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Abstract

Using marked Dirichlet processes we characterise the law of the convex minorant of
the meander for a certain class of Lévy processes, which includes subordinated stable
and symmetric Lévy processes. We apply this characterisation to construct ε-strong
simulation (εSS) algorithms for the convex minorant of stable meanders, the finite
dimensional distributions of stable meanders and the convex minorants of weakly
stable processes. We prove that the running times of our εSS algorithms have finite
exponential moments. We implement the algorithms in Julia 1.0 (available on GitHub)
and present numerical examples supporting our convergence results.

Keywords: simulation; stable process; stable meanders; convex minorant.
MSC2020 subject classifications: 60G17; 60G51; 65C05; 65C50.
Submitted to EJP on November 27, 2019, final version accepted on July 26, 2020.
Supersedes arXiv:1910.13273v1.

1 Introduction

1.1 Setting and motivation

The universality of stable laws, processes and their path transformations makes them
ubiquitous in probability theory and many areas of statistics and natural and social
sciences (see e.g. [UZ99, CPR13] and the references therein). Brownian meanders,
for instance, have been used in applications, ranging from stochastic partial differ-
ential equations [BZ04] to the pricing of derivatives [FKY14] and unbiased and exact
simulation of the solutions of stochastic differential equations [CH12, CH13]. Analytic
information is generally hard to obtain for either the maximum [Cha13] and its temporal
location [AI18, p. 2] or for the related path transformations [CD05], even in the case of
the Brownian motion with drift [IO19]. Moreover, except in the case of Brownian motion
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ε-strong simulation of convex minorants

with drift [BS02, Dev10], exact simulation of path-functionals of weakly stable processes
is rarely available. In particular, exact simulation of functionals of stable meanders,
which arise in numerous path transformations (see [Ber96, Sec. VIII] and [UB14]), ap-
pears currently to be out of reach, as even the maximum of a stable processes can only
be simulated as a univariate random variable in the strictly stable case [GCMUB19].
A natural question (Q1) arises: does there exist a simulation algorithm with almost sure
control of the error for stable meanders and path-functionals related to the extrema of
weakly stable processes?

A complete description of the law of the convex minorant of Lévy processes is given
in [PUB12]. Its relevance in the theory of simulation was highlighted in recent con-
tributions [GCMUB19, GCMUB18a], which developed sampling algorithms for certain
path-functionals related to the extrema of Lévy processes (see also Subsection 1.3.3
below). Thus, as Lévy meanders arise in numerous path transformations and functionals
of Lévy processes [DI77, Cha97, AC01, UB14, CM16, IO19], it is natural to investigate
their simulation problem via their convex minorants, leading to question (Q2): does
there exist a tractable characterisation of the law of convex minorants of Lévy meanders
given in terms of the marginals of the corresponding Lévy process? This question is
not trivial for the following two reasons. (I) A description of the convex minorant of a
Lévy meander is known only for a Brownian meander [PR12] and is given in terms of the
marginals of the meander, not the marginals of the Brownian motion (cf. Subsection 1.3.1
below). (II) Tractable descriptions of the convex minorant of a process X typically rely
on the exchangeability of the increments of X in a fundamental way [PUB12, AHUB19],
a property clearly not satisfied when X is a Lévy meander.

1.2 Contributions

In this paper we answer affirmatively both questions (Q1) & (Q2) stated above. More
precisely, in Theorem 2.7 below, we establish a characterisation of the law of the convex
minorant of Lévy meanders, based on marked Dirichlet processes, for Lévy processes
with constant probability of being positive (e.g. subordinated stable and symmetric Lévy
processes). In particular, Theorem 2.7 gives an alternative description of the law of the
convex minorant of a Brownian meander to the one in [PR12]. Our description holds for
the meanders of the aforementioned class of Lévy processes, while [PR12] is valid for
Brownian motion only (see Subsection 1.3.1 below for more details).

