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Abstract

Our main results are quantitative bounds in the multivariate normal approximation
of centred subgraph counts in random graphs generated by a general graphon and
independent vertex labels. We are interested in these statistics because they are
key to understanding fluctuations of regular subgraph counts — a cornerstone of
dense graph limit theory. We also identify the resulting limiting Gaussian stochastic
measures by means of the theory of generalised U -statistics and Gaussian Hilbert
spaces, which we think is a suitable framework to describe and understand higher-
order fluctuations in dense random graph models. With this article, we believe we
answer the question “What is the central limit theorem of dense graph limit theory?”.
We complement the theory with some statistical applications to illustrate the use of
centred subgraph counts in network modelling.
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1 Introduction

Since the seminal paper of Lovász and Szegedy (2006) on dense graph limit theory, a
considerable amount of literature devoted to this topic has been published. A book-length
treatment was given by Lovász (2012), and the theory has been extended to related
models, such as sparse graphs by Bollobás and Riordan (2009), Borgs, Chayes, Cohn,
and Zhao (2014a,b), Caron and Fox (2017), Borgs, Chayes, Cohn, and Holden (2017)
and others, multi-graphs by Ráth (2012) and Ráth and Szakács (2012), graphon-valued
stochastic processes by Athreya, den Hollander, and Röllin (2019), and permutations by
Hoppen, Kohayakawa, Moreira, and Sampaio (2011) to name a few.

Much of the literature is concerned with what could generally be referred to as laws
of large numbers, where the main interest lies in describing the limiting objects upon
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Higher-order fluctuations in dense random graph models

appropriate scaling as some number n that captures the size of the model — for example,
the number of vertices of a graph — tends to infinity. In many applications, the limiting
objects are deterministic, since the randomness in the model “averages out”, like in
the case of the fraction of heads in a sequence of independent fair coin tosses. And if
the limiting objects are random, then typically because of a phenomenon related to de
Finetti’s Theorem in the sense that the randomness left in the limit can be thought of as
being distinct from the randomness describing the fine details of the model. In the case
of dense graph limit theory, this phenomenon is captured by the Aldous-Hoover theory
of infinite exchangeable arrays; see Diaconis and Janson (2008).

In analogy to the classical Law of Large Numbers for sums of independent random
variables, it is natural to ask about fluctuations around the limits, which in the classical
case is captured by the Central Limit Theorem. This is of profound importance, since
statistical inference is based on exactly this kind of fluctuations. But despite the large
literature on dense graph limit theory, we are not aware of any attempts made to develop
a higher-order fluctuation theory for random graph models, neither in the dense nor
sparse regime.

There have been some recent efforts to understand the subgraphs counts in the
context of graphons and dense graph limit theory. Hladký, Pelekis and Šileikis (2019)
analysed the limiting distributions of r-clique counts of a random graph obtained through
sampling from a graphon (which is our model G(n, κ) below), and Chatterjee and Bhat-
tacharya (2021) generalised the results to arbitrary subgraphs. Maugis (2020) analysed
localised versions, where the counts are not global, but only over one specific vertex.
Their results yield in essence that the scaling and limiting distribution depends on
specific properties of the graphon, and this is intimately related to the work of Janson
and Nowicki (1991) on U -statistics. What makes subgraph counts problematic as test
statistics is the fact that it is not immediately clear what is actually being tested (in
other words, what aspects of the model the dominating fluctuations represent), and how
different subgraph counts are related to each other, which is crucial when performing
multiple test over different subgraph counts.

What we propose in this article is not to use subgraph counts as test statistics directly,
but use more fundamental statistics — centred subgraph counts — which themselves
completely determine the fluctuations of subgraph counts, which are orthogonal to each
other, and which are jointly Gaussian in the limit with a straightforward covariance
structure. The latter in particular allows for a proper correction when performing
multiple tests. We give a rather complete description of these statistics in the dense
case for models where vertices have independent labels, and conditionally on the vertex
labels, edges are sampled independently of each other with probabilities given by a
graphon. This model is the workhorse of dense graph limit theory, although in this article,
we generalise this to sampling schemes where vertex labels need not be identically
distributed. We believe the latter is an important contribution and covers the important
case where vertex labels are fixed and arranged on an equally spaced lattice.

As mentioned, the key to understanding all fluctuations is to analyse centred subgraph
counts rather than regular subgraph counts, and we are not the first to do so. Centred
subgraph counts were studied in depth by Janson (1994), where the normal limits
were shown using martingale methods, and by Janson (1997), who used the method of
moments. Fang and Röllin (2015) studied statistics similar to centred subgraph counts
to construct a test whether a given graph is compatible with a constant graphon, and
Bubeck, Ding, Eldan, and Rácz (2016) used centred triangle counts to construct a test
for dimensionality in geometric random graphs; see also Gao and Lafferty (2017a,b).

As we will argue in the next section, the mathematical framework of generalised U -
statistics can be used to describe the fluctuations in dense graph sequences. Generalised
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Figure 1: The 2× 2 graphon κ defined in (1.1).

U -statistics were introduced by Janson and Nowicki (1991) to understand fluctuations
of subgraph counts in the Erdős-Rényi random graph and related models, and a more
comprehensive treatise was given by Janson (1994, 1997). In particular, using the
framework of Gaussian Hilbert spaces, Janson (1997) was able to describe the Gaussian
limiting objects arising from generalised U -statistics, although his description is rather
abstract and not easily interpretable in the context of dense graph limit theory.

Our contribution is to modify the approach of Janson (1997) in such a way that
it becomes clearer what the limiting Gaussian Hilbert spaces are and such that it
applies to non-identically distributed vertex labels, and we complement the theory with
a multivariate normal approximation theorem for smooth and non-smooth test functions,
which is based on Stein’s method. Incidentally, none of the existing approximation
theorems in the literature seem to be applicable to the present situation due to the
fact that the summands in our test statistics are uncorrelated, a case that has drawn
surprisingly little attention in the literature so far. Although subgraph counts can
be handled using Stein’s method, as was shown by Barbour, Karoński, and Ruciński
(1989) for smooth metrics, by Röllin and Ross (2015) for total variation and local limit
metrics, by Röllin (2017), Krokowski, Reichenbachs, and Thäle (2017) and Privault and
Serafin (2020) for the Kolmogorov metric, centred subgraph counts, which are sums
of uncorrelated but not independent random variables, cannot be handled with these
approaches. The only result in this direction we are aware of is that of Fang and Röllin
(2015), who considered bi-variate normal approximation for related sums of uncorrelated
random variables in the case of constant graphons.

1.1 The basic decomposition of subgraph counts — an example

Before elaborating on the general theory, we first illustrate what a decomposition
of a subgraph into orthogonal components looks like in the simple case of a 2× 2 block
graphon, also called stochastic block model. This model is general enough to illustrate
the main points, but also simple enough to work out the details, at least for simple
subgraphs.

First, fix constants α, β, δ ∈ [0, 1] and γ ∈ (0, 1). Then let κ : [0, 1]2 → [0, 1] be the
graphon defined as

κ(x, y) =


α if x, y 6 γ,

δ if x 6 γ < y or y 6 γ < x,

β if x, y > γ,

for x, y ∈ [0, 1]. (1.1)

This graphon is illustrated in Figure 1 and represents a graph with two communities
with connection probability α and β within the respective communities, and δ across the
two communities.

We now generate a random graph Gn on n vertices in the usual way. Let U1, . . . , Un
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be independent random variables distributed uniformly on [0, 1], and conditionally on
Ui and Uj , connect vertices i and j with probability κ(Ui, Uj), independently of all else.
It is clear that the probability of a vertex belonging to the first community is γ and the
probability it belongs to the second community is 1− γ. We denote by Zi = I[Ui 6 γ] the
indicator that vertex i belongs to the first community, and by Yij the indicator that i and
j are connected.

Now, to start with, consider the so-called edge density

tinj(Gn) =
1

n(n− 1)

∑′

i1,i2

Yi1i2 ,

where the sum ranges over all vertices and the prime in the double sum indicates exclu-
sion of the diagonal cases i1 = i2 as usual. With Ŷij = Yij−κ(Ui, Uj), it is straightforward
to deduce the decomposition

tinj(Gn) =
1

n(n− 1)

∑′

i1,i2

Ŷi1i2 +
1

n(n− 1)

∑′

i1,i2

(κ(Ui1 , Ui2)− κ̄) + κ̄, (1.2)

where κ̄ = Eκ(U1, U2) = αγ2 + 2δγ(1− γ) + β(1− γ)2. Now, the second sum in (1.2) itself
is a U -statistic, making further decomposition necessary. To this end, we write

κ(Ui, Uj)− κ̄ = ρ1(Ẑi + Ẑj) + ρ2ẐiẐj , (1.3)

where
Ẑi = Zi − γ, ρ1 = αγ − β(1− γ) + (1− 2γ)δ, ρ2 = α+ β − 2δ. (1.4)

Using (1.3) on the second sum in (1.2) and a tedious exercise of adding, subtracting and
rearranging terms, as well as observing that Ẑ2

i = (1− 2γ)Ẑi + γ(1− γ), we can write

∑′

i1,i2

(κ(Ui1 , Ui2)− κ̄) = (β − α+ 2nρ1)
∑
i

Ẑi + ρ2

(∑
i

Ẑi

)2

− nγ(1− γ)

 .
Thus, we arrive at a complete decomposition of the form

tinj(Gn) = κ̄+
2n1/2ρ1W

n− 1
+
ρ2
(
W 2 − γ(1− γ)

)
n− 1

+
21/2V ,1

n1/2(n− 1)1/2
+

(β − α)W

n1/2(n− 1)
, (1.5)

where
W = n−1/2

∑
i

Ẑi, V ,1 =
(
n
2

)−1/2 ∑
i1<i2

Ŷi1i2 . (1.6)

There are multiple reasons why this decomposition is useful. First, both W and V ,1

are centred and uncorrelated random variables, and moreover, they themselves are
sums of uncorrelated random variables; this is true if even the Ui are not identically
distributed, so long as they are independent. Hence, the variance and covariance
structure is straightforward to calculate, and with the normalisations given above and
assuming the Ui are identically distributed, all variances are of order 1. Second, all
quantities have Gaussian limits; for W , this follows easily from the classical central limit
theorem, but it is also not difficult to prove for V ,1 using Stein’s method or the method
of moments. This fact also implies the limit for W 2, namely a χ2

1-distribution. Third, it is
now straightforward to read off the limiting behaviour of tinj(G) from this decomposition
(upon appropriate scaling):

1. ρ1 6= 0: The second term in (1.5) dominates and the limit is Gaussian.
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2. ρ1 = 0 and ρ2 6= 1: The third and fourth terms in (1.5) dominate and the limit is the
weighted sum of two independent random variables, one Gaussian and the other
having a centred χ2

1-distribution.

3. ρ1 = 0 and ρ2 = 0: The fourth term in (1.5) dominates and the limit is Gaussian.

These convergence results were also obtained by Hladký et al. (2019) and Chatterjee
and Bhattacharya (2021). Note that even in the third case, the contribution of W in
(1.5) does not vanish if α 6= β, although the fluctuation only contributes to a scale that
is smaller than the dominating fluctuation. It is also important to recognise that this
decomposition is not unique; for example, since

1

n− 1
=

1

n
+

1

n(n− 1)
,

fluctuations at one scale can always be slightly rescaled and change the composition of
fluctuations at another scale.

This simple example already reveals the subtle nature of subgraph counts under
inhomogeneous sampling schemes, even for just the edge density. It also shows the main
disadvantage of modelling vertex labels Ui as random: In general, the subgraph counts
are dominated by the group labels, rather than the randomness in the edges. This is
usually not a desired property if testing a graph model against network data.

