13)

for some constant λ ∈ [0,∞) and every x > 0. Since the condition (4.13) is closely related
to regularly varying functions as shown in Remark 3.2, similar results for “Stieltjes-
integral forms” can be found in Theorem 1.6.4 and 1.6.5 of [5]. Recall the following
Karamata’s theorem from Theorem 1.5.11 of [5].

Proposition 4.9 (Karamata’s Theorem). Let f vary regularly with index ρ, and be locally
bounded in [c,∞). Then

(i) for any σ ≥ −(ρ+ 1),

xσ+1f(x)

/∫ x

c

tσf(t)dt→ σ + ρ+ 1 as x→∞;

(ii) for any σ < −(ρ+ 1) (and for σ = −(ρ+ 1) if
∫∞

t−(ρ+1)f(t)dt <∞),

xσ+1f(x)

/∫ ∞
x

tσf(t)dt→ −(σ + ρ+ 1) as x→∞.

Proposition 4.10. Suppose that a positive function f has a finite tail integral and its
tail integral satisfies the condition (4.13) for some λ ∈ [0,∞),
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(A) If λ = 0, then for any α > 0 we have∫ ∞
1

eαyf(y) dy =∞,
∫ ∞

1

eαy
∫ ∞
y

f(z) dz dy =∞,

and

e−αx
∫ x

1

eαyf(y) dy = o
(∫ ∞

x

f(y) dy
)

as x→∞.

(B) If λ > 0, then for any α < λ we have∫ ∞
1

eαyf(y) dy <∞,
∫ ∞

1

eαy
∫ ∞
y

f(z) dz dy <∞,

and as x→∞,∫ ∞
x

eα(y−x)

∫ ∞
y

f(z) dzdy ∼ λ−1

∫ ∞
x

eα(y−x)f(y) dy ∼ 1

λ− α

∫ ∞
x

f(y) dy.

(C) If λ > 0, denoting by k the inverse of function x→
∫∞
x
f(y) dy, i.e.

∫∞
k(x)

f(y) dy = x

for all small x > 0, we have

k(x) ∼ −λ−1 log x as x→ 0+.

Proof of Proposition 4.10. Put g(u) :=
∫∞

log u
f(z) dz. It is true that uλg(u) is slowly vary-

ing under the condition (4.13). In the following discussion, we take u = ex.
For α ∈ R and x > 1, by change of variable and Fubini’s theorem, we have∫ ∞

x

(eαy− eαx)f(y) dy = α

∫ ∞
x

∫ y

x

eαzf(y) dzdy

= α

∫ ∞
x

eαz
∫ ∞
z

f(y) dydz = α

∫ ∞
u

yα−1g(y)dy.

Applying Proposition 1.5.1 of [5], the last integral converges if α− λ < 0 and diverges if
α− λ > 0, which proves those results on the finiteness of integrals

∫∞
1
eαy

∫∞
y
f(z) dzdy

and
∫∞

1
eαyf(y) dy in (A) and (B), respectively.

If λ > 0 and α− λ < 0, applying Karamata’s theorem, we further have

α

∫ ∞
u

yα−1g(y) dy ∼ α

λ− α
(
uαg(u)

)
=

α

λ− α
eαx

∫ ∞
x

f(y) dy,

which proves the last result of (B).
If λ = 0 and α > 0, then uαg(u)→∞ as u→∞. By integration by parts, we have∫ x

1

eαyf(y) dy = eα
∫ ∞

1

f(y) dy − eαx
∫ ∞
x

f(y) dy + α

∫ x

1

eαydy

∫ ∞
y

f(z) dz

= eαg(e)−
(
uαg(u)− α

∫ u

e

zα−1g(z) dz
)
.

Since uαg(u) ∼ α
∫ u
e
zα−1g(z) dz by Karamata’s theorem, the last result of (A) holds.