The description in Theorem 2.7 yields a Markovian structure (see Theorem 3.4 below)
used to construct ε-strong simulation (εSS) algorithms for the convex minorants of weakly
stable processes and stable meanders, as well as for the finite-dimensional distributions
of stable meanders. We apply our algorithms to the following problems: exact simulation
of barrier crossing events; unbiased simulation of certain path-functionals of stable
processes such as the moments of the crossing times of weakly stable processes; esti-
mation of the moments of the normalised stable excursion. We report on the numerical
performance in Section 4. Finally, we establish Theorem 3.6 below stating that the
running times of all of these algorithms have exponential moments, a property not seen
before in the context of εSS (cf. discussion in Subsection 1.3). Moreover, to the best of
our knowledge, our results constitute the first simulation algorithms for stable meanders
to appear in the literature. Due to the analytical intractability of their law, no simulation
algorithms have been proposed so far.

1.3 Connections with the literature

Our results are linked to seemingly disparate areas in pure and applied probability.
We discuss connections to each of the areas separately.
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ε-strong simulation of convex minorants

1.3.1 Convex minorants of Lévy meanders

The convex minorant of the path of a process on a fixed time interval is the (pointwise)
largest convex function dominated by the path. Typically, the convex minorant is a
piecewise linear function with a countably infinite number of linear segments known as
faces, see Subsection 5.1 for definition of such functions. Note that the chronological
ordering of its faces coincides with the ordering by increasing slope.

A description of the convex minorant of a Brownian meander is given in [PR12]. To
the best of our knowledge, the convex minorant of no other Lévy meander has been
characterised prior to the results presented below. The description in [PR12] of the
faces of the convex minorant of a Brownian meander depends in a fundamental way
on the analytical tractability of the density of the marginal of a Brownian meander at
the final time, a quantity not available for other Lévy processes. Furthermore, [PR12]
describes the faces of the convex minorant of Brownian meanders in chronological order,
a strategy feasible in the Brownian case because the right end of the interval is the only
accumulation point for the faces, but infeasible in general. For example, the convex
minorant of a Cauchy meander has infinitely many faces in any neighborhood of the origin
since the set of its slopes is a.s. dense in R. Hence, if a generalisation of the description
in [PR12] to other Lévy meanders existed, it could work only if the sole accumulation
point is the right end of the interval. Moreover, the scaling and time inversion properties
of Brownian motion, not exhibited by other Lévy processes [GY05, ACGZ19], are central
in the description of [PR12].

In contrast, the description in Theorem 2.7 holds for the Lévy processes with con-
stant probability of being positive, including Brownian motion, and does not require any
explicit knowledge of the transition probabilities of the Lévy meander. Moreover, to the
best of our knowledge, ours is the only characterisation of the faces of the convex mino-
rant in size-biased order where the underlying process does not possess exchangeable
increments (a key property in all such descriptions [AP11, PUB12, AHUB19]).

1.3.2 ε-strong simulation algorithms

εSS is a procedure that generates a random element whose distance to the target random
element is at most ε almost surely. The tolerance level ε > 0 is given a priori and can
be refined (see Section 3 for details). The notion of εSS was introduced in [BPR12] in
the context of the simulation of a Brownian path on a finite interval. This framework
was extended to the reflected Brownian motion in [BC15], jump diffusions in [PJR16],
multivariate Itô diffusions in [BCD17], max-stable random fields in [LBDM18] and the
fractional Brownian motion in [CDN19]. In general, an εSS algorithm is required to
terminate almost surely, but might have infinite expected complexity as is the case
in [BPR12, PJR16]. The termination times of the algorithms in [BC15, BCD17, CDN19]
are shown to have finite means. In contrast, the running times of the εSS algorithms in
the present paper have finite exponential moments (see Theorem 3.6 below), making
them efficient in applications (see Subsection 4.2 below).