The case of triangles tinj(Gn) = 1
(n)3

∑′

i1,i2,i3
Yi1i2Yi2i3Yi1i3 is much more involved

and tedious to deduce, and we therefore only give the final decomposition (for multiple
sums, the prime indicates exclusion of any set of indices where at least two indices
coincide). We have

tinj(Gn) = c1 +R0.5 +R1.0 +R1.5 +R2.0 +R2.5

where

R0.5 =
c2W

n1/2
,

R1.0 =
c3(W 2 − γ(1− γ))

n− 1
+
c4V ,4 + c5(V ,2 + V ,3) + c6V ,1

n1/2(n− 1)1/2
,

R1.5 =
c7W

n1/2(n− 1)
+
n1/2c8

(
W 3 − n−1/2γ(1− γ)(1− 2γ)

)
(n− 1)(n− 2)

+
c9 (V + V ,1 + V ,2 + V ,3)

n1/2(n− 1)1/2(n− 2)1/2
+
c10V ,1W + c11(V ,2 + V ,3)W + c12V ,4W

(n− 1)1/2(n− 2)
,

R2.0 =
c13V ,1 + c14(V ,2 + V ,3) + 2c15V ,4

n1/2(n− 1)1/2(n− 2)
+
c16(W 2 − γ(1− γ))

(n− 1)(n− 2)
,

R2.5 =
c17W

n1/2(n− 1)(n− 2)
,

with V ,2 and W as in (1.6) and with

V ,2 =
(
n
2

)−1/2∑
i<j

ẐiŶij , V ,3 =
(
n
2

)−1/2∑
i<j

Ẑj Ŷij , V ,4 =
(
n
2

)−1/2∑
i<j

ẐiẐj Ŷij ,

V ,1 =
(
n
3

)−1/2 ∑
i<j<k

κ(Ui, Uk)Ŷij Ŷjk, V ,2 =
(
n
3

)−1/2 ∑
i<j<k

κ(Uj , Uk)ŶjiŶik,

V ,3 =
(
n
3

)−1/2 ∑
i<j<k

κ(Ui, Uj)ŶikŶkj , V =
(
n
3

)−1/2 ∑
1i<j<k

Ŷij ŶjkŶik
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(1.7)

(the values of the constants c1 to c17 can be found in the Appendix); these results are
again consistent with Hladký et al. (2019) and Chatterjee and Bhattacharya (2021). Note
also that all these quantities are again uncorrelated and themselves sums of uncorrelated
random variables, and they are scaled to be of order 1. We have arranged the terms so
that Rα has standard deviation of order n−α. What our main result, Theorem 3.1, says is
that all the quantities arising in such a decomposition are jointly close to a multivariate
normal distribution that has a straightforward covariance structure, which is why we
believe they are better suited for statistical applications than subgraph counts.

Note that explicit decompositions like the ones presented above are possible when-
ever κ(Ui, Uj) can be written as sums and products of random variables involving the
individual Ui like we did in (1.3) for the 2× 2 block graphon. This is possible in particular
whenever κ is piece-wise constant, that is, is of block form, and in principle one could
construct an algorithm that derives such decompositions explicitly for any subgraph
density and any block graphon. In general, though, (1.3) has to be replaced by an
approximation, and that will be the content of Lemma 2.2.

In the case where the subgraph is not connected, one can always decompose the
subgraph density into sums and products of subgraph densities of connected graphs.
For example, if inj(F,G) denotes the number of injective homomorphisms from F to G,
we have

inj( , G) = inj( , G) inj( , G)− 6 inj( , G)− 6 inj( , G)

so that

tinj (G) =
n(n− 1)

(n− 4)(n− 5)
tinj(G) tinj(G)− 6

(n− 4)(n− 5)
tinj(G)− 6

n− 5
tinj (G). (1.8)

Hence, densities of connected subgraphs tell in essence the whole story.

1.2 Preliminaries on dense graph limit theory

In what follows, all graphs are assumed to be simple and finite, without loops.
Consider a graph Gn on the vertex set [n] := {1, . . . , n}. For any graph F on k vertices,
the homomorphism density of F in Gn is defined as

tF (Gn) =
hom(F,Gn)

nk
,

where hom(F,Gn) is the number of graph homomorphisms from F to Gn. A sequence
of graphs G1, G2, . . . is called dense, if the number of edges e(Gn) � n2, and it is called
convergent if limn→∞ tF (Gn) exists for all F . Lovász and Szegedy (2006) showed that
if G1, G2, . . . is a convergent dense graph sequence, then there exists a symmetric
measurable function κ : [0, 1]2 → [0, 1] such that

lim
n→∞

tF (Gn) = tF (κ) :=

∫
[0,1]k

∏
v
F∼w

κ(xv, xw)dx1 · · · dxk, (1.9)

where
∏
v
F∼w

denotes the product over all pairs of vertices {v, w} that are connected in
F . Such functions are generally referred to as graphons, but (1.9) is only enough to
determine κ up to measure-preserving transformations of [0, 1], so the actual space of
limiting objects is the equivalence class of graphons with the same values of tF (κ) for
all F . What makes the representation of the limits appealing is that finite graphs can
easily be embedded in the space of graphons by representing the adjacency matrix of a

EJP 26 (2021), paper 139.
Page 6/36

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP708
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher-order fluctuations in dense random graph models

graph as a 0-1-valued function on [0, 1]2 in the canonical way. If G is a graph and κ the
corresponding induced graphon, it is not difficult to see that tF (G) = tF (κ) for all F .

In the context of graphs, the more natural objects to study are the injective homo-
morphism densities, defined as

tinjF (Gn) =
inj(F,Gn)

(n)k
,

where inj(F,Gn) is the number of injective homomorphisms from F to Gn and where
(n)k = n(n− 1) · · · (n− k + 1). An approximate relation between tF (Gn) and tinjF (Gn) is
given by the inequality ∣∣∣tinjF (Gn)− tF (Gn)

∣∣∣ 6 (
k
2

)
n
. (1.10)

Thus, lim tF (Gn) = tF (κ) if and only if lim tinjF (Gn) = tF (κ), and so from the point of
view of dense graph limits, there is no difference between considering tinjF (Gn) instead of
tF (Gn). However, higher-order fluctuations of these statistics are of smaller order than
n−1, and so (1.10) is not informative for such purposes. In this article, we will only focus
on tinjF (Gn), but results can be translated in principle via certain identities, relating the
numbers of homomorphisms and injective homomorphisms although the formulas are
not straightforward; see for example Lovász (2012, Section 5.2.3.).

1.3 A simple (and naive) central limit theorem

In order to motivate much of the remainder of this article, and in particular justify
the expression “higher-order” in the title rather than just “second-order” as one would
naturally expect from the analogy with the classical central limit theorem, we start with
a heuristic analysis of the workhorse model of dense graph limit theory. Let κ be a
graphon and U = (U1, U2, . . . , Un) be a sequence of independent random variables, each
distributed uniformly on [0, 1], and given U , let Yij = 1 with probability κ(Ui, Uj) and
Yij = 0 with probability 1 − κ(Ui, Uj) for all 1 6 i < j 6 n. Let Gn be the graph on the
vertex set [n], where i < j are connected if Yij = 1 and left unconnected otherwise. We
denote the resulting random graph model by G(n, κ). Lovász and Szegedy (2006) proved
the basic law of large numbers of dense graph limit theory, which states that such Gn
converges to κ almost surely as n tends to infinity.

The case of the Erdős-Rényi random graph is the special case κ ≡ p for some 0 6 p 6 1,
which we assume for now. The first-order behaviour is then given by tinjF (Gn) → pe(F ),
where e(F ) is the number of edges in F . Moreover, it is easy to see from (1.9) that if F
consists of connected components F1, . . . , Fm, then for any graph G we have

tF (G) =

m∏
i=1

tFi(G); (1.11)

hence, it is enough to consider the fluctuations of tF (G) and tinjF (G) for connected F

(although for tinjF (G), a clean identity such as (1.11) that does not involve n does not exist,
as is apparent from (1.8)). Now, the second order fluctuations of tinjF (G) are not difficult
to describe (see Janson and Nowicki (1991) for the general statements and Reinert and
Röllin (2010) for rates of convergence in some special cases). Let K2 be the one-edge
graph on two vertices; then,

Cor
(
tinjK2

(Gn), tinjF (Gn)
)
→ 1, n→∞. (1.12)

This means that the second-order behaviour of all subgraph counts is asymptotically
determined by the total number of edges. More specifically,

cF n
(
tinjF (Gn)− pe(F )

)
≈ n

(
tinjK2

(Gn)− p
)
≈ N(0, 2p(1− p)), (1.13)
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where cF is some combinatorial constant depending only on F , and where N(µ, σ2)

denotes the normal distribution with respective mean and variance. Note that (1.12) and
(1.13) remain true for general F , not just connected F , since even if F is not connected,
the quantities tFi

(G) in (1.11) are centred around positive constants, so that tF (G) is
dominated by a linear combination of the tFi

(G).
Now, we can consider a more refined view of the normal distribution appearing

in (1.13) as follows. If κn denotes the 0-1-graphon induced by the adjacency matrix of
Gn, we can analyse the centred and scaled graphon measure Ẑn(dz) = n(κn(z) − p)dz
for z ∈ D2, and think of it as converging weakly to a white noise process Z2 living on
D2 = {(y1, y2) ∈ [0, 1]2 : y1 < y2} and having infinitesimal variance p(1− p)dy (see next
section for exact definitions). That is, for any weight function ϕ ∈ L2(D2),∫

D2

ϕ(y) Ẑn(dy)
L−→
∫
D2

ϕ(y)Z2(dy) ∼ N(0, ‖ϕ‖2p,2), (1.14)

where ‖ϕ‖2p,2 =
∫
D2
ϕ(y)2 p(1− p) dy, and this result can easily be established for multiple

ϕ simultaneously (see (2.1) for precise definition of the stochastic integral). We use
the term “white noise” loosely here, but in the next section, we will refer to Z2 more
appropriately as “Gaussian stochastic measure”, since the term “white noise” has a more
specific meaning in Hilda calculus; see, for example, Di Nunno, Øksendal, and Proske
(2009) for an excellent introduction. Further embellishments of this result could be
considered, such as the convergence of the integrated process

Ẑn(x, y) =

∫ x

0

∫ 1

y

Ẑn(du, dv), (x, y) ∈ D2,

to a corresponding Brownian sheet on D2 (this requires a consistent ordering of the
vertices, though).

Even in this refined view, the main deficiency remains, namely that the only ran-
domness surviving the limiting procedure is that of the number of edges, albeit now
with a description at a local level. For general graphons κ, this phenomenon of loss of
randomness becomes even more pronounced. As we will see, for non-constant graphons,
subgraph counts are dominated by functions of the form

∑n
i=1 ψ(Ui); that is, the random-

ness coming from the vertex labels dominates, and no information about the edges in
the graph survives when taking limits.

While from the point of view of the classical Central Limit Theorem this could be
seen as the end of the story, we have not taken into account the fact that underlying
all of the graph statistics are so-called generalised U -statistics. Such statistics have a
much richer structure of fluctuations than sums of independent random variables. And
while there is no canonical third and even higher-order fluctuation theory for sums of
independent random variables, since it is not possible to make probabilistic sense out
of “subtracting the dominating effect and analyse what is left” for sums of independent
random variables without making use of signed measures, the situation for generalised
(and regular) U -statistics is different, since fluctuations can happen simultaneously at
different scales, and these fluctuations can be studied separately from one another.

1.4 Summary of main findings

We now give a summary of the remainder of this article in the easier case where the
vertex labels are fixed and lie on an equally spaced lattice. That is, Ui ≡ i/n for 1 6 i 6 n,
and the edges Yij are sampled independently with probability κ(Ui, Uj) = κ(i/n, j/n),
1 6 i < j 6 n. We will denote this random graph model by Glat(n, κ). The picture that
emerges from the fluctuations of subgraph counts is as follows.
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For each k > 2 and each connected graph F on the vertex set [k], consider the
collection of centred subgraph indicators

XF,a =
∏
v
F∼w

(Yavaw − κ(av/n, aw/n)) , a ∈ Ink , (1.15)

where Ink = {(a1, . . . , ak) ∈ Nk : 1 6 a1 < · · · < ak 6 n}, and the corresponding statistic

WF =
(
n
k

)−1/2 ∑
a∈Ink

XF,a. (1.16)

It turns out that WF converges to a Gaussian distribution, or more generally, the
collection of random variables XF = (XF,a)a∈Ink , scaled and embedded appropriately,
converges to a white noise process ZF that lives on the space

Dk =
{

(x1, . . . , xk) ∈ [0, 1]k : x1 6 · · · 6 xk
}
.

and has infinitesimal variance
∏
v
F∼w

κ(uv, uw) (1− κ(uv, uw)) du; the case of F = K2 is
given in (1.14). Moreover, the processes ZF turn out to be independent of each other for
different F , and convergence holds jointly for any finite collection of F .

Note that we consider ordered sums as in (1.16) in our main result, and the fields ZF
are independent of each other even if the F are isomorphic (but not identical). Hence,
sums of the form ∑

a∈An
k

XF,a,

where Ank ⊂ [n]k is the set of k-tuples of pairwise different indices, can be analysed by
considering ordered sums and then summing over all isomorphic copies of F .