If λ > 0, for any ε > 0, by Proposition 1.5.1 of [5], we have uλ+εg(u) → ∞ and
uλ−εg(u)→ 0+ as u→∞. Since g(u) is continuous and decreasing, for any fixed M > 0

we have g(ek(x)) = x and

e(λ−ε)k(x)x ≤M−1 and e(λ+ε)k(x)x ≥M,

for all small enough x > 0. Therefore,

−1

λ+ ε

(
log x− logM

)
≤ k(x) ≤ −1

λ− ε
(

log x+ logM
)
,

which leads to the result of (C).
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Applying Lemma 2.3 and Proposition 4.10 above, we first obtain the following asymp-
totic result on the integral with respect to potential measure U of function f which
satisfies (4.13) with λ = 0.

Lemma 4.11. Suppose that γ ∈ (0,∞) and f ≥ 0 is an integrable function on (0,∞) with∫ ∞
x+a

f(y) dy ∼
∫ ∞
x

f(y) dy for every a > 0.

Then ∫ ∞
0

f(y)U(x, dy) ∼ γ−1

∫ ∞
x

f(y) dy as x→∞.

Proof of Lemma 4.11. Notice that W (y − x) = 0 for y < x, we have from (2.3) that for
x > 0, ∫ ∞

0

f(y)u(x, y) dy

=

∫ ∞
0

(
e−pxW (y)−W (y − x)

)
f(y)dy

= e−px
∫ x

0

W (y)f(y)dy +

∫ ∞
0

(
e−pxW (x+ y)−W (y)

)
f(x+ y)dy

= : I1 + I2.

Since W (y)e−py = Wp(y) ↑ Φ′(0) < ∞ as y → ∞, we have from Proposition 4.10(A)
that

I1 ≤ Φ′(0)e−px
∫ x

0

epyf(y) dy = o
( ∫ ∞

x

f(y) dy
)
.

On the other hand, for every ε > 0, applying Lemma 2.3, for some k > 0,∣∣∣(e−pxW (x+ y)−W (y)
)
− γ−1

∣∣∣ ≤ εγ−1, for x, y > k.

Since e−pxW (x+ y)−W (y) ≤ Φ′(0) by (4.5), then for x > k∣∣∣I2 − γ−1

∫ ∞
x

f(y) dy
∣∣∣

≤ (Φ′(0) + γ−1)

∫ k

0

f(x+ y) dy + εγ−1

∫ ∞
k

f(x+ y) dy

= (Φ′(0) + γ−1 − εγ−1)
(∫ ∞

x

f(y) dy −
∫ ∞
x+k

f(y) dy
)

+ εγ−1

∫ ∞
x

f(y) dy

∼ εγ−1 ·
∫ ∞
x

f(y) dy as x→∞,

where we used the assumption that
∫∞
x
f(y)dy ∼

∫∞
x+k

f(y)dy for k > 0 as x→∞. This
finishes the proof.

We are now ready to prove part (A) of Theorem 3.3. Denote

J(τ+
x ) :=

∫ ∞
τ+
x

ϑ(ξt) dt = T∞ − T+
x on the set {τ−0 =∞}.

We start with investigating the asymptotic behaviors of the first two moments of η(∞)

under Px, and then estimate the first two moments of J(τ+
z ) under Px using the Markov

property of ξ. Recall that ϕ is the tail integral defined in (2.13) and p, γ ∈ (0,∞) in (2.1).
We now present the proof for Theorem 3.3 (A). The proof for Theorem 3.3 (B) is

deferred.
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Proof of Theorem 3.3 (A). In this case the tail integral function ϕ of ϑ is assumed to
satisfy condition (4.13) with λ = 0 and p, γ ∈ (0,∞).

We first show that for any x > 0,

lim
z→∞

E↑x

[(J(τ+
z )

ϕ(z)
− 1
)2]

= 0, (4.14)

under a stronger condition

ϕ(0) =
1

γ

∫ ∞
0

ϑ(y)dy <∞,

which holds under condition H1 and ensures m2(x) < ∞ by Theorem 3.1, and implies
the desired convergence in probability in Theorem 3.3 (A). If ϑ fails to be integrable at 0,
we can apply (4.14) to the function ϑc(·) = ϑ(·+ c) under P↑x−c for every x > c > 0. Note
that the associated tail integral function for ϑc is ϕc(x) = ϕ(x+ c). We then have

Px−c

(∣∣∣ 1

ϕc(z − c)

∫ ∞
τ+
z−c

ϑc(ξt)dt− 1
∣∣∣ ≥ ε∣∣∣∣τ−0 =∞

)
= Px

(∣∣∣J(τ+
z )

ϕ(z)
− 1
∣∣∣ ≥ ε∣∣∣∣τ−c =∞

)
→ 0 as z →∞,

where we need the spatial homogeneousness of ξ for the identity. Letting c→ 0+ and
noticing that p > 0, the desired convergence in probability in Theorem 3.3 (A) also holds.