In addition to the strong control on the error, εSS algorithms have been used in
the literature as auxiliary procedures yielding exact and unbiased simulation algo-
rithms [BPR12, CH13, BC15, BZ17, BM18, LBDM18]. We apply our εSS algorithms
to obtain exact samples of indicator functions of the form 1A(Λ) for certain random
elements Λ and suitable sets A (see Subsection 4.1.1 below). The exact simulation of
these indicators in turn yields unbiased samples of other functionals of Λ, including
those of the (analytically intractable) first passage times of weakly stable processes (see
Subsection 4.1 below).
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1.3.3 Simulation algorithms based on convex minorants

Papers [GCMUB19, GCMUB18a] developed simulation algorithms for the extrema of
Lévy processes in various settings. We stress that algorithms and results in [GCMUB19,
GCMUB18a] cannot be applied to the simulation of the path-functionals of Lévy meanders
considered in this paper. There are a number of reasons for this. First, the law of a Lévy
meander on a fixed time interval [0, T ] is given by the law of the original process X con-
ditioned on X being positive on (0, T ], an event of probability zero if, for instance, X has
infinite variation [Sat13, Thm 47.1]. Since the algorithms in [GCMUB19, GCMUB18a]
apply to the unconditioned process, they are clearly of little direct use here. Second,
the theoretical tools developed in [GCMUB19, GCMUB18a] are not applicable to the
problems considered in the present paper. Specifically, [GCMUB18a] proposes a new
simulation algorithm for the state XT , the infimum and the time the infimum is attained
on [0, T ] for a general (unconditioned ) Lévy process X and establishes the geometric
decay of the error in Lp of the corresponding Monte Carlo algorithm. In contrast to the
almost sure control of the simulation error for various path-functionals of X conditioned
on {Xt > 0 : t ∈ (0, T ]} established in the present paper, the results in [GCMUB18a]
imply that the random error in [GCMUB18a], albeit very small in expectation, can take ar-
bitrarily large values with positive probability. This makes the methods of [GCMUB18a]
completely unsuitable for the analysis of algorithms requiring an almost sure control of
the error, such as the ones in the present paper.

Paper [GCMUB19] develops an exact simulation algorithm for the infimum of X over
the time interval [0, T ], where X is an (unconditioned) strictly stable process. The scaling
property of X is crucial for the results in [GCMUB19]. Thus, the results in [GCMUB19]
do not apply to the simulation of the convex minorant (and cosequently the infimum)
of the weakly stable processes considered here. This problem is solved in the present
paper via a novel method based on tilting X and then sampling the convex minorants of
the corresponding meanders, see Subsection 3.1 for details.

The dominated-coupling-from-the-past (DCFTP) method in [GCMUB19] is based

on a perpetuity equation X d
= V (U1/αX + (1 − U)1/αS) established therein, where X

denotes the law of the supremum of a strictly stable process X. This perpetuity appears
similar to the one in Theorem 3.4(c) below, characterising the law of X1 conditioned
on {Xt > 0 : t ∈ (0, 1]}. However, the analysis in [GCMUB19] cannot be applied to the
perpetuity in Theorem 3.4(c) for the following reason: the “nearly” uniform factor V
in the perpetuity above (U is uniform on [0, 1] and S is as in Theorem 3.4(c)) is used
in [GCMUB19] to modify it so that the resulting Markov chain exhibits coalescence with
positive probability, a necessary feature for the DCFTP to work. Such a modification
appears to be out of reach for the perpetuity in Theorem 3.4(c) due to the absence of
the multiplying factor, making exact simulation of stable meanders infeasible. However,
even though the coefficients of the perpetuity in Theorem 3.4(c) are dependent and have
heavy tails, the Markovian structure for the error based on Theorem 3.4 allows us to
define, in the present paper, a dominating process for the error whose return times to
a neighbourhood of zero possess exponential moments. Since the dominating process
can be simulated backwards in time, this leads to fast εSS algorithms for the convex
minorant of the stable meander and, consequently, of a weakly stable process.

1.4 Organisation

The remainder of the paper is structured as follows. In Section 2 we state and
prove Theorem 2.7, which identifies the distribution of the convex minorant of a Lévy
meander in a certain class of Lévy processes. In Section 3 we define εSS and construct
the main algorithms for the simulation from the laws of the convex minorants of both
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stable meanders and weakly stable processes, as well as from the finite dimensional
distributions of stable meanders. Numerical examples illustrating the methodology, its
speed and stability are in Section 4. Section 5 contains the analysis of the computational
complexity (i.e. the proof of Theorem 3.6), the technical tools required in Section 3 and
the proof of Theorem 3.4 and its Corollary 5.9 (on the moments of stable meanders) used
in Section 4.