Now, regular subgraph indicators ∏
v
F∼w

Yvw (1.17)

can be approximated in L2 by linear combinations of random variables of the form (1.15),
and in that sense, centred connected subgraph counts in (1.15) are really at the heart of
all fluctuations of (1.17). In some cases, the approximation is in fact an equality, which
lead to the identify (1.2) based on weighted sums of (1.15), leading to the quantities (1.6)
and (1.7). We will also show that the rate of convergence is O

(
n−1/2

)
for smooth-enough

test functions and of order O
(
n−1/(2(p+2))

)
for the convex set distance, where p is the

maximal size of centred subgraphs considered, although the latter result is unlikely
optimal.

While the collection of fields (ZF )F∈F , where F is an enumeration of all connected
finite graphs, can be thought of as the limiting object of some sort of “centred and
normalised” graph, it is important to keep in mind that the limiting white noise fields are
really just Gaussian stochastic measures, or equivalently, Gaussian Hilbert spaces, which
are collections of Gaussian random variables and not objects in an actual Polish space
for which we could define weak convergence. Thus, the results in this article only lay
the foundations for such considerations; concretely, we establish convergence of finite
dimensional distributions with rates of convergence. Further work is needed to turn this
into a full-fledged notion of weak convergence.

For the model G(n, κ), where the Ui are independent uniform random variables on
[0, 1], the fields ZF need to be augmented by additional dimensions to take into account
randomness of the vertex labels, as can be seen in (1.6) and (1.7), where the Ui do not
just appear in the quantity W , but also act as weights in the remaining quantities V ,2

and so forth. We will elaborate on this in more detail in Section 2.
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1.5 Statistical applications

We believe Janson and Nowicki’s theory of generalised U -statistics along with our ex-
plicit multivariate normal approximation theorem open up new possibilities for inference
in statistical network analysis. While subgraph counts have been used for inference (see,
for instance, the discussion by Ospina-Forero, Deane, and Reinert (2019)), we now make
a few points on how centred subgraph counts could be used in statistical applications.

First, in the light of the results discussed in this article, we believe the model G(n, κ)

is not appropriate for statistical applications, since the randomness of the vertex labels
and the randomness of the edges are conflated. It seems more natural to think of network
data conditionally on the vertex labels, which is equivalent to using the model Glat(n, κ).

Second, in order to calculate centred subgraph count statistics and use them for
testing, the values κ(Uv, Uw) need to be hypothesised a priori for each pair of vertices
v and w. As a result, a statistical procedure based on Glat(n, κ) and centred subgraph
counts to test whether the network is compatible with a specific graphon is in fact
nothing but a test of whether a sequence of independent Bernoulli random variables
Y = (Yij)16i<j6n are compatible with a specific model of their respective success
probabilities (pij)16i<j6n, and the choice of subgraphs F ∈ F determines to what sort of
deviations the test is sensitive to. For instance, a test based solely on the edge-count
test statistic

T (Y ) = σ−1
∑

16i<j6n

(Yij − pij) , σ2 =
∑

16i<j6n

pij (1− pij) ,

is sensitive only to deviations of the overall edge density from that of the postulated
model. By adding the two stars statistic

T (Y ) = σ−1
∑

16i<j<k6n

(Yij − pij) (Yjk − pjk) ,

σ2 =
∑

16i<j<k6n

pij (1− pij) pjk (1− pjk) ,

as well as the analogously defined statistics T (Y ) and T (Y ), a test will also detect
deviations in the form of elevated levels of simultaneous presence or absence of edges
with a common end point (leading to larger positive value of T (Y )), but also the opposite,
namely elevated presence of mutual suppression, where presence of one edge inhibits
presence of another (leading to a larger negative value of T (Y )). Correspondingly,
higher order statistics yields information about presence of higher order dependencies
among edges. What is noteworthy is that these statistics are very easy to calculate, and
in particular the expressions for the variances are straightforward.

Third, if values for pij cannot be obtained a priori, centred subgraph counts can still
serve as diagnostic tests after a model has been fitted by means of any other procedure.
In such a case, these statistics can detect which aspects of the network have not been
adequately captured by a model. For example, algorithms based on stochastic block
models (see Funke and Becker (2019) for a survey on inference methods) typically yield
a community assignment for each vertex as well as connection probabilities between any
two communities, and these values can serve as estimates for pij . One has to keep in
mind, though, that in order to make a valid statistical inference such a procedure would
require post-hoc Type I error correction, since the network data has already been used
to estimate the pij .

Last, an important, but difficult question is that of which centred subgraph counts
should be used to determine whether a given network is compatible with a specific
graphon, and this is related to the question of forcibility of graphons; see Lovász and
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Table 1: Results of centred and standardized subgraph counts for fitted models using
the function BM_Bernoulli from the R-package ‘blockmodels’. The numbers reported
are defined in (1.18). The first data set is simulated from a 4× 4 stochastic block model
with 200 vertices, where each group has 50 vertices. The second data set is the hospital
encounter network ‘rfid’ from the R-package igraphdata, and consists of 75 vertices
representing hospital staff along with encounter counts for each pair of staff. The bold
columns represent the estimated number of groups as recommended by the function
BM_Bernoulli using the Integrated Classification Likelihood (ICL) criterion proposed by
Biernacki et al. (2000).

Number of groups

1 2 3 4 5 6 7 8 9 10

Data simulated from 4× 4 stochastic block model

z 0.00 0.01 0.00 0.17 0.08 −0.07 0.01 −0.02 0.10 0.04
z 4.65 2.47 2.27 -0.57 −0.51 −0.73 0.16 −1.30 −1.12 −0.95

z −18.57 −0.38 1.04 0.03 0.22 0.15 −0.23 −0.11 −0.32 −0.36

z 57.36 2.43 0.77 -0.24 −0.07 −0.04 −0.33 −0.33 −0.69 −0.60

z −5.39 2.31 2.62 -0.93 −0.56 −0.39 −0.65 −0.36 −0.59 −0.35

z 1.90 2.42 1.55 1.29 0.27 0.83 1.61 0.14 0.28 0.15

Data set ‘rfid’

z 0.00 −0.31 0.01 −0.33 0.05 −0.01 0.13 −0.07 −0.17 0.10
z 71.48 19.49 8.72 9.32 9.87 6.25 1.02 −0.15 2.31 0.68
z 11.32 1.49 1.53 4.40 7.96 8.24 8.20 8.25 6.73 6.33
z 136.27 30.38 22.25 17.06 13.43 13.15 12.31 12.44 10.94 10.86
z 44.32 1.11 −1.74 −1.85 -0.41 0.50 −1.24 −1.32 −0.67 −1.18

z 44.23 −3.36 4.55 5.87 7.85 2.97 −0.52 0.28 −0.67 −0.57

Szegedy (2011). For example, for constant graphons, it is enough to consider edge
counts and four-cycle counts; see Fang and Röllin (2015) for a corresponding statistical
procedure.

To illustrate how centred subgraph counts can be used in actual applications, we
have analysed two data sets of small networks. The first is a simulated network with 200
vertices, drawn from a 4× 4 stochastic block model with connection probabilities given
by the matrix

K =


0.45 0.34 0.82 0.60

0.34 0.70 0.98 0.57

0.82 0.98 0.03 0.82

0.60 0.57 0.82 0.25

 .

Each group had 50 vertices assigned to it, after which the connections were sampled
based on the probabilities K and the respective groups two vertices belonged to. We
then used the function ‘BM_bernoulli’ from the R-package ‘blockmodels’ which, for
each given number of groups, does both assignment of group labels to vertices (also
called ‘clustering’, ‘community detection’ or ‘community recovery’) and estimation of
connection probabilities K̂. From this, the individual connection probabilities p̂ij were
be derived. The package blockmodels uses the Integrated Classification Likelihood (ICL)
criterion proposed by Biernacki et al. (2000) to choose the optimal number of groups,
but we have done the centred subgraph count analysis for all group sizes from 1 to 10;
the results are given in Table 1. With y = (yij)16i<j6n denoting the edge indicators and
(p̂ij)16i<j6n denoting the estimated connection probabilities (which are a function of y),
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let ŷij = yij − p̂ij , the numbers reported in Table 1 are defined as

z (y) = σ̂−1(y)
∑

16i<j6n

ŷij , z (y) = σ̂−1(y)
∑

16i<j<k6n

ŷij ŷjkŷik,

z = σ̂−1(y)
∑

16i<j<k6n

(ŷij ŷjk + ŷjiŷik + ŷikŷkj) ,
(1.18)

where

σ̂2(y) =
∑

16i<j6n

p̂ij (1− p̂ij) , σ̂2 (y) =
∑

16i<j<k6n

p̂ij (1− p̂ij) p̂jk (1− p̂jk) p̂ik (1− p̂ik)

σ̂2 (y) =
∑

16i<j<k6n

(p̂ij (1− p̂ij) p̂jk (1− p̂jk) + p̂ji (1− p̂ji) p̂ik (1− p̂ik)

+p̂ik (1− p̂ik) p̂kj (1− p̂kj)) ;

the quantities z , z and z are defined analogously. For this simulated network data, it
is evident that the models fitted by BM_bernoulli for four or more groups are consis-
tent with the three centred subgraph count statistics reported, and that they are not
consistent when only one, two or three groups are hypothesised.

The second data set is from a hospital, where 75 individuals of the staff were equipped
with devices to record encounters between these individuals whenever the devices were
in close proximity to each other. Since the network is edge-weighted, where each weight
represents the number of encounters recorded over the time period of the experiment,
we have converted this to a simple unweighted network. An edge is present between
two individuals if they had at least one encounter. It is clear that for this real data, the
fitted stochastic block models do not capture higher order dependence well. Even when
allowing the clustering algorithm dividing the vertices into ten groups, the dependence
captured by centred triangles is not what one would expect from a stochastic block
model.

2 Subgraph counts and generalised U -statistics

In this section we review and discuss material from Janson and Nowicki (1991)
and Janson (1994, 1997) in order to show that the existing literature on generalised
U -statistics does provide a suitable framework to describe the fluctuations arising in
standard dense graph models. The material in this section is not strictly necessary to
state and prove the main results in Section 3, but it gives the motivating context and
associated general limit theory.

2.1 Gaussian Hilbert Spaces

We follow Janson (1997) in essence. While Gaussian Hilbert spaces will serve as a
form of limiting objects, it is important to keep in mind that at this level of abstraction,
Gaussian Hilbert spaces are just collections of Gaussian random variables, and there
is not really a single object taking values in a single space. Although, for instance,
Brownian motion indexed by time can be seen as a Gaussian Hilbert space, it comes
with additional properties such as almost-sure path-wise continuity, which is a statement
about the joint distribution of uncountably many of the variables and goes beyond the
general theory discussed here.

Now, let H be a Hilbert space, where we denote the inner product by 〈·, ·〉H and the
resulting norm by ‖h‖H :=

√
〈h, h〉H , although we will drop the dependence on H for

norms and inner products if there is no ambiguity. A Gaussian Hilbert space indexed by
H is a collection of centred Gaussian variables (Zh)h∈H defined on a common probability
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space (Ω,F ,P) such that

Cov(Zh, Zh′) = E {ZhZh′} = 〈h, h′〉H , h, h′ ∈ H.

Clearly, EZ2
h = VarZh = ‖h‖2H . It is known that such a family can be constructed for

every Hilbert space in such a way that, if hn → h in H as n → ∞, then Zhn → Zh in
L2(Ω,F ,P). Moreover, any countable collection of the Zh of a Gaussian Hilbert space is
jointly Gaussian.

Gaussian stochastic measures and stochastic integrals. Let (M,M, µ) be a mea-
sure space, and consider the Hilbert space L2(M) (we drop the σ-algebra and measure
from the notation if it does not cause ambiguity). A Gaussian Hilbert space (Zϕ)ϕ∈L2(M)

can be interpreted as a Gaussian stochastic integral on M by setting∫
M

ϕ(x)Z(dx) := Zϕ, ϕ ∈ L2(M). (2.1)

Indeed, the family of random variables defined by Z(A) := ZIA , where A ∈ M with
µ(A) < ∞ so that the indicator function IA is in L2(M), defines a Gaussian stochastic
measure Z on M , which has the following properties:

(i) if A ∈M with µ(A) <∞, then

Z(A) ∼ N(0, µ(A));

(ii) if A1, A2, . . . ∈ M are disjoint sets with µ(Ai) < ∞ for all i > 1, then the random
variables Z(A1), Z(A2), . . . are mutually independent and

Z

⋃
i>1

Ai

 =
∑
i>1

Z(Ai)

(note that convergence on the right hand side is in L2, but since the summands are
independent, it is also almost sure by Kolmogorov’s three-series theorem).