Recall the moments m1 and m2 in Proposition 4.7,

m1(z) =

∫ ∞
0

u(z, y)ϑ(y)(1− e−py) dy, (4.15)

m2(z) = 2

∫ ∞
0

u(z, y)ϑ(y)m1(y) dy. (4.16)

We claim that, for every x > 0, as z →∞,

m1(z) ∼ ϕ(z), m2(z) ∼ ϕ2(z), (4.17)

and in addition,
Ex
[
h(ξ(τ+

z )); τ+
z < τ−0

]
∼ Px(τ−0 =∞)g(z), (4.18)

where h and g are functions such that h ∼ g and g is a deceasing function satisfying
g(z + a) ∼ g(z) for every a ∈ R.

Actually, given (4.17) and (4.18), since J(τ+
z ) = η(∞) ◦ θτ+

z
, we have for z > x > 0,

E↑x
[
J(τ+

z )
]

=
1

Px(τ−0 =∞)
Ex
[
m1(ξ(τ+

z )); τ+
z < τ−0

]
∼ ϕ(z),

E↑x
[
J2(τ+

z )
]

=
1

Px(τ−0 =∞)
Ex
[
m2(ξ(τ+

z )); τ+
z < τ−0

]
∼ ϕ2(z),

which implies the L2 convergence with respect to P↑x in (4.14).
To prove (4.17), we apply Lemma 4.11 to the function f1(y) = ϑ(y)(1− e−py). It is not

hard to see that as z →∞∫ ∞
z

f1(y) dy ∼
∫ ∞
z

ϑ(y) dy ∼
∫ ∞
z+a

ϑ(y)dy ∼
∫ ∞
z+a

f1(y)dy.

Thus, f1 fulfills the condition in Lemma 4.11. It follows from (4.15) that

m1(z) =

∫ ∞
0

u(z, y)f1(y) dy ∼ γ−1

∫ ∞
z

f1(y) dy ∼ ϕ(z) as z →∞. (4.19)
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Then, we take f2(y) = ϑ(y)m1(y). From the result above, for any ε ∈ (0, 1)

(1− ε)ϕ(z) ≤ m1(z) ≤ (1 + ε)ϕ(z) for all z > k1,

for some k1 > 0. It follows that for z > k1,∫ ∞
z

f2(y) dy ≤ (1 + ε)

∫ ∞
z

ϑ(y)ϕ(y) dy =
1 + ε

2
γϕ2(z),

and ∫ ∞
z

f2(y) dy ≥ (1− ε)
∫ ∞
z

ϑ(y)ϕ(y) dy =
1− ε

2
γϕ2(z),

which gives that ∫ ∞
z

f2(y) dy ∼ 1

2
γϕ2(z),

and f2 satisfies the condition of Lemma 4.11. Applying (4.16) and Lemma 4.11 we have

m2(z) = 2

∫ ∞
0

f2(y)u(z, y) dy ∼ 2γ−1

∫ ∞
z

f2(y) dy ∼ ϕ2(z) as z →∞. (4.20)

To prove (4.18), let k2 > 0 satisfy

ρ([0, k2]) ≥ 1− ε and (1− ε)g(z) ≤ h(z) ≤ (1 + ε)g(z) for z > k2,

where ρ is the stationary overshoot distribution in (2.7). Then for z > k2,

(1 + ε) ≥
E
[
h(ξτ+

z
)
]

g(z)
≥ (1− ε)

E
[
g(ξτ+

z
)
]

g(z)

≥ (1− ε)
E
[
g(ξτ+

z
); ξτ+

z
< z + k2)

]
g(x)

≥ (1− ε)2 g(z + k2)

g(z)
,

where the monotonicity of g is applied to the first and the last inequality. Thus,

E
[
h(ξτ+

z
)
]
∼ g(z) as z →∞.