2 The law of the convex minorants of Lévy meanders

2.1 Convex minorants and splitting at the minimum

Let X = (Xt)t∈[0,T ] be a Lévy process on [0, T ], where T > 0 is a fixed time horizon,
started at zero P(X0 = 0) = 1. If X is a compound Poisson process with drift, exact
simulation of the entire path of X is typically available. We hence work with processes
that are not compound Poisson process with drift. By Doeblin’s diffuseness lemma [Kal02,
Lem. 13.22], this assumption is equivalent to

Assumption 2.1 (D). P(Xt = x) = 0 for all x ∈ R and for some (and then all) t > 0.

The convex minorant of a function f : [a, b] → R is the pointwise largest convex
function C(f) : [a, b]→ R such that C(f)(t) ≤ f(t) for all t ∈ [a, b]. Under (D), the convex
minorant C = C(X) of a path of X turns out to be piecewise linear with infinitely many
faces (i.e. linear segments). By convexity, sorting the faces by increasing slope coincides
with their chronological ordering [PUB12]. However, the ordering by increasing slopes
is not helpful in determining the law of C. Instead, in the description of the law of C
in [PUB12], the faces are selected using size-biased sampling (see e.g. [GCMUB18a,
Sec. 4.1]).

C

U1g1

C(g1)

d1

C(d1)

T

(a) First face

C

U2g2

C(g2)

d2

C(d2)

T

(b) Second face

C

U3g3

C(g3)

d3

C(d3)

T

(c) Third face

Figure 1: Selecting the first three faces of the concave majorant: the total length of
the thick blue segment(s) on the abscissa equal the stick sizes T , T − (d1 − g1) and
T − (d1 − g1)− (d2 − g2), respectively. The independent random variables U1, U2, U3 are
uniform on the sets [0, T ], [0, T ] \ (g1, d1), [0, T ] \

⋃2
i=1(gi, di), respectively. Note that the

residual length after n samples is Ln.

Put differently, choose the faces of C independently at random uniformly on lengths,
as shown in Figure 1, and let gn and dn be the left and right ends of the n-th face,
respectively. One way of inductively constructing the variables (Un)n∈N (and hence the
sequence of the faces of C) in Figure 1 is from an independent identically distributed
(iid) sequence V of uniforms on [0, T ], which is independent of X: U1 is the first value
in V and, for any n ∈ N = {1, 2, . . .}, Un+1 is the first value in V after Un not contained
in the union of intervals

⋃n
i=1(gi, di). Then, for any n ∈ N, the length of the n-th face

is `n = dn − gn and its height is ξn = C(dn) − C(gn). In [PUB12, Thm 1], a complete
description of the law of the sequence ((`n, ξn))n∈N is given. In order to generalise this
results to Lévy meanders, it is helpful to state the characterisation in terms of Dirichlet
processes, see (2.3) in Section 2.2 below.
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The behaviour of certain statistics of the path of X, such as the infimum XT =

inft∈[0,T ]Xt and its time location τT = τ[0,T ](X) = inf{t > 0 : min{Xt, Xt−} = XT }, is
determined by that of the faces of C whose heights are negative (we assume throughout
that X is right-continuous with left limits (càdlàg) and denote Xt− = lims↑tXs for t > 0

and X0− = 0). Analysis of their behaviour amounts to the analysis of the convex mino-
rants of the pre- and post-minimum processes X← = (X←t )t∈[0,T ] and X→ = (X→t )t∈[0,T ],
where

X←t =

{
X(τT−t)− −XT , t ∈ [0, τT ],

†, t ∈ (τT , T ],
and X→t =

{
XτT+t −XT , t ∈ [0, T − τT ],

†, t ∈ (τT , T ],
(2.1)

respectively († denotes a cemetery state, required only to define the processes on [0, T ]).
Clearly, as indicated by Figure 2, C may be recovered from the convex minorants C← =

C(X←) and C→ = C(X→) of X←|[0,τT ] and X→|[0,T−τT ], respectively. For convenience,
we suppress the time interval in the notation for C← = C(X←) and C→ = C(X→). In
particular, throughout the paper, C← and C→ are the convext minorants of X← and X→,
respectively, only while the processes are “alive”.