This justifies the notation
∫
ϕdZ in (2.1), since any Gaussian stochastic measure on M

in turn uniquely defines a Gaussian stochastic integral via the standard procedure of
approximating functions in L2(M) via simple functions and taking closure. Note that a
Gaussian stochastic measure can be loosely interpreted as white noise, but we will avoid
this terminology for the remainder of this article for the reasons given in the previous
section.

We can extend the single stochastic integral to a multiple stochastic integral∫
Mk

ϕ(x)Zk(dx), ϕ ∈ L2(Mk, µk), (2.2)

where µk is the usual product measure on the product sigma-algebraM
⊗
k. To this end,

let A1, . . . , An ⊂M be measurable and pairwise disjoint, and consider simple functions
of the form

ϕ(x) =

n∑
i1,...,ik=1

ϕi1,...,ik I[x1 ∈ Ai1 , . . . , xk ∈ Aik ], (2.3)

where ϕi1,...,ik vanishes whenever any two of the indices coincide. For such functions,
the multiple integral can be defined as∫

Mk

ϕ(x)Zk(dx) =

n∑
i1,...,ik=1

ϕi1,...,ikZ(Ai1) · · ·Z(Aik),
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and the general case ϕ ∈ L2(Mk) can be obtained by approximating such functions by
functions of the form (2.3); we refer to Nualart (2006) for details. The integral (2.2)
turns out to be an element of the kth Wiener Chaos Hk, which is the L2-closure of the
space generated by the random variables {Hk(Zh);h ∈ H, ‖h‖H = 1}, where Hk is the
kth Hermite polynomial.

2.2 Gaussian limits related to sums of independent random variables

Before detailing on the results known for generalised U -statistics, it is illuminating to
briefly review the different types of results known for independent random variables,
and how these results can be formulated in the framework of Gaussian Hilbert spaces.

In what follows, let X1, X2, . . . , be independent and identically distributed random
variables with EX1 = 0 and VarX1 = 1.

Central Limit Theorem and Donsker’s theorem. Let H = R; the corresponding
Gaussian Hilbert space can be simply constructed by taking a standard Gaussian variable
Z1 and letting Zc = cZ1 for c ∈ R. The standard CLT then yields

1

n1/2

n∑
i=1

cXi
L−→ Zc, c ∈ R. (2.4)

We can generalise (2.4) and replace the constant c on the left hand side by a general
weight function. To this end, consider the Hilbert space H = L2([0, 1]) with the usual
inner product 〈ϕ1, ϕ2〉 =

∫ 1

0
ϕ1(x)ϕ2(x)dx, and let (Zϕ)ϕ∈L2([0,1]) be a corresponding

Gaussian Hilbert space. For given ϕ ∈ L2([0, 1]), which we assume to be continuous
almost everywhere to avoid certain technical difficulties which are irrelevant for this
discussion, Donsker’s theorem yields

1

n1/2

n∑
i=1

ϕ(i/n)Xi
L−→
∫
[0,1]

ϕ(x)Z(dx), ϕ ∈ L2([0, 1]), (2.5)

and this holds jointly for any finite collection of such ϕ. Moreover, (2.4) follows from (2.5)
if we choose ϕ ≡ c, where c ∈ R. It is important to stress that Donsker’s theorem gives a
stronger result than that. In fact, if we take ϕt(x) = I[x 6 t], where 0 6 t 6 1, we can
construct the Gaussian Hilbert space in such a way that the process (Zϕt)06t61 is almost
surely continuous in t, so that this process can be identified with standard Brownian
motion Bt = Zϕt for 0 6 t 6 1. And so, what Donsker’s theorem actually yields is that 1

n1/2

bntc∑
i=1

Xi


06t61

L−→ (Bt)06t61, (2.6)

where weak convergence is with respect to the Skorohod topology (or uniform topology
if the process on the left hand side of (2.6) is interpolated between jumps).

U -statistics. Before turning to U -statistics, we first consider real-valued functions of
the Xi. To this end, we may assume that the Xi take values in a general measure space
S, and we denote the distribution of Xi by µ. Consider the Hilbert space H = L2([0, 1]×
S, dt×µ) with the canonical inner product that satisfies 〈ϕ1ψ1, ϕ2ψ2〉 = 〈ϕ1, ϕ2〉 〈ψ1, ψ2〉µ,
where (ϕψ)(x, y) := ϕ(x)ψ(y). Denoting by L◦2(S) the set of functions ψ ∈ L2(S) with
Eψ(X1) = 0, and assuming again that ϕ is continuous almost everywhere, it can be
shown that
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1

n1/2

n∑
i=1

ϕ(i/n)ψ(Xi)
L−→
∫
[0,1]×S

ϕ(t)ψ(x)Z(dt, dx),

ϕ ∈ L2([0, 1]), ψ ∈ L◦2(S). (2.7)

Again, this statement is also true jointly for any finite collection of (ϕi, ψi). Note that
Z has infinitesimal variance µ(dx), since the space L◦2(S) comes with inner product
〈ψ1, ψ1〉 =

∫
S ψ1(x)ψ2(x)µ(dx), and the quantity Z(dt × dx) can be loosely interpreted

as “the normalised number of times the value dx has been observed among the indices
dt”. Note also that restricting ψ to be in L◦2(S) and not in L2(S) is necessary, since the
measure Z has more degrees of freedom than the finite-n system, and thus cannot be
fully observed. For example, if Xi ∼ Be(p), then S = {0, 1}, and all functions ψ ∈ L◦2(S)

are multiples of the function ψ(0) = −p and ψ(1) = 1 − p. However, the variables
Z0 = Z([0, 1]×{0}) and Z1 = Z([0, 1]×{1}), while constructed to be independent, cannot
be observed individually — only their weighted sum −pZ0 + (1− p)Z1 can be observed.
This stems from the fact that the number of Xi with value 1 must equal n minus the
number of Xi with value 0, and in this sense, the Gaussian Hilbert space L2([0, 1]× S) is
slightly too big.

The result for U -statistics can be stated without introducing a new Gaussian Hilbert
space — we only need multiple integrals over the same space. To this end, let

L◦2(Sk) =

{
ψ ∈ L2(Sk) :

∫
S
ψ(x1, . . . , xk)µ(dxi) = 0, 1 6 i 6 k, (xj)j 6=i ∈ Sk−1

}
. (2.8)

For a = (a1, . . . , ak) ∈ Ink , write a/n := (a1/n, . . . , ak/n) and Xa = (Xa1 , . . . , Xak). Then,
for almost everywhere continuous ϕ ∈ L2(Dk),

1

nk/2

∑
a∈Ink

ϕ(a/n)ψ(Xa)
L−→
∫
Dk×Sk

ϕ(t)ψ(x)Zk(dt, dx),

ϕ ∈ L2(Dk), ψ ∈ L◦2(Sk). (2.9)

Again, this statement is true jointly for any finite collection of (ϕi, ψi), even with differ-
ent k; see Janson (1997, Theorem 11.16). Of course (2.7) is just a special case of (2.9),
but (2.9) follows in essence from (2.7) and the continuous mapping theorem. General
functions ψ ∈ L2(Sk) can be decomposed into orthogonal elements ψi ∈ L◦2(Si), and
a corresponding limit result then follows from (2.9), depending on the lowest-order,
non-vanishing element ϕi (which in turn also determines the correct scaling to obtain a
non-trivial limit); see Janson (1997, Theorem 11.19).

Generalised U -statistics. The final extension we consider are generalised U -statis-
tics, which were introduced by Janson and Nowicki (1991). To this end, assume the Xi

now take values in a space S1 with distribution µ1, and let (Yij)16i<j be independent and
identically distributed random elements taking values in a space S2 with distribution
µ2. For a ∈ Ink , we define Xa as before and we let Ya = (Yaiaj )16i<j6k. We now consider
functions defined on the space

Tk = Sk1 × S
(k
2)

2 , with measure µk1 × µ
(k
2)

2 ,

where it is understood that T1 = S1. For any function ψ : Tk → R, we will write

ψ(Xa, Ya) = ψ(Xa1 , . . . , Xak , Ya1a2 , . . . , Yak−1ak).

Let now
L◦2(T1) = {ψ ∈ L2(T1) : Eψ(X1) = 0} .
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For k > 1, let

Fk−l = σ (X1, . . . , Xk) ∨ σ (Yij : for all 1 6 i < j 6 k with l /∈ {i, j})

Then, define

L◦2(Tk) =
{
ψ ∈ L2(Tk) : E

{
ψ (X,Y ) | Fk−l

}
= 0 for all 1 6 l 6 k

}
. (2.10)

In words, L◦2(Tk) consists of all those functions that, for every 1 6 l 6 k, vanish when
being simultaneously integrated over all Yij with i = l or j = l. Then, with Zk a Gaussian
stochastic measure on L2(Dk × Tk),

1

nk/2

∑
a∈Ink

ϕ(a/n)ψ(Xa, Ya)
L−→
∫
Dk×Tk

ϕ(t)ψ(x, y)Zk(dt, dx, dy),

ϕ ∈ L2(Dk), ψ ∈ L◦2(Tk)

(2.11)

(here, t and x are k-dimensional vectors, while y is a
(
k
2

)
-dimensional vector); see Janson

(1997, Theorem 11.28) for general ψ ∈ L2(Tk) via orthogonal decomposition.

2.3 Application to centred subgraph counts

We first apply (2.11) to centred subgraph counts of G(n, κ). However, since the
Yij in G(n, κ) are not independent of each other, we need to resort to an auxiliary
representation. Let (Ui)i>1 and (Vij)i,j>1 be independent random variables uniformly
distributed on [0, 1], hence S1 = S2 = [0, 1], endowed with the Lebesgue measure. We
construct a graph Gn on the vertex set [n] by connecting vertices i and j if Vij 6 κ(Ui, Uj).
For a given connected graph F on k vertices, we consider the function

ψF (u, v) = ψ(u)
∏
i
F∼j

(I[vij 6 κ(ui, uj)]− κ(ui, uj)) , u ∈ [0, 1]k, v ∈ [0, 1](
k
2). (2.12)

It is easy to verify that ψF ∈ L◦2(Tk), and hence

1

nk/2

∑
a∈Ink

ϕ(a/n)ψ(Ua)
∏
i
F∼j

(
I[Vaiaj 6 κ(Uai , Uaj )]− κ(Uai , Uaj )

)
L−→
∫
Dk×[0,1]k×[0,1](

k
2)
ϕ(t)ψ(u)

∏
i
F∼j

(I[vij 6 κ(ui, uj)]− κ(ui, uj)) Zk(dt, du, dv).

(2.13)

Two comments are in place. First, the quantity Zk(dt, du, dv), in particular the dv-part,
does not admit an intuitive interpretation, since the uniform random variables Vij are
only used as an auxiliary tool to represent subgraph counts as generalised U -statistics.
Evaluating the stochastic integral in (2.13) with respect to dv, it is not difficult to show
that integral can be written as∫

Dk×[0,1]k
ϕ(t)ψ(u)Zk(dt, du),

where Zk now is a Gaussian stochastic measure on the space

L2

Dk × [0, 1]k, dt×
∏
i
F∼j

κ(ui, uj) (1− κ(ui, uj)) du

 .
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Then, instead of (2.12), we will consider functions of the form

ψF (u, y) = ψ(u)
∏
i
F∼j

(yij − κ(ui, uj)) , u ∈ [0, 1]k, y ∈ [0, 1](
k
2), ψ ∈ L2([0, 1]k),

which allows to avoid the auxiliary representation via the Vij and use the Yij directly,
despite their dependence, and also allows to consider weighted edges. Hence, what we
will show in the main section is that for U as before, and random variables Yij , which
are conditionally independent given U and which satisfy E {Yij | U} = κ(Ui, Uj),

1

nk/2

∑
a∈Ink

ϕ(a/n)ψ(Ua)
∏
i
F∼j

(
Yaiaj − κ(Uai , Uaj )

)
L−→
∫
Dk×[0,1]k

ϕ(t)ψ(u)Zk(dt, du). (2.14)

Note that the measure Zk is homogeneous over Dk; this is because the Ui ‘average
out’ the differences in the variances of the Yij , so that the points in Dk only see the
combined variance effect across all Yij . This is different in Glat(n, κ), which is not
vertex-exchangeable; see Remarks 3.3 and 3.4 for further discussion.

Second, (2.13) does not cover the case where the Ui are not identically distributed.
This is important in particular for the model Glat(n, κ), but our results hold in greater
generality.