Lastly, applying the strong Markov property for ξ we further have

Ex
[
h(ξτ+

z
); τ+

z < τ−0
]

= Ex
[
h(ξτ+

z
)
]
− Px

(
τ−0 < τ+

z

)
· E
[
h(ξτ+

z
)
]

= E
[
h(ξτ+

z−x
+ x)

]
− E

[
h(ξτ+

z
)
]

+ Px(τ+
z < τ−0 ) · E

[
h(ξτ+

z
)
]

∼ Px(τ+
z < τ−0 ) · g(z) ∼ Px(τ−0 =∞)g(z) as z →∞.

This finishes the proof.

Remark 4.12. In the proof of statement (A), we have

E↑x
[
J(τ+

z )
]
∼ E↑z

[
η(∞)

]
∼ ϕ(z) as z →∞.

However, with the presence of positive jumps, m1(x) and E↑x
[
η(∞)

]
may fail to be

monotone in x in general.

For the proof of statement (B) of Theorem 3.3, we make use of the local time for the
process ξ, see c.f. Chapter V of [2] for more detailed discussion. Given a SPLP ξ, its local
time exists and is defined as the density of occupation measure by,

L(y, t) := lim
ε→0+

1

2ε

∫ t

0

1(|ξs − y| < ε) ds, for y ∈ R, t > 0, P-a.s.,
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and the following occupation density formula holds for all bounded Borel function f ≥ 0,∫ t

0

f(ξs) ds =

∫ ∞
−∞

f(y)L(y, t) dy P-a.s..

We also need the following Lemmas on the regularly varying functions and the local time.

Lemma 4.13. Let ϑ be the function in statement (B) of Theorem 3.3. Let f ≥ 0 be a
measurable function locally integrable such that the set {x ∈ R, f(x) > 0} is bounded
from below,∫ ∞

−∞
e−λyf(y) dy <∞ and

∫ ∞
−∞

e−2αyf2(y) dy <∞ for some 2α ∈ (0, λ).

Then
1

ϕ(x)

∫ ∞
−∞

ϑ(x+ y)f(y) dy −→
x→∞

λγ

∫ ∞
−∞

e−λyf(y) dy. (4.21)

Lemma 4.14. Suppose that p > 0. For any 2α ∈ (0, p), we have

E

[ ∫ ∞
−∞

e−2αyL2(y,∞) dy

]
<∞.

Remark 4.15. Lemma 4.13 appears similar to the Abelian theorem, c.f. Theorem 4.1.3
of [5] where ϑ(log ·) is assumed to be regularly varying, and also similar to Theorem 1.7.5
in [5], where conditions related to slowly decreasing is imposed. The condition here
can be replaced by other, possibly weaker, conditions. For example, if f has bounded
variation and is bounded, right-continuous, and {x ∈ R, f(x) > 0} is bounded from below,
an application of the uniform convergence theorem could give the same result.

Proof of Lemma 4.13. Since the set {x ∈ R, f(x) > 0} is bounded from below, it is
sufficient to prove (4.21) for f vanishing on (−∞, 0), and we only focus on integrals on
(0,∞).

By the assumption in statement (B), for some K,M > 0, we have∫ ∞
x

ϑ2(y) dy ≤M · ϕ2(x) for all x > K.

Applying Fubini’s theorem, for x > K we have∫ ∞
0

(
e2αy − 1

)
ϑ2(x+ y) dy =

∫ ∞
0

ϑ2(x+ y) dy

∫ y

0

2αe2αt dt

= 2α

∫ ∞
0

e2αtdt

∫ ∞
x+t

ϑ2(y) dy ≤ 2αM

∫ ∞
0

e2αtϕ2(x+ t) dt

= 2αM

∫ ∞
x

e2α(t−x)ϕ2(t) dt = 2αM
(
u−2α

∫ ∞
u

s2α−1ϕ2(log s)ds
)∣∣∣
u=ex

∼ α ·M
λ− α

ϕ2(log u)
∣∣∣
u=ex

=
α ·M
λ− α

· ϕ2(x) as x→∞,

by applying Karamata’s theorem to the last line since s→ ϕ2(log s) is regularly varying
with index −2λ. Thus, under the assumption for Theorem 3.3 (B),

lim sup
x→∞

∫ ∞
0

e2αy ϑ
2(x+ y)

ϕ2(x)
dy <∞.