X
C

τT T

(a)C

X←

C←

τT T

(b)C←

X→

C→

T − τT T

(c)C→

Figure 2: Decomposing (X,C) into (X←, C←) and (X→, C→).

2.2 Convex minorants as marked Dirichlet processes

Our objective now is to obtain a description of the law of the convex minorants C←

and C→. For any n ∈ N and positive reals θ0, . . . , θn > 0, the Dirichlet distribution with
parameter (θ0, . . . , θn) is given by a density proportional to x 7→

∏n
i=0 x

θi−1
i , supported

on the standard n-dimensional symplex in Rn+1 (i.e. the set of points x = (x0, . . . , xn)

satisfying
∑n
i=0 xi = 1 and xi ∈ (0, 1) for i ∈ {0, . . . , n}). In the special case n = 1, we get

the beta distribution Beta(θ0, θ1) on [0, 1]. In particular, the uniform distribution equals
U(0, 1) = Beta(1, 1) and, for any θ > 0, we append the limiting cases Beta(θ, 0) = δ1 and
Beta(0, θ) = δ0, where δx is the Dirac measure at x ∈ R.

Let (X,X , µ) be a measure space with µ(X) ∈ (0,∞). A random probability measure
Ξ (i.e. a stochastic process indexed by the sets in X ) is a Dirichlet process on (X,X )

based on the finite measure µ if for any measurable partition {B0, . . . , Bn} ⊂ X (i.e.
n ∈ N, Bi ∩Bj = ∅ for all distinct i, j ∈ {0, . . . , n},

⋃n
i=0Bi = X and µ(Bi) > 0 for all i ∈

{0, . . . , n}), the vector (Ξ(B0), . . . ,Ξ(Bn)) is a Dirichlet random vector with parameters
(µ(B0), . . . , µ(Bn)). We use the notation Ξ ∼ Dµ throughout.

Define the sets Zn = {k ∈ Z : k < n} and Znm = Zn \ Zm for n,m ∈ Z and adopt
the convention

∏
k∈∅ = 1 and

∑
k∈∅ = 0 (Z denotes the integers). Sethuraman [Set94]

introduced the construction

Ξ =

∞∑
n=1

πnδxn ∼ Dµ, (2.2)
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where (xn)n∈N is an iid sequence with distribution µ(X)−1µ and (πn)n∈N is a stick-
breaking process based on Beta(1, µ(X)) constructed as follows: πn = βn

∏
k∈Zn1

(1− βk)

where (βn)n∈N is an iid sequence with distribution Beta(1, µ(X)).
Consider a further measurable space (Y,Y) and a triple (θ, µ, κ), where θ > 0, µ is

a finite measure on (X,X ) and κ : [0, θ] ×X → Y is a measurable function. Let Ξ be
as in (2.2). A marked Dirichlet process on (Y,Y) is given by the random probability
measure

∑∞
n=1 πnδκ(θπn,xn) on (Y,Y). We denote its distribution by D(θ,µ,κ).

Let F (t, x) = P(Xt ≤ x), x ∈ R, be the distribution function of Xt for t ≥ 0 and let
G(t, ·) be the generalised right inverse of F (t, ·). Hence G(t, U) follows the law F (t, ·) for
any uniform random variable U ∼ U(0, 1). Given these definitions, [PUB12, Thm 1] can
be rephrased as

T−1
∞∑
n=1

`nδξn = T−1
∞∑
n=1

(dn − gn)δC(dn)−C(gn) ∼ D(T,U(0,1),G), (2.3)

where C is the convex minorant of X over the interval [0, T ], with the length and height
of the n-th face given by `n = dn − gn and ξn = C(dn)−C(gn), respectively, as defined in
Section 2.1 above. Consequently, the faces of C are easy to simulate if one can sample
from F (t, ·). Indeed, (`n/T )n∈N has the law of the stick-breaking process with uniform
sticks and, given `n, we have ξn ∼ F (`n, ·) for all n ∈ N.