2.4 An orthogonal decomposition of subgraph counts

We now discuss how (2.14) can be used to understand fluctuations of subgraph counts
of G(n, κ), and so fix a graphon κ, let U = (U1, . . . , Un) be a sequence of independent
random variables uniformly distributed on [0, 1], let Y = (Yij)16i<j6n be conditionally
independent given U and distributed as before, and construct Gn on n vertices as before.
Let F be a graph on the vertex set [k] and write

tinjF (Gn) =
1

(n)k

∑
a∈An

k

∏
i
F∼j

Yij ; (2.15)

without loss of generality, we may assume that F has no isolated vertices. Now, the
following lemma states that tinjF (Gn) can be decomposed into a sum of mostly uncorrelated
centred subgraph counts, weighted by functions of the vertex labels. Some notation
is needed. For a graph H we denote by |H| the number of vertices in H, and for two
(vertex-labelled) graphs H and H ′, we denote by H ∪H ′ the graph where two vertices
are connected if they are connected in at least one of H and H ′. For a subgraph H ⊆ F
and a subset A ⊆ [k], we denote by H ∪A the graph obtained by interpreting A as the
empty graph on the vertex set A. Moreover, we denote by HP the unique graph on the
vertex set {1, . . . , |H|} that is isomorphic to H and preserves the ordering of the vertex
labels, and we denote by H ⊆′ F that H is a subgraph of F and that it has no isolated
vertices. Let

ϑH(u, y) =
∏
i
H∼j

(yij − κ(ui, uj)) . (2.16)

Lemma 2.1. Let F be a graph on the vertex set [k] without isolated vertices. Then there
are functions ψH,A ∈ L◦2

(
[0, 1]|A|

)
for H ⊆′ F and A ⊂ [k], such that

tinjF (Gn) =
∑
H⊆′F

∑
A⊆[k]

rH,A(U, Y ), (2.17)
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where, with l = |H ∪A|,

rH,A(u, y) =
1

(n)l

∑
a∈An

l

ψH,A(ual−|A|+1
, . . . , ual)ϑHP

(ua1 , . . . , ua|H|),

and such that the following holds: If H and H ′ are not isomorphic or if |A| 6= |A′|, then

Cov (rH,A(U, Y ), rH′,A′(U, Y )) = 0,

and if ψH,A 6≡ 0, then, again with l = |H ∪A|,

Var rH,A(U, Y ) � n−l.

The key of this decomposition is that terms with different scalings are uncorrelated,
so that we can separate the different orders of fluctuations of tinjF (Gn). However, whether
rH,A(U, Y ) has a normal limit or not, depends on H and A. Simply put, if H ∪ A is
connected (for which it is necessary that A ⊂ H), the limit is normal, otherwise the limit
is an element from a higher-order Wiener chaos. However, since each Wiener chaos
itself is obtained by taking products of the underlying Gaussian Hilbert space and taking
limits, we can decompose rH,A further, but only in an approximate sense.

The following lemma makes this precise and states that the statistics on the right
hand side of (2.17) can be approximated in L2 by products and sums of simpler statistics
to any prescribed level of accuracy.

Lemma 2.2. Let H ⊆′ F , and let A ⊂ [k]. Let ψH,A and rH,A be as in Lemma 2.1. Denote
by C1, . . . , Cr the connected components of H ∪ A and k1, . . . , kr their respective sizes,
and assume r > 2 (note that k1 + · · ·+kr = l). For each j, let C ′j be an isomorphic copy of
Cj on [kj ]. Then, for each ε > 0, there exists N and there exist functions ψi,j ∈ L◦2([0, 1]kj )

for 1 6 i 6 N and 1 6 j 6 r, such that

E

rH,A(U, Y )−
N∑
i=1

r∏
j=1

1

(n)kj

∑
a∈An

kj

ψi,j(Ua)ϑC′j (Ua, Ya)


2

6
ε

nl
, (2.18)

for all n.

In other words, the standardised statistics nl/2rH,A can be approximated in L2 by
products and sums of centred connected subgraphs counts uniformly in n, and we will
show that these statistics themselves all have Gaussian limits. While the overall quality of
approximation of tinjF is only of order n−2 in general, the important point here is of course
that the fluctuations at different scalings are uncorrelated and become independent in
the limit.

3 Main result

We are now ready to formulate our main result, which provides bounds on the
multivariate normal approximation of sums as they appear in (2.18). In order to have a
cleaner framework, our result will be formulated for sums over the index set Ink , which
makes all summands uncorrelated, but sums over Ank as they appear in (2.18) can of
course be easily computed from sums over Ink .

3.1 Gaussian approximation of centred connected subgraph counts

Let n > 1, let κ be a graphon, and assume κ 6≡ 0 and κ 6≡ 1. Let U = (Uv)v∈[n] be
independent (but not necessarily identically distributed) random variables, and given
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U , let (Yvw)16v<w6n be random variables that are conditionally independent given U

and that satisfy E {Yij | U} = κ(Ui, Uj). Recall that we set Ua = (Ua1 , . . . , Uak) for a ∈ Ink .
Let d > 1, and for each 1 6 i 6 d, let Fi be a connected graph on the vertex set [ki],
where ki > 1, let ϕi ∈ L2(Dki) and ψi ∈ L2([0, 1]ki) (note that here we do not require that
ψi ∈ L◦2([0, 1]ki), since centring is either done explicitly below if ki = 1, or else is not
necessary since the centred subgraphs provide the centring). For 1 6 i 6 d, define

Wi =


n−1/2

n∑
a=1

ϕi(a/n) (ψi(Ua)− Eψi(Ua)) if ki = 1,

(
n
ki

)−1/2 ∑
a∈Inki

ϕi(a/n)ψi(Ua)
∏
v
Fi∼w

(Yavaw − κ(Uav , Uaw)) if ki > 2,

(3.1)

and let W = (W1, . . . ,Wd). Then, for Σ = (σij)16i,j6d = VarW , we have

σij =



n−1
n∑
a=1

ϕi(a/n)ϕj(a/n) Cov (ψi(Ua), ψj(Ua)) if ki = kj = 1,

(
n
ki

)−1 ∑
a∈Inki

ϕi(a/n)ϕj(a/n)E

ψi(Ua)ψj(Ua)
∏
v
Fi∼w

Var
(
Yaij | U

)
if Fi = Fj ,

0 otherwise

(3.2)

(we emphasise that in (3.2), the condition ‘Fi = Fj ’ really means equality including
vertex labels, not just that Fi and Fj are isomorphic). Before stating our main result, we
need some more notation. For a multi-index α = (α1, . . . , αd) of non-negative integers
and z ∈ Rd, let

|α| = α1 + · · ·+ αd, α! = α1! · · ·αd!, zα = zα1
1 · · · z

αd

d

and

∂αg(x) =
∂|α|g(x)

∂xα1
1 · · · ∂x

αd

d

.

For any multi-index α ∈ Nd, let

|h|α = sup
x∈Rd

|∂αh(x)| .

Moreover, for two d-dimensional random vectors X and Y , and with K the class of convex
sets in Rd, define the convex set distance

dc (L (X),L (Y )) = sup
A∈K
|P[X ∈ A]− P[Y ∈ A]| .

Theorem 3.1. Let W be defined as in (3.1), and let Z = (Z1, . . . , Zd) be a centred
Gaussian random vector with covariance matrix Σ as given by (3.2), and assume the Yij ,
ϕi and ψi are all bounded. Let p be an odd integer such that p > max{k1, . . . , kd}. Then,
for any (p+ 2)-times partially differentiable function h : Rd → R

|Eh(W )− Eh(Z)| 6
C supα:|α|6p+2 |h|α

n1/2
(3.3)

for some constant C that is independent of n. Moreover,

dc (L (W ),L (Z)) 6 Cn−
1

2(p+2) (3.4)

again for some constant C that is independent of n.
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Remark 3.2. Consider again the example of the 2 × 2 graphon and tinj(Gn) from Sec-
tion 1.1. For example, letting W1 equal W from (1.6), we can write

W1 = n−1/2
n∑
a=1

ϕ1(a/n) (ψ1(Ua)− Eψ1(Ua)) , ϕ1 ≡ 1, ψ1(u) = u;

letting W2 equal V ,1 from (1.6), we can write

W2 =
(
n
2

)−1/2 ∑
a∈In2

ϕ2(a/n)ψ2(Ua)
∏
v∼w

(Yavaw − κ(Uav , Uaw)) , ϕ2 ≡ 1, ψ2 ≡ 1;

letting W3 equal V ,4 from (1.7), we can write

W3 =
(
n
2

)−1/2 ∑
a∈In2

ϕ3(a/n)ψ3(Ua)
∏
v∼w

(Yavaw − κ(Uav , Uaw)) ,

ϕ3 ≡ 1, ψ3(u1, u2) = u1u2;

finally, letting W4 equal V ,1 from (1.7), we can write

W4 =
(
n
3

)−1/2 ∑
a∈In3

ϕ4(a/n)ψ4(Ua)
∏
v∼w

(Yavaw − κ(Uav , Uaw)) ,

ϕ4 ≡ 1, ψ4(u1, u2, u3) = κ(u1, u3).

The other quantities in (1.7) can be represented in a similar manner. Applying Theo-
rem 3.1, we obtain that the quantities in (1.6) and (1.7) are jointly close in distribution
to independent Gaussian random variables.

Remark 3.3. Consider the case ofG(n, κ); that is, the Ui are independent and distributed
uniformly on [0, 1]. Assume ϕi and ψi are continuous almost everywhere; then, with
ψ̄i(u) = ψi(u)− Eψi(U1) if ki = 1,

lim
n→∞

σij =



∫
[0,1]

ϕi(t)ϕj(t) dt

∫
[0,1]

ψ̄i(u)ψ̄j(u)du if ki = kj = 1,

∫
Dk

ϕi(t)ϕj(t) dt

∫
[0,1]k

ψi(u)ψj(u)
∏
v
Fi∼w

κ(uv, uw) (1− κ(uv, uw))du

if Fi = Fj ,

0 otherwise.

(3.5)

Therefore, the corresponding Gaussian stochastic measures ZF are determined by the
measure spacesDk × [0, 1]k, dt×

∏
v
F∼w

κ(uv, uw) (1− κ(uv, uw)) du

 , F ∈ F , k = |F | ,

and these measures are independent of each other.

Remark 3.4. Now consider Glat(n, κ). The case ki = 1 is not interesting since σij = 0

for all j. Moreover, we can assume without loss of generality that ψi ≡ 1. Assume that ϕ
and κ are continuous almost everywhere. Then, if Fi = Fj , we have

lim
n→∞

σij =

∫
Dk

ϕi(t)ϕj(t)
∏
v
F∼w

κ(tv, tw) (1− κ(tv, tw)) dt (3.6)
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and σij = 0 otherwise. Therefore, the corresponding Gaussian stochastic measure ZF is
determined by the measure spaceDk,∏

v
F∼w

κ(tv, tw) (1− κ(tv, tw)) dt

 , F ∈ F , k = |F | ,

and these measures are independent of each other.

3.2 Connection to fourth moment theorem

One might wonder why the limits of the centred subgraph count statistics for con-
nected F turn out to be Gaussian. We believe that this is connected to the Fourth
Moment Theorem, first proved by Nualart and Peccati (2005); see Nourdin and Peccati
(2012) for a comprehensive discussion and proofs based on Stein’s method.

The theorem can be formulated as follows. Let (Zh)h∈H be a Gaussian Hilbert space
defined on some probability space Ω, and let F be the sigma-algebra generated by that
space. Let Fn ∈ L2(Ω,F) with EFn = 0 and VarFn = 1 for all n > 1, and assume the
Fn are elements of a fixed Wiener chaos. Then, Fn converges to a standard Gaussian
distribution if and only if EF 4

n converges to 3.
Consider a Gaussian stochastic measure Z2 on D2, where Dk is as before — we can

think of Z2 as the Gaussian approximation of the centred and scaled “edge-field” Ẑn in
(1.14). For 1 6 i < j 6 n, let

Xij =

∫
[ i−1

n , in ]×[ j−1
n , jn ]

Z2(dx, dy).

It is easy to see that the Xij are independent and that

Xij ∼ N(0, n−2).

We can think of Xij as a Gaussian version of the centred and scaled edge indicator
between vertices i and j, where i < j.

Let ϕ ∈ L2(D3) and assume ϕ is continuous almost everywhere, and define ϕ̄n ∈
L2(D2 ×D2) as

ϕ̄n(x, y, u, v) = ϕ

(
dnxe
n

,
dnye
n

,
dnve
n

)
I[dnye /n = dnue /n] .