The Cauchy-Schwarz inequality then yields( ∫ ∞
0

ϑ(x+ y)

ϕ(x)
f(y) dy

)2 ≤ (∫ ∞
0

e−2αyf2(y) dy
)
·
(∫ ∞

0

e2αy ϑ
2(x+ y)

ϕ2(x)
dy
)
, (4.22)
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where the second term on the right hand side is dominated by some constant.
On the other hand, it is not hard to check that the limit (4.21) holds for simple

functions f(x) = 1(x > c),∀c ≥ 0 as well as their linear combinations. Moreover, it
holds for any bounded measurable function f on (0,∞) which can be uniformly and
non-decreasingly approximated by simple functions fn satisfying (4.21). Therefore, it
holds for all nonnegative bounded Borel functions on (0,∞), by applying the functional
monotone convergence theorem, c.f. Theorem 2.12.9 [6]. Finally, for any function f

satisfying the assumption of Lemma 4.13, taking fn = f ∧ n and applying (4.22) gives

lim
n→∞

lim sup
x→∞

(∫ ∞
0

ϑ(x+ y)

ϕ(x)

(
f(y)− fn(y)

)
dy
)2

= 0.

It follows that

lim
x→∞

∫ ∞
0

ϑ(x+ y)

ϕ(x)
f(y)dy = lim

n→∞
lim
x→∞

∫ ∞
0

ϑ(x+ y)

ϕ(x)
fn(y)dy

= lim
n→∞

λγ

∫ ∞
0

e−λyfn(y)dy = λγ

∫ ∞
0

e−λyf(y)dy.

This finishes the proof.

Lemma 4.14 is proved following the argument used in Theorem V.1 of [2], where
Plancherel’s theorem is applied.

Proof of Lemma 4.14. Let 2α ∈ (0, p) and g(y) = e−αyL(y,∞) for y ∈ R. Then ψ(α), ψ(2α)

< 0 by definition. Applying Fubini’s theorem and the occupation density formula, we
have

E

[ ∫ ∞
0

e−2αξt dt

]
=

∫ ∞
0

E
[
e−2αξt

]
dt =

−1

ψ(2α)
,

and

E

[ ∫ ∞
−∞

e−αyL(y,∞) dy

]
= E

[ ∫ ∞
0

e−αξt dt

]
=
−1

ψ(α)
.

Thus, e−αξt , e−2αξt and g(y) are all integrable. The Fourier transform of g gives for every
u ∈ R,

Fg(u) :=

∫ ∞
−∞

eiuye−αyL(y,∞) dy =

∫ ∞
0

e(iu−α)ξt dt, P-a.s..

In addition, we have

E
[
|Fg(u)|2

]
= E

[
Fg(u)Fg(−u)

]
= E

[ ∫ ∞
0

∫ ∞
0

e(iu−α)ξt+(−iu−α)ξs dtds

]
= E

[ ∫ ∞
0

∫ ∞
0

e(iu−α)(ξt−ξs)−2αξs dtds

]
.

Given the integrability of e−αξt and e−2αξt , we can re-express the last term as

2<
(∫ ∞

0

ds

∫ ∞
s

dtE
[
e(iu−α)(ξt−ξs)

]
E
[
e−2αξs

])
.

Recall the measure P(α) defined in (2.4). Under the new measure P(α) the above quantity
equals to

2<
(∫ ∞

0

eψ(α)tE
[
eiuξte−αξt−ψ(α)t

]
dt

∫ ∞
0

E
[
e−2αξs

]
ds

)
=
−2

ψ(2α)
<
( 1

Ψα(u)− ψ(α)

)
,

where
Ψα(s) = t−1 logE(α)

[
eisξt

]
= −ψα(−is),

EJP 26 (2021), paper 148.
Page 22/25

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP715
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Explosion of nonlinear branching processes

is the characteristic exponent of ξ under P(α). Noticing that −ψ(α) > 0, we have∫ ∞
−∞

E
[
|Fg(u)|2

]
du =

−2

ψ(2α)

∫ ∞
−∞
<
( 1

Ψα(u)− ψ(α)

)
du <∞,

where Theorem II.16 in [2] is applied. The proof is finished by applying Plancherel’s
theorem.