It is evident that the size-biased sampling of the faces of C← and C→, analogous to
the one described in the second paragraph of Section 2.1 for the faces of C (see also
Figure 2), can be applied on the intervals [0, τT ] and [0, T − τT ], respectively. However, in
order to characterise the respective laws of the two sequences of lengths and heights,
we need to restrict to the following class of Lévy processes.

Assumption 2.2 (P). The probability P(Xt > 0) equals some ρ ∈ [0, 1] for all t > 0.

The family of Lévy processes that satisfy (P) has, to the best of our knowledge, not
been characterised in terms of the characteristics of the process X (e.g. its Lévy measure
or characteristic exponent). However, it is easily seen that it includes the following wide
variety of examples: symmetric Lévy processes with ρ = 1/2, stable processes with ρ

given by its positivity parameter (see e.g. [GCMUB19, App. A]) and subordinated stable
processes with ρ equal to the positivity parameter of the stable process. Note also that
under (P), the random variable G(t, U) (with U uniform on [0, 1]) is negative if and only if
U ≤ 1− ρ.
Proposition 2.3. Let X be a Lévy process on [0, T ] satisfying (D) and (P) for ρ ∈ [0, 1]

with pre- and post-minimum processes X← and X→, respectively, defined in (2.1). Let
((`←n ,−ξ←n ))n∈N and ((`→n , ξ

→
n ))n∈N be the faces of C← = C(X←) and C→ = C(X→),

respectively, when sampled independently at random uniformly on lengths as described
in Section 2.1. Then τT /T follows the law Beta(1− ρ, ρ), the random functions C← and
C→ are conditionally independent given τT and, conditional on τT , we have

τ−1
T

∞∑
n=1

`←n δξ←n ∼ D(τT ,U(0,1)|[0,1−ρ],G),

(T − τT )−1
∞∑
n=1

`→n δξ→n ∼ D(T−τT ,U(0,1)|[1−ρ,1],G).

(2.4)

Remark 2.4. (i) The measure U(0, 1)|[0,1−ρ] (resp. U(0, 1)|[1−ρ,1]) on the interval [0, 1] has
a density x 7→ 1[0,1−ρ](x) (resp. x 7→ 1[1−ρ,1](x)).1 In the case ρ = 1, X is a subordinator
by [Sat13, Thm 24.11]. Then τT = T and only the first equality in law in (2.4) makes

1Here and throughout 1A denotes the indicator function of a set A.
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sense (since there is no pre-minimum process) and equals that in (2.3). The case ρ = 0 is
analogous.
(ii) Proposition 2.3 provides a simple proof of the generalized arcsine law: under (D)
and (P), we have τT /T ∼ Beta(1− ρ, ρ) (see [Ber96, Thm VI.3.13] for a classical proof of
this result).
(iii) Proposition 2.3 implies that the heights (ξ←n )n∈N (resp. (ξ→n )n∈N) of the faces of
the convex minorant C← (resp. C→) are conditionally independent given (`←n )n∈N (resp.
(`→n )n∈N). Moreover, ξ←n (resp. ξ→n ) is distributed as F (`←n , ·) (resp. F (`→n , ·)) conditioned
to the negative (resp. positive) half-line. Given τT , the sequence (`←n /τT )n∈N (resp.
(`→n /(T − τT ))n∈N) is a stick-breaking process based on Beta(1, 1− ρ) (resp. Beta(1, ρ)).
(iv) If T is an exponential random variable with mean θ > 0 independent of X, the
random times τT and T − τT are independent gamma random variables with common
scale parameter θ and shape parameters 1− ρ and ρ, respectively. This is because, the
distribution of τT /T , conditional on any value of T , is Beta(1− ρ, ρ) (see Proposition 2.3),
making τT /T and T independent. Furthermore, by [PUB12, Cor. 2], the random measures∑∞
n=1 δ(`←n ,ξ←n ) and

∑∞
n=1 δ(`→n ,ξ→n ) are independent Poisson point processes with intensi-

ties given by the restriction of the measure e−t/θt−1dtP(Xt ∈ dx) on (t, x) ∈ [0,∞)×R
to the subsets [0,∞)× (−∞, 0) and [0,∞)× [0,∞), respectively.