Note that ∫
D2

∫
D2

ϕ̄n(x, y, u, v)Z2(dx, dy)Z2(du, dv)

=
∑
i<j<k

ϕ

(
i

n
,
j

n
,
k

n

)
XijXjk + small boundary term

(3.7)

lives in the second Wiener chaos and has variance

1

n4

∑
i<j<k

ϕ

(
i

n
,
j

n
,
k

n

)2

≈ 1

n

∫
D3

ϕ(x)2dx.

The sum on the right hand side of (3.7) is just the two-star count of the Xij , and so
centred subgraph counts of random graphs are in essence multiple stochastic integrals
of the centred edge indicators.
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Now, assume that
∫
D3
ϕ(x)2dx = 1 and consider

Fn =
∑
i<j<k

√
nϕ

(
i

n
,
j

n
,
k

n

)
XijXjk;

we have VarFn = 1. It is not difficult to see that, if ϕ is continuous almost everywhere,

EF 4
n =

∑
i<j<k

n2ϕ

(
i

n
,
j

n
,
k

n

)4

× 3

n8

+ 3
∑
i<j<k

∑
u<v<w

(u,v,w) 6=(i,j,k)

n2ϕ

(
i

n
,
j

n
,
k

n

)2

ϕ
(u
n
,
v

n
,
w

n

)2
× 1

n8

= 3

(∫
D3

ϕ(x)2dx

)2

+ o(1) = 3 + o(1),

and so, by the fourth moment theorem, Fn converges to a standard normal. The
corresponding multivariate convergence can be made with similar arguments for any
finite collection of such ϕ. Formally, we can therefore identify a Gaussian Hilbert Space
on L2(D3) with ∫

D3

ϕ(x1, x2, x3)Z2(dx1, dx2)Z2(dx2, dx3), ϕ ∈ L2(D3). (3.8)

This argument is general, and in the same manner, we can think of Z2 giving rise to a
Gaussian Hilbert space on L2(Dk) for every connected graph F on k vertices and identify
it with the integral ∫

Dk

ϕ(x)
∏
i
F∼j

Z2(dxi, dxj), ϕ ∈ L2(Dk). (3.9)

However, it is important to keep in mind that the convergence of Fn is only distributional,
so it is not clear whether the Gaussian Hilbert spaces (3.9) can be coupled with the
underlying space Z2 in a non-trivial and meaningful manner.

4 Abstract approximation theorem

The following abstract multivariate normal approximation theorem is based on Stein’s
method and can yield informative bounds even in the case of vectors of sums of uncorre-
lated, but not necessarily independent random variables. Let ei be the i-th unit-vector in
Nd. A triple of d-dimensional vectors (W,W ′, G) is called Stein coupling if

E
{
Gtg(W ′)−Gtg(W )

}
= E

{
W tg(W )

}
. (4.1)

for all g : Rd → Rd for which the expectations exists; see Chen and Röllin (2010) and
Fang and Röllin (2015).

Theorem 4.1. Let (W,W ′, G) be a Stein coupling, and let Σ = (σij)16i,j6d = Cov(W );
set D = W ′ −W . Then, for any (p+ 2)-times differentiable function h : Rd → R and with
Z being a centred Gaussian vector with covariance matrix Σ,

|Eh(W )− Eh(Z)|

6
d∑
i=1

 ∑
α:16|α|6p

|h|α+ei
(|α|+ 1)α!

√
VarE {GiDα |W}

+
∑

α:26|α|6p

|h|α+ei
(|α|+ 1)α!

|E {GiDα}|+
∑

α:|α|=p+1

|h|α+ei
(p+ 2)α!

E |GiDα|

 .

(4.2)
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Remark 4.2. Note that, by Young’s inequality, we can upper bound the last term in (4.2)
as

E |GiDα| 6 ‖Gi‖∞
d∑
j=1

αj
p+ 1

E

∣∣∣Dp+1
j

∣∣∣ . (4.3)

Proof of Theorem 4.1. Let g : Rd → R be a solution to the Stein’s equation

d∑
i,j=1

σij∂ijg(z)−
d∑
i=1

zi∂ig(z) = h(z)− Eh(Z), z ∈ Rd. (4.4)

From Meckes (2009, Eq. (10)), it is immediate that

|g|α 6
1

|α|
|h|α (4.5)

and it is therefore enough to bound

E


d∑

i,j=1

σij∂ijg(W )−
d∑
i=1

Wi∂ig(W )


in order to bound the left hand side of (4.2). By Taylor’s theorem for multivariate
functions,

f(w′)− f(w) =

p∑
l=1

∑
α:|α|=l

∂αf(w)

α!
(w′ − w)α +R(p+1)(w′, w)

and

R(p+1)(w′, w) =
∑

α:|α|=p+1

p+ 1

α!
(w′ − w)α

∫ 1

0

(1− s)p∂αf(w + s(w′ − w))ds.

Now, using (4.1), we have

E

{
d∑
i=1

Wi∂ig(W )

}

= E

{
d∑
i=1

Gi (∂ig(W ′)− ∂ig(W ))

}

= E


d∑
i=1

Gi

p∑
l=1

∑
α:|α|=l

∂α+eig(W )

α!
Dα


+ E


d∑
i=1

Gi
∑

α:|α|=p+1

p+ 1

α!
Dα

∫ 1

0

(1− s)p∂α+eig(W + sD)ds

 =: r1 + r2.

Now,

r1 =

p∑
l=1

E


d∑
i=1

∑
α:|α|=l

∂α+eig(W )

α!
GiD

α


=

p∑
l=1

E


d∑
i=1

∑
α:|α|=l

∂α+eig(W )

α!
(E {GiDα |W} − E {GiDα})


+

p∑
l=1

E


d∑
i=1

∑
α:|α|=l

∂α+eig(W )

α!
E {GiDα}

 =: r1,1 + r1,2.
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First,

|r1,1| 6
p∑
l=1

d∑
i=1

∑
α:|α|=l

|g|α+ei
α!

E |E {GiDα |W} − E {GiDα}| .

Next, recalling that σij = E {GiDj},∣∣∣∣∣∣r1,2 − E
d∑

i,j=1

σij∂ijg(W )

∣∣∣∣∣∣ 6
p∑
l=2

d∑
i=1

∑
α:|α|=l

|g|α+ei
α!

|E {GiDα}| ,

A bound on r2 can be obtained in a similar manner, and so∣∣∣∣∣∣E


d∑
i,j=1

σij∂ijg(W )−
d∑
i=1

Wi∂ig(W )


∣∣∣∣∣∣

6
d∑
i=1

 ∑
α:16|α|6p

|g|α+ei
α!

√
VarE {GiDα |W} +

∑
α:26|α|6p

|g|α+ei
α!

|E {GiDα}|

+
∑

α:|α|=p+1

|g|α+ei
α!

E |GiDα|

 .

(4.6)

Applying (4.5), the claim follows.

5 Proof of Theorem 3.1

Fix d > 1, and for each 1 6 i 6 d, let Fi be a connected graph on the vertex set
[ki]. Let U = (Uv)16v6n be independent random variables, let κ be a graphon, and let
Y = (Yvw)16v<w6n be random variables that are independent conditionally on U and
such that E {Yvw | Uv, Uw} = κ(Uv, Uw). For 1 6 i 6 d and a ∈ Inki , let

Ti,a =
∏
v
Fi∼w

(Yavaw − κ(Uav , Uaw)) (5.1)

if ki > 2, and for convenience, set Ti,a = 1 if ki = 1. For each 1 6 i 6 d, let ψi : [0, 1]ki → R

be a bounded function, and for a ∈ Inki , let

Φi,a =

{
ψi(Ua1)− Eψi(Ua1) if ki = 1,

ψi(Ua) if ki > 2.

Now, for a ∈ Inki , let

Xi,a =
(
n
ki

)−1/2
ϕi(a/n)Φi,aTi,a.

Recalling the definition of W = (W1, . . . ,Wd) from (3.1), we have

Wi =
∑
a∈Inki

Xi,a.

5.1 Stein Coupling

Let 1 6 i 6 d and a ∈ Inki . For 1 6 j 6 d, let

N i,a
j = {b ∈ Inkj : |a ∩ b| > 2 ∧ ki},
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where in the expression a ∩ b, the ordered tuples a and b are interpreted as unordered
sets. Note that if ki > 2 and kj = 1 then N i,a

j = ∅. Let

W i,a
j = Wj −

∑
b∈Ni,a

j

Xi,b.

Let I be uniformly distributed on [d] and independent of all else, and given I, let A be
uniformly distributed on InkI . Let

W ′ = W I,A =
(
W I,A

1 , . . . ,W I,A
d

)
, G = −d

(
n

kI

)
XI,A eI ,

where ei is the i-th unit vector in Rd.

Lemma 5.1. (W,W ′, G) is a d-dimensional Stein coupling.

Proof. Write g(x) = (g1(x), . . . , gd(x)); averaging over I and A,

E
{
Gtg(W ′)

}
= −

d∑
i=1

∑
a∈Inki

(
n
ki

)−1/2
ϕi(a/n)E

{
Φi,aTi,agi(W

i,a)
}
. (5.2)

If ki = 1, then W i,a does not contain any information about Ua, and since Ti,a = 1

and EΦi,a = 0, it follows that E
{

Φi,aTi,agi(W
i,a)
}

= 0. If ki > 2, then conditionally on U ,
W i,a does not contain any information about (Yvw)v,w∈a. Since E {Ti,a | U} = 0 it again
follows that E

{
Φi,aTi,agi(W

i,a)
}

= 0. Hence E {Gtg(W ′)} = 0. It is straightforward to
check that −E {Gtg(W )} = E {W tg(W )}.

5.2 Estimates on mixed moments

Before proving the main theorem, we present some lemmas, which will be used in
the proof of Theorem 3.1. For a graph F on the vertex set [k] and b ∈ Ink , denote by F (b)

the graph on the vertex set {b1, . . . , bk} where bv and bw are connected in F (b) if and only
if v and w are connected in F . In other words, F (b) is the induced graph when mapping
vertex v to vertex bv for all v ∈ [k]. We assume throughout that, for each 1 6 i 6 d, Fi is
a connected graph on the vertex set [ki], where ki > 1. The reader should keep in mind
that the bounds obtained in Lemmas 5.3–5.5 are worst-case bounds, and will typically
be sharp if all graphs involved are line graphs, but depending on the combinatorics of
the Fi, the bounds could be much smaller. Phrases like “there are O(nk) choices” have
to be understood in the context of the usual Bachmann–Landau notation, which in this
case means that the number of choices can be “of order nk or of smaller order”.

Lemma 5.2 (c.f. Janson and Nowicki (1991, Lemma 5)). Let m > 2, and for each
1 6 l 6 m, let 1 6 il 6 d, and let bl ∈ Inkil . Assume

E

{
m∏
l=1

Φil,bl

m∏
l=1

Til,bl

}
6= 0. (5.3)

Then, every vertex and every edge belong to at least two of the subgraphs

Fi1(b1), · · · , Fim(bm). (5.4)

Moreover, the subgraphs (5.4) either coincide in m/2 disjoint pairs (m necessarily even)
or there is a vertex that belongs to at least three of them.

EJP 26 (2021), paper 139.
Page 25/36

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP708
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher-order fluctuations in dense random graph models

Proof. Without loss of generality, assume there is m′ 6 m such that kil = 1 for all l > m′

(if there are no such indices, set m′ = m). So, assume

E


m∏
l=1

Φil,blE


m′∏
l=1

Til,bl | U


 6= 0.

Suppose there is an edge between v and w in a subgraph that is not in any other

subgraph, so that the factor Yvw − κ(Uv, Uw) appears exactly once in
∏m′

l=1 Til,bl . Since
the Yvw are conditionally independent given U and since E {Yvw − κ(Uv, Uw) | U} = 0,

it would follow that E
{∏m′

l=1 Til,bl | U
}

= 0, which contradicts the claim. Also, as a

consequence, every vertex among the subgraphs that has at least one edge attached to
it, must also appear in another subgraph. Suppose now there is an isolated vertex v in
a subgraph, say Fil(bl) for some l > m′, that is not in any other subgraph. In that case,

Uv only appears in Φil,bl and E
{∏m′

l=1 Til,bl | U
}

does not depend on Uv. Due to the fact

that EΦil,bl = 0 for such Fil(bl) and independence, the left hand side of (5.3) would equal
zero, again in contradiction to the claim. This concludes the proof of the first assertion.