We are now ready to prove the result of part (B).

Proof of Theorem 3.3 (B). Recall that p, γ ∈ (0,∞). Let λ > 0 be the constant in condition
H2, and f, g be bounded continuous and nonnegative functions.

Denote by ξ̊ an independent copy of ξ with probability law of P̊, and define for z > 0

G(z) := E̊

[
g
(∫ ∞

0

ϑ(ξ̊t + z)

ϕ(z)
dt
)∣∣∣∣̊τ−−z =∞

]
.

Applying the strong Markov property of ξ at τ+
x , we have

E↑x

[
f
(ϕ(ξ(τ+

z ))

ϕ(z)

)
· g
( J(τ+

z )

ϕ(ξ(τ+
z ))

)]
= E↑x

[
f
(ϕ(ξ(τ+

z ))

ϕ(z)

)
·G(ξ(τ+

z ))

]
. (4.23)

Let L̊(y, t) be the local time of ξ̊ at level y and time t. Since ξ̊(t) → ∞, we have

from (4.6) that
∫∞

0
e−λξ̊tdt <∞ P̊-a.s.. Applying Theorem I.20 of [2], Lemma 4.14 and

the fact that
∣∣ inft>0 ξ̊t

∣∣ < ∞, one can check that, for 2α < λ ∧ p, L̊(y,∞) fulfills the

conditions of Lemma 4.13 P̊-a.s. Therefore,∫ ∞
0

ϑ(ξ̊t + z)

ϕ(z)
dt =

∫ ∞
−∞

ϑ(z + y)L̊(y,∞)

ϕ(z)
dy

−→
z→∞

λγ

∫ ∞
−∞

e−λyL̊(y,∞) dy = λγ

∫ ∞
0

e−λξ̊t dt, P̊-a.s..

Moreover, since P̊
(

limz→+∞ 1(̊τ−−z = ∞) = 1
)

= 1, by the dominated convergence

theorem

G(z) =
1

1− e−pz
E̊

[
g

(∫ ∞
0

ϑ(ξ̊t + z)

ϕ(z)
dt

)
· 1(̊τ−−z =∞)

]
−→
z→∞

E̊

[
g
(
λγ

∫ ∞
0

e−λξ̊t dt
)]
.

On the other hand, by the uniform converge theorem for ϕ, see Theorem 1.5.2 of [5],
we have ϕ(x+ y)/ϕ(x)→ e−λy as x→∞, uniformly for y ∈ [0,∞).

Applying (2.7) and the facts above to (4.23), we complete the proof.

For the proof of Theorem 3.6, we follow the same idea from [12] and [1].

Proof of Theorem 3.6. The theorem is proved by first claiming that under Q↑x,

X̄(T+
∞ − t)

ϕ−1(t)
−→1 as t→ 0+, (4.24)

recalling that X̄(t) := sups∈[0,t]Xs represents the running maximum process of X. The
desired conclusion then follows from Lemma 2.1.

We first prove the statement (a). For any h > 1, we take a constant ch ∈
(

1,

lim infy→∞
ϕ(y)
ϕ(hy)

)
. By the result of the statement A of Theorem 3.3, for any ε > 0 there is

k3 > 0 such that

P↑x

(J(τ+
z )

ϕ(z)
/∈
(
c−1
h , ch

))
≤ ε and 1 < ch ≤

ϕ(z)

ϕ(hz)
for z > k3. (4.25)
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Set t0 := ϕ(hk3). For t < t0, define α(t) := h · ϕ−1(t) and β(t) := ϕ−1(t)/h, then
α(t) > ϕ−1(t) > β(t) > k3. By the second inequality in (4.25),

ϕ(ϕ−1(t))

ϕ(β(t))
≤ c−1

h < 1 < ch ≤
ϕ(ϕ−1(t))

ϕ(α(t))
.

Then we further have from β(t) > k3 that the following inequalities hold,

P↑x
(
J(τ+

α(t)) ≥ t
)

= P↑x

(
J(τ+

α(t))

ϕ(α(t))
≥ ϕ(ϕ−1(t))

ϕ(α(t))

)
≤ P↑x

(
J(τ+

α(t))

ϕ(α(t))
≥ ch

)
≤ ε,

P↑x
(
J(τ+

β(t)) ≤ t
)

= P↑x

(
J(τ+

β(t))

ϕ(β(t))
≤ ϕ(ϕ−1(t))

ϕ(β(t))

)
≤ P↑x

(
J(τ+

β(t))

ϕ(β(t))
≤ c−1

h

)
≤ ε,

which, since ϕ(ϕ−1(t)) = t, gives for t < t0

Q↑x

(
h−1 ≤ X̄(T+

∞ − t)
ϕ−1(t)

≤ h
)

= P↑x
(
J(τ+

α(t)) ≤ t ≤ J(τ+
β(t))

)
≥ 1− 2ε.

We can prove the weak limit (4.24) by first letting ε→ 0+ and then letting h→ 1+.
For the statement (b), notice that for every k4 > 0

ϕ(z)

ϕ(hz)
≥ ϕ(z)

ϕ(z + k4)
→ eλk4 as z →∞.

Thus, we always have lim infz→∞
ϕ(z)
ϕ(hz) =∞ for all h > 1 in this case. Since J(τ+

z )/ϕ(z)

converges in law to a random variable on (0,∞), there exist M > 1 and k5 > 0 such that

P↑x

(
J(τ+

z )

ϕ(z)
/∈
( 1

M
,M
))
≤ ε and 1 < M ≤ ϕ(z)

ϕ(hz)
for all z > k5,

which can be compared with (4.25). The same argument as in the previous case can
be applied to prove (4.24). Applying the result of (C) in Proposition 4.10, we finish the
proof.

References

[1] Bansaye, V., Méléard, S. and Richard, M.(2016). Speed of coming down from infinity for
birth-and-death processes. Advances in Applied Probability, 48(4):1183–1210. MR3595771

[2] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics. MR1406564

[3] Bertoin, J., van Harn, K. and Steutel, F. W. (1999). Renewal theory and level passage by
subordinators. Statistics and Probability Letters, 45(1):65–69. MR1718352

[4] Bertoin, J. and Savov, M. (2011). Some applications of duality for Lévy processes in a half-line.
Bulletin of the London Mathematical Society, 43(1):97–110. MR2765554

[5] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge:
Cambridge University Press. MR1015093

[6] Bogachev, V. (2007). Measure Theory. Springer-Verlag Berlin Heidelberg. MR2267655

[7] Chen, A. (2002). Uniqueness and extinction properties of generalised Markov branching
processes. Journal of Mathematical Analysis and Applications, 274: 482–494. MR1936711

[8] Chen, A.Y., Li, J.P. and Ramesh, N.I. (2008). Probabilistic approach in weighted Markov
branching processes. Statistics and Probability Letters, 78: 771–779. MR2409542

[9] Dawson, D.A. and Li, Z. (2006). Skew convolution semigroups and affine Markov processes.
Annals of Probability, 34: 1103–1142. MR2243880

[10] Döring, L. and Kyprianou, A. E. (2016). Perpetual Integrals for Lévy Processes. Journal of
Theoretical Probability, 29: 1192–1198. MR3540494

EJP 26 (2021), paper 148.
Page 24/25

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3595771
https://mathscinet.ams.org/mathscinet-getitem?mr=1406564
https://mathscinet.ams.org/mathscinet-getitem?mr=1718352
https://mathscinet.ams.org/mathscinet-getitem?mr=2765554
https://mathscinet.ams.org/mathscinet-getitem?mr=1015093
https://mathscinet.ams.org/mathscinet-getitem?mr=2267655
https://mathscinet.ams.org/mathscinet-getitem?mr=1936711
https://mathscinet.ams.org/mathscinet-getitem?mr=2409542
https://mathscinet.ams.org/mathscinet-getitem?mr=2243880
https://mathscinet.ams.org/mathscinet-getitem?mr=3540494
https://doi.org/10.1214/21-EJP715
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Explosion of nonlinear branching processes

[11] Duhalde, X., Foucart, C. and Ma, C. (2014). On the hitting times of continuous-state branching
processes with immigration. Stochastic Processes and their Applications, 124(12):4182–4201.
MR3264444