To prove the second assertion, assume each vertex appears in exactly two of the
Fil(bl). If a vertex is in Fil(bl) and Fil′ (bl′), say, then all edges attached to it, must also be
in Fil(bl) and Fil′ (bl′), and so forth. Since both graphs are connected, they must coincide.
Hence, the Fil(bl) must come in identical pairs.

Lemma 5.3. Let 1 6 i, i1, . . . , im 6 d for some m > 2. Then there exists a constant C > 0

that is independent of n such that∣∣∣∣∣∣∣E
∑
a∈Inki

∑
b1∈Ni,a

i1

· · ·
∑

bm∈Ni,a
im

Xi,aXi1,b1 · · ·Xim,bm

∣∣∣∣∣∣∣ 6 Cn−(m−1)/2. (5.5)

Proof. First, write the expectation on the left hand side of (5.5) as

ξ :=
1(

n
ki

)1/2 × ( nki1)1/2 × · · · × ( n
kim

)1/2
×
∑
a∈Inki

∑
b1∈Ni,a

i1

· · ·
∑

bm∈Ni,a
im

E {Φi,aTi,aΦi1,b1Ti1,b1 · · ·Φim,bmTim,bm} .
(5.6)

Fix a, b1, . . . , bm and consider the induced subgraphs

Fi(a), Fi1(b1), . . . , Fim(bm), (5.7)

which are subgraphs on the vertex set [n]. By Lemma 5.2, if the corresponding expecta-
tion of the summand in (5.6) is non-zero, then either these subgraphs coincide in pairs
of disjoint subgraphs, or all vertices and edges appear in at least two subgraphs while at
least one vertex appears in three. Note that all the subgraphs share vertices with Fi(a)

by the definition of N i,a
j , and thus can coincide in distinct pairs only if m = 1, which is

excluded.
Assume ki > 2, and recall that each of the Fil(bl) shares at least two vertices with

Fi(a). Also, note that Fi(a) has ki vertices and so
∑m
l=1 kil must be at least ki in order

for every vertex in Fi(a) to also be in one of the other subgraphs. However, if m > 2,∑m
l=1 kil must be larger than ki to also cover all edges of Fi(a), of which there are at

least ki − 1; indeed, if a vertex of Fi(a) has two edges attached to it and the two edges
are contained in different subgraphs, say one in Fi1(b1) and the other in Fi2(b2), then
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that vertex must belong to all three subgraphs. Therefore, if
∑m
l=1 kil < ki +m− 1, it is

not possible that each edge of Fi(a) also belongs to one of the other subgraphs, and so
all terms in (5.6) vanish, that is, ξ = 0, and the claim is trivially true.

If
∑m
l=1 kil = ki +m− 1, the sum (5.6) contains at most O(nki) non-zero terms, since

all vertices of Fi1(b1), . . . , Fim(bm) must coincide with vertices of Fi(a) to cover all of the
latter, and this arrangement contributes only a combinatorial factor to the sum that is
independent of n. Thus,

|ξ| 6 Cnki

nki/2n(ki1+···+kim )/2
6

C

n(m−1)/2
,

where the second inequality follows from the fact that
∑m
l=1 kil = ki +m− 1.

If
∑m
l=1 kil > ki +m− 1, let q :=

∑m
l=1 kil − (ki +m− 1). Note that q is the maximal

number of vertices available among Fi1(b1), . . . , Fim(bm) that do not need to overlap with
Fi(a) (there might be fewer that can be chosen outside of Fi(a), but in any case, never
more). Assume first q is even. Since every vertex must be contained in at least two
subgraphs, there are q/2 additional free choices in (5.6), contributing a factor of O(nq/2)

to the sum, so that

|ξ| 6 Cnki+q/2

nki/2n(ki1+···+kim )/2
6

C

n(m−1)/2
,

where the second inequality follows from the fact that
∑m
l=1 kil = ki + q +m− 1. If q is

odd, one of the q vertices cannot be chosen freely, so that the additional factor appearing
in O(n(q−1)/2), and we obtain

|ξ| 6 Cnki+(q−1)/2

nki/2n(ki1+···+kim )/2
6

C

n(m−1)/2+1/2
6

C

n(m−1)/2
.

If ki = 1, coverage of Fi(a) is always guaranteed, since every Fil(bl) overlaps with the
one vertex of Fi(a). Hence, with q =

∑m
l=1 kil −m, there are at most q/2 vertices which

can be chosen freely if q is even and (q− 1)/2 if q is odd, contributing a factor of no more
than O(nq/2) to (5.6), so that

|ξ| 6 Cn1+q/2

n1/2n(ki1+···+kim )/2
6
Cn1/2

nm/2
.

This concludes the proof.

Lemma 5.4. Let 1 6 i, j 6 d and let m > 2. Then there exists a constant C > 0 that is
independent of n such that∣∣∣∣∣∣∣E

∑
a∈Inki

∑
b1∈Ni,a

j

· · ·
∑

bm∈Ni,a
j

Xj,b1 · · ·Xj,bm

∣∣∣∣∣∣∣ 6
{
Cn1−m/2 if ki = 1,

Cnki−m if ki > 2.
(5.8)

Proof. First, write

ξ :=
1(

n
kj

)m/2 ∑
a∈Inki

∑
b1∈Ni,a

j

· · ·
∑

bm∈Ni,a
j

E {Φj,b1Tj,b1 · · ·Φj,bmTj,bm} (5.9)

Fix a, b1, . . . , bm and consider the induced subgraphs

Fj(b1), . . . , Fj(bm), (5.10)

which are subgraphs on the set [n]. By Lemma 5.2, if the corresponding summand in (5.9)
is non-zero, every vertex must appear in at least two of these subgraphs.
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Assume ki > 2, and kj > 2 (if kj = 1, then N i,a
j = ∅ and the claim is trivially true).

There are O(nki) choices for a and since each of the Fj(bl) must have two vertices in
the set a, we can assign kj − 2 vertices freely for each such subgraph, subject to the
condition that each vertex appears twice. With q = m(kj − 2), there are O(nq/2) choices
if q is even. Hence

|ξ| 6 Cnki+q/2

nmkj/2
6 Cnki−m. (5.11)

If q is odd, there are O(n(q−1)/2) choices, hence

|ξ| 6 Cnki+(q−1)/2

nmkj/2
6 Cnki−m−1/2 6 Cnki−m. (5.12)

In the case ki = 1, similar arguments lead to the estimate

|ξ| 6 Cn1+m(kj−1)/2

nmkj/2
6 Cn1−m/2, (5.13)

if m(kj − 1) is even, and similarly if it is odd. This concludes the proof.

Lemma 5.5. Let 1 6 i, i1, . . . , im 6 d for some m > 1. Then there exists a constant C > 0

that is independent of n such that∣∣∣∣∣∣∣
∑

a,a′∈Inki

∑
b1∈Ni,a

i1

∑
b′1∈N

i,a′
i1

· · ·
∑

bm∈Ni,a
im

∑
b′m∈N

i,a′
im

Cov
(
Xi,aXi1,b1 · · ·Xim,bm , Xi,a′Xi1,b′1

Xim,b′m

)∣∣ 6 Cn−m. (5.14)

Proof. First, let ξ equal the left hand side of (5.14) without modulus. Consider first the
case ki > 2, in which case again we may assume kil > 2 for all 1 6 l 6 m, since otherwise
ξ = 0, using the same arguments as in the previous lemmas. Now, it is easy to verify that
the covariances are zero if the two sets

a ∪
m⋃
l=1

bl, and a′ ∪
m⋃
l=1

b′l (5.15)

do not overlap (independence). Fix a, a′, b1, b
′
1, . . . , bm, b

′
m, consider the induced sub-

graphs
Fi(a), Fi1(b1), . . . , Fim(bm), Fi(a

′), Fi1(b′1), . . . , Fim(b′m), (5.16)

which are subgraphs on the set [n], and also consider

E
{
Xi,aXi1,b1 · · ·Xim,bm ·Xi,a′Xi1,b′1

· · ·Xim,b′m

}
. (5.17)

By Lemma 5.2, if (5.17) is non-zero, every vertex in (5.16) must appear in at least two of
these subgraphs. Now, let r = |a ∩ a′|.
Case 1 6 r 6 ki: Since r vertices in Fi(a) are also in Fi(a

′), both Fi(a) and Fi(a
′) have

ki − r more vertices each that need to be in any of the other subgraphs and, since Fi is
connected, also at least ki − r more edges each. We proceed similarly as in the proof
of Lemma 5.3. If

∑m
l=1 kil < ki − r + m, it is not possible for all edges of Fi(a \ a′) and

those connecting Fi(a \ a′) with Fi(a ∩ a′), to be covered, and so ξ = 0. Otherwise, let
q =

∑m
l=1 kil − (ki − r + m). There are O(n2ki−r) choices for the vertices of Fi(a) and

Fi(a
′) together, and there are O(n(2q)/2) choices for the remaining vertices. Hence,

|ξ| 6 Cn2ki−r+q

nki+ki1+···kim
6

Cn2ki−r+q

nki+q+ki−r+m
6

C

nm
,
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where we have used that
∑m
l=1 kil = q + ki − r +m

Case r = 0: Fi(a) and Fi(a
′) are not overlapping and each of Fi(a) and Fi(a

′) have ki
vertices that need to be in any of the other subgraphs and, since Fi is connected, also at
least ki − 1 edges. If

∑m
l=1 kil < ki − 1 + m, it is not possible for all edges of Fi(a) and

Fi(a
′), respectively, to be covered, and so ξ = 0. Otherwise, let q =

∑m
l=1 kil− (ki−1+m).

There are O(n2ki) choices for the vertices of Fi(a) and Fi(a
′) together, and there are

O(n(2q)/2−1) choices for the remaining vertices, since at least one vertex from
⋃m
l=1 bl

must overlap with
⋃m
l=1 b

′
l. Hence,

|ξ| 6 Cn2ki+q−1

nki+ki1+···kim
6

Cn2ki+q−1

nki+q+ki−1+m
6

C

nm
,

where we have used that
∑m
l=1 kil = q + ki − 1 +m.

Now suppose k1 = 1. If Fi(a) = Fi(a
′) there are n choices for this one vertex, and

since every subgraph must share a vertex with Fi(a) and Fi(a′), respectively, there are
O
(
n2×

∑m
l=1(kil−1)/2

)
choices for the remaining vertices. Hence,

|ξ| 6 Cn1+ki1+···+kim−m

n1+ki1+···kim
6

C

nm
.

If Fi(a) 6= Fi(a
′) there are O(n2) choices for the two vertices, and since every subgraph

must share a vertex with Fi(a) and Fi(a′), respectively, there are O
(
n2×

∑m
l=1(kil−1)/2−1

)
choices for the remaining vertices, since at least one vertex from

⋃m
l=1 bl must overlap

with
⋃m
l=1 b

′
l. Hence

|ξ| 6 Cn2+ki1+···+kim−m−1

n1+ki1+···kim
6

C

nm
.

This concludes the proof.

Lemma 5.6. Let m > 2. Then∣∣EDm
j

∣∣ 6 Cn−m, |E {GiDα}| 6 Cn−(|α|−1)/2, VarE {GiDα | U, Y } 6 Cn−|α|.

Proof. Note that

Dj = W ′j −Wj = −
∑

b∈NI,A
j

Xj,b,

and hence,

E {GiDα | U, Y } = (−1)|α|+1
∑
a∈Inki

Xi,a

d∏
j=1

 ∑
b∈Ni,a

j

Xj,b


αj

and

E
{
Dm
j | U, Y

}
=

(−1)m

d

d∑
i=1

(
n

ki

)−1 ∑
a∈Inki

 ∑
b∈Ni,a

j

Xj,b


m

.

The bounds are now a direct consequence of Lemmas 5.3–5.5.

5.3 Proof of Theorem 3.1

Proof. The variance expressions (3.2) are straightforward to establish. The proof of the
bounds (3.3) for (p+ 2)-times differentiable functions is a consequence of Theorem 4.1
and Remark 4.2 with the Stein coupling from Lemma 5.1, along with the moment
estimates of Lemma 5.6 with the choice m = p+ 1.
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We use the smoothing technique of Gan, Röllin, and Ross (2017) in order to approxi-
mate the indicator function IA by a (p + 2)-times partially differentiable function. Fix
A ∈ K and ε > 0, define

Aε = {y ∈ Rd : d(y,A) < ε}, and A−ε = {y ∈ Rd : B(y; ε) ⊆ A},

where d(y,A) = infx∈A |x− y| and B(y; ε) is the closed ball of radius ε around y. Let
{hε,A : Rd → [0, 1];A ∈ K} be a class of functions, such that hε,A(x) = 1 for x ∈ A and 0

for x /∈ Aε. Then, by Lemma 2.1 of Bentkus (2003), we have for any ε > 0 that

sup
A∈K
|P(W ∈ A)− P(Z ∈ A)| 6 4d1/4ε+ sup

A∈K
|Ehε,A(W )− Ehε,A(Z)| . (5.18)

Let f : Rd → R be a bounded and Lebesgue measurable function, and for δ > 0, consider
the smoothing operator Sδ defined as

(Sδf)(x) =
1

(2δ)d

∫ x1+δ

x1−δ
· · ·
∫ xd+δ

xd−δ
f(z)dzd . . . dz1.