[12] Foucart, C., Li, P.-S. and Zhou, X. (2021). Time-changed spectrally negative Lévy processes
starting from infinity, Bernoulli, 27(2): 1291–1318. MR4255235

[13] Hubalek, F. and Kyprianou, E. (2011). Old and New Examples of Scale Functions for Spectrally
Negative Lévy Processes. In Dalang, R., Dozzi, M., and Russo, F., editors, Seminar on
Stochastic Analysis, Random Fields and Applications VI, volume 63 of Progress in Probability,
pages 119–145. Springer Basel. MR2857022

[14] Jacobsen, M. and Jensen, A. T. (2007). Exit times for a class of piecewise exponential Markov
processes with two-sided jumps. Stochastic Processes and their Applications, 117(9):1330–
1356. MR2343943

[15] Klebaner, F. C. (1984). Geometric rate of growth in population-size-dependent branching
processes. Journal of Applied Probability, 21: 40–49. MR0732669

[16] Kolb, M. and Savov, M. (2020). A characterization of the finiteness of perpetual integrals of
Lévy processes. Bernoulli, 26(2):1453–1472. MR4058374

[17] Kuznetsov, A., Kyprianou, A. E. and Rivero, V. (2012). The Theory of Scale Functions for
Spectrally Negative Lévy Processes. In Lévy Matters II, Lecture Notes in Mathematics, pages
97–186. Springer Berlin Heidelberg. MR3014147

[18] Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications. Springer Berlin
Heidelberg. MR3155252

[19] Li, B. and Palmowski, Z. (2018). Fluctuations of Omega-killed spectrally negative Lévy
processes. Stochastic Processes and their Applications, 128(10):3273–3299. MR3849809

[20] Li, B. and Zhou, X. (2019). Local Times for Spectrally Negative Lévy Processes. Potential
Analysis, 52(4): 689–711. MR4091599

[21] Li, P.-S. (2019). A continuous-state polynomial branching process. Stochastic Processes and
their Applications, 129 (8): 2941-2967. MR3980150

[22] Li, P.-S., Yang, X. and Zhou, X. (2019). A general continuous-state nonlinear branching
process. Annals of Applied Probability, 29(4): 2523–2555. MR3983343

[23] Li, P.-S. and Zhou, X. (2018). Integral functionals for spectrally positive Lévy processes.
arXiv:1809.05759

[24] Li, Z. (2012). Continuous-state branching processes. arXiv:1202.3223.

[25] Sevast’janov, B. A. and Zubkov, A.M. (1974). Controlled branching processes. Theory of
Probability & Its Applications, 19: 15–25. MR0339350

Acknowledgments. The authors thank an anonymous referee for detailed comments
and helpful suggestions.

EJP 26 (2021), paper 148.
Page 25/25

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3264444
https://mathscinet.ams.org/mathscinet-getitem?mr=4255235
https://mathscinet.ams.org/mathscinet-getitem?mr=2857022
https://mathscinet.ams.org/mathscinet-getitem?mr=2343943
https://mathscinet.ams.org/mathscinet-getitem?mr=0732669
https://mathscinet.ams.org/mathscinet-getitem?mr=4058374
https://mathscinet.ams.org/mathscinet-getitem?mr=3014147
https://mathscinet.ams.org/mathscinet-getitem?mr=3155252
https://mathscinet.ams.org/mathscinet-getitem?mr=3849809
https://mathscinet.ams.org/mathscinet-getitem?mr=4091599
https://mathscinet.ams.org/mathscinet-getitem?mr=3980150
https://mathscinet.ams.org/mathscinet-getitem?mr=3983343
https://arXiv.org/abs/1809.05759
https://arXiv.org/abs/1202.3223
https://mathscinet.ams.org/mathscinet-getitem?mr=0339350
https://doi.org/10.1214/21-EJP715
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Spectrally positive Lévy processes and continuous-state nonlinear branching processes
	Main results
	Proofs
	Proofs of Lemmas 2.1, 2.3 and 2.5
	Proof of Proposition 2.6
	Proof of Theorem 3.1
	Proofs of Theorems 3.3 and 3.6

	References