Choose δ = ε
(p+3)2

√
d
, let hε,A = Sp+3

δ IAε/(p+3) ; then by Lemma 3.9 of Gan et al. (2017),

hε,A is (p+ 2)-times partially differentiable and

‖hε,A‖∞ 6 1, |hε,A|α 6
1

ε|α|
, 1 6 |α| 6 p+ 2.

Note that hε,A(x) = 1 for x ∈ A and hε,A(x) = 0 for x /∈ Aε. Therefore, from (3.3),

|Ehε,A(W )− Ehε,A(Z)| 6
C supα:|α|6p+2 |hε,A|α

n1/2
6

C

n1/2ε(p+2)
(5.19)

for some constant C. Now, using (5.18), we have

sup
A∈K
|P(W ∈ A)− P(Z ∈ A)| 6 4d1/4ε+ C

1

εp+2n1/2
. (5.20)

The final order n−1/(2(p+2)) is then established by taking ε = n−1/(2(p+2)).

6 Proof of Lemmas 2.1 and 2.2

Consider the graph F on the vertex set [k] as fixed. In what follows, for any subgraph
H ⊆ F , Hc denotes the ‘edge complement’ of H and is the graph obtained by removing
from F all edges which are present in H and then removing all, if any, resulting isolated
vertices.

Lemma 6.1. Recalling (2.16), and with F any graph on the vertex set [k], we can write∏
i
F∼j

yij =
∑
H⊆′F

ρF,H(u, y),
(6.1)

where
ρF,H(u, y) =

∏
i
Hc
∼ j

κ(ui, uj)× ϑH(u, y), u ∈ [0, 1]k, y ∈ R(k
2).

and where empty products are understood to equal 1.

Proof. We use induction over the number of edges in the graph F . If F has no edges,
the claim is clearly true, since H = ∅ ⊆ F is the only subgraph of F without isolated
vertices and in that case,

∏
i
F∼j
yij = 1 = ρF,∅(u, y).
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Now, assume the assertion is true for all graphs with e− 1 or fewer edges. Let F be a
graph on k vertices with e edges. Fix an edge in F , say the edge between vertices l and
m, where 1 6 l < m 6 k, and let Flm be the subgraph of F obtained by removing that
edge and any isolated vertex after the edge removal. Then∏

i
F∼j

yij = ylm
∏
i
Flm∼ j

yij = (ylm − κ(ul, um))
∏
i
Flm∼ j

yij + κ(ul, um)
∏
i
Flm∼ j

yij

and by our assumption the decomposition holds for the subgraph Flm, that is∏
i
Flm∼ j

yij =
∑

H⊆′Flm

∏
{i,j}∈E(Flm)\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj)) .

Thus we get∏
i
F∼j

yij = (ylm − κ(ul, um))
∑

H⊆′Flm

∏
{i,j}∈E(Flm)\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj))

+ κ(ul, um)
∑

H⊆′Flm

∏
{i,j}∈E(Flm)\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj))

=
∑

H⊆′Flm

∏
{i,j}∈E(Flm)\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj)) (ylm − κ(ul, um))

+
∑

H⊆′Flm

∏
{i,j}∈E(Flm)\E(H)

κ(ui, uj)× κ(ul, um)×
∏
i
H∼j

(yij − κ(ui, uj))

=
∑
H⊆′F :

{l,m}∈E(H)

∏
{i,j}∈E(F )\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj))

+
∑
H⊆′F :

{l,m}6∈E(H)

∏
{i,j}∈E(F )\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj))

=
∑
H⊆′F

∏
{i,j}∈E(F )\E(H)

κ(ui, uj)×
∏
i
H∼j

(yij − κ(ui, uj)) .

(6.2)

Hence, the assertion is true for F , which completes the proof.

Proof of Lemma 2.1. By Lemma 6.1,

tinjF (Gn) =
∑
H⊆′F

sH(U, Y ),

where

sH(U, Y ) =
1

(n)k

∑
a∈An

k

ρH(Ua, Ya)

(we drop dependence on F , since it is fixed). Now, for A ⊂ [k] (including the empty set),
let

MA = {ψ ∈ L2([0, 1]k) : ψ(u) depends on (ui)i∈A only}
(in particular, M∅ consists of all constants) and

M0
A = {ψ ∈MA : E {ψ(U)ϕ(U)} = 0 for all B ( A and all ϕ ∈MB} .

From Janson (1997, Lemma 11.17), it follows that, for any ψ ∈ L2([0, 1]k), there exists a
unique orthogonal decomposition

ψ(u) =
∑
A⊆[k]

ψA(u), ψA ∈M0
A, A ⊆ [k]. (6.3)
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Applying this to ψH =
∏
i
Hc
∼ j

κ(ui, uj) =
∑
A⊆[k] ψ̃H,A(u), we can decompose sH further

into a sum of the form

sH,A(u, y) =
1

(n)k

∑
a∈An

k

ψ̃H,A(ua)
∏
i
H∼j

(
yaiaj − κ(uai , uaj )

)
.

Let l be the number of vertices in H ∪A; we can rewrite sH,A as rH,A where

rH,A(u, y) =
1

(n)l

∑
a∈An

l

ψH,A

(
uaAP

) ∏
i
HP∼ j

(
yaiaj − κ(uai , uaj )

)
,

with ψH,A (u), u ∈ [0, 1]|A|, being the function obtained from ψ̃H,A (u), u ∈ [0, 1]k, by a
change of coordinates from the (now ordered) set A to (1, . . . , |A|). The claims about
covariances and variances are straightforward to check.

Proof of Lemma 2.2. Note that, for |A| > 2, M0
A is the L2-closure of the linear space

spanned by {∏
i∈A

ψi(ui) : ψi ∈ L◦2([0, 1])

}
.

Hence, for any ε > 0, there are NH,A and ψH,A,p,v ∈ L◦2([0, 1]), v ∈ [|A|], 1 6 p 6 N , such
that

E

ψH,A(U)−
NH,A∑
p=1

|A|∏
i=1

ψH,A,p,i(Ui)

2

6 ε,

and hence, for any a ∈ Ank ,

E

ψH,A(UaAP
)
∏
i
HP∼ j

(Yij − κ(Ui, Uj))−
NH,A∑
p=1

|A|∏
i=1

ψH,A,p,i(Uai)
∏
i
HP∼ j

(Yij − κ(Ui, Uj))


2

6 ε,

since
∣∣(Yaiaj − κ(Uai , Uaj )

)∣∣ 6 1. With

r̃H,A(u, y) =
1

(n)l

∑
a∈An

l

NH,A∑
p=1

|A|∏
i=1

ψH,A,p,i(uai)
∏
i
HP∼ j

(
yaiaj − κ(uai , uaj )

)
we obtain

E (rH,A(U, Y )− r̃H,A(U, Y ))
2

6 E

 1

(n)l

∑
a∈An

l

ψH,A(Ua)−
NH,A∑
p=1

|A|∏
i=1

ψH,A,p,i(Uai)

 ∏
i
HP∼ j

(
Yaiaj − κ(Uai , Uaj )

)
2

6
l! ε

(n)l
,

where we have used that
∏|A|
i=1 ψH,A,p,i ∈ L◦2

(
[0, 1]|A|

)
, so that all cross terms with

|a ∩ a′| > l vanish. The final claim now follows from Lemma 6.2.
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Lemma 6.2. Let H be a graph on the vertex set [l], and let C1, . . . , Cr denote the
connected components of H. For each 1 6 i 6 r, let li be the size of Ci, let C ′i be a graph
on [li] that is isomorphic to Ci, and let ψi ∈ L◦2([0, 1]li). Let

Si(u, y) =
∑
a∈An

li

ψi(ua)
∏
v
C′
i∼w

(yavaw − κ(uav , uaw))

Then

E

∑
a∈An

l

r∏
i=1

ψi(UaV (Ci)
)
∏
v
Ci∼w

(yavaw − κ(Uav , Uaw))−
r∏
i=1

Si(U, Y )


2

6 Cnl−1 (6.4)

for all uv ∈ [0, 1] and yvw ∈ {0, 1}, 1 6 v < w < n.

Proof. When expanding the term
∏r
i=1

∑
a∈An

li

, consider two cases: either the different

tuples of indices are all disjoint, or they overlap by at least one index. The first case
easily yields the second expression in the difference (6.4). For the second case, the size
of the union of the indices can be at most l − 1 which gives the order of the error in the
approximation (6.4).

A Complete orthogonal decomposition of the triangle density for
2 × 2 block graphon

Under the assumptions of Section 1.1, we have

tinj(Gn) = R0.0 +R0.5 +R1.0 +R1.5 +R2.0 +R2.5

where

R0.0 = (αγ + β(1− γ))
(
γ
(
α2γ + 3(1− γ)δ2

)
− αβγ(1− γ) + β2(1− γ)2

)
,

R0.5 =
1

n1/2
×
(
3(αγ(α2γ + (2− 3γ)δ2)− β3(1− γ)2 + β(3γ2 − 4γ + 1)δ2)

)
W,

R1.0 =
1

n− 1
× 3

(
α3γ + δ2(α(1− 3γ)− β(2− 3γ)) + β3(1− γ)

)
(W 2 − γ(1− γ))

+
1

n1/2(n− 1)1/2

× 181/2
(

(αγ(α− 2δ) + β2(1− γ)− 2β(1− γ)δ + δ2)V ,4

+ (αγ + β(1− γ))(αγ − β(1− γ) + (1− 2γ)δ)(V ,2 + V ,3)

+
(
γ(α2γ2 − 2α(γ − 1)γδ − (γ − 1)δ2)− β2(γ − 1)3 + 2βγ(γ − 1)2δ

)
V ,1

)
,

R1.5 =
1

n1/2(n− 1)
× 3

(
α3γ(3γ − 2)− α

(
9γ2 − 8γ + 1

)
δ2

−β3
(
3γ2 − 4γ + 1

)
+ β

(
9γ2 − 10γ + 2

)
δ2
)
W

+
n1/2

(n− 1)(n− 2)
×
(
α3 + 3δ2(β − α)− β3

) (
W 3 − n−1/2γ(1− γ)(1− 2γ)

)
+

1

n1/2(n− 1)1/2(n− 2)1/2
× 61/2 (V + V ,1 + V ,2 + V ,3)

+
1

(n− 1)1/2(n− 2)

× 181/2
(

(α2γ2 + 2αγ(1− γ)δ − β2(1− γ)2 − 2βγ(1− γ)δ + (1− 2γ)δ2)V ,1W
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+ (α2γ + α(1− 2γ)δ + β2(1− γ)− β(1− 2γ)δ − δ2)(V ,2 + V ,3)W

+ (α− β)(α+ β − 2δ)V ,4W
)
,

R2.0 =
1

n1/2(n− 1)1/2(n− 2)

× 181/2
(
2(1− γ)γ

(
α2(−γ) + α(2γ − 1)δ + β2(γ − 1) + β(δ − 2γδ) + δ2

)
V ,1

+ (β − α)
(
2αγ(1− γ) + 2βγ(1− γ) + (1− 2γ)2δ

)
(V ,2 + V ,3)

+ 2
(
α2(γ − 1) + α(δ − 2γδ)− β2γ + β(2γ − 1)δ + δ2

)
V ,4

)
+

1

(n− 1)(n− 2)
× 3(2γ − 1)(α− β)

(
α2 + αβ + β2 − 3δ2

)
(W 2 − γ(1− γ)),

R2.5 =
1

n1/2(n− 1)(n− 2)
× 2

(
6γ2 − 6γ + 1

)
(α− β)

(
α2 + αβ + β2 − 3δ2

)
W.

Supplementary Material

Code to reproduce Table 1 (DOI: 10.1214/21-EJP708SUPP; .zip). The zip file
contains code to reproduce Table 1. The code can also be found at https://github.com/
aroellin/csgc.
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