The proof of Proposition 2.3 relies on the following property of Dirichlet processes,
which is a direct consequence of the definition and [Set94, Lem. 3.1].

Lemma 2.5. Let µ1 and µ2 be two non-trivial finite measures on a measurable space
(X,X ). Let Ξi ∼ Dµi for i = 1, 2 and β ∼ Beta(µ1(X), µ2(X)) be jointly independent, then

βΞ1 + (1− β)Ξ2 ∼ Dµ1+µ2
.

Proof of Proposition 2.3. Recall that `n = dn − gn (resp. ξn = C(dn) − C(gn)) denotes
the length (resp. height) of the n-th face of the convex minorant C of X (see Section 2.1
above for definition). By (2.3), the random variables υn = F (`n, ξn) form a U(0, 1)

distributed iid sequence (υn)n∈N independent of the stick-breaking process (`n)n∈N.
Since the faces of C are placed in a strict ascending order of slopes, by (2.2)–(2.3) the
convex minorant C of a path of X is in a one-to-one correspondence with a realisation
of the marked Dirichlet process T−1

∑∞
n=1 `nδξn and thus with the Dirichlet process

Ξ = T−1
∑∞
n=1 `nδυn ∼ DU(0,1).

Assume now that ρ ∈ (0, 1). Since U(0, 1)|[0,1−ρ] +U(0, 1)|[1−ρ,1] = U(0, 1) as measures
on the interval [0, 1], Lemma 2.5 and [Kal02, Thm 5.10] imply that by possibly extending
the probability space we may decompose Ξ = βΞ← + (1 − β)Ξ→, where the random
elements β ∼ Beta(1− ρ, ρ), Ξ← ∼ DU(0,1)|[0,1−ρ] and Ξ→ ∼ DU(0,1)|[1−ρ,1]

are independent
(note that we can distinguish between values above and below 1 − ρ a.s. since, with
probability 1, no variable υn is exactly equal 1 − ρ). Since ρ ∈ (0, 1), condition (D)
and [Sat13, Thm 24.10] imply that P(0 < Xt < ε) > 0 for all ε > 0 and t > 0. Then (P)
implies the equivalence: F (t, x) ≤ 1− ρ if and only if x ≤ 0.

The construction of (υn)n∈N ensures that the faces of C with negative (resp. positive)
heights correspond to the atoms of Ξ← (resp. Ξ→). Therefore the identification between
the faces of C with the Dirichlet process Ξ described above implies that Ξ← (resp. Ξ→)
is also in one-to-one correspondence with the faces of C← (resp. C→). In particular,
since τT =

∑
n∈N `n · 1{ξn<0} equals the sum of all the lengths of the faces of C with

negative heights, this identification implies τT ∼ Tβ and the generalised arcsine law
τT /T ∼ Beta(1 − ρ, ρ) follows from Lemma 2.5 applied to the measures U(0, 1)|[0,1−ρ]
and U(0, 1)|[1−ρ,1] on [0, 1]. Moreover, the lengths of the faces of C← correspond to the
masses of the atoms of βΞ←. The independence of β and Ξ← implies that the sequence
of the masses of the atoms of βΞ← is precisely a stick-breaking process based on the
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distribution Beta(1, 1− ρ) multiplied by β. Similarly, the random variables F (`←n , ξ
←
n ) can

be identified with the atoms of Ξ← and thus form an iid sequence of uniform random
variables on the interval [0, 1−ρ]. Hence, conditional on τT , the law of τ−1

T

∑∞
n=1 `

←
n δξ←n is

as stated in the proposition. An analogous argument yields the correspondence between
the Dirichlet process Ξ→ and the faces of C→. The fact that the orderings correspond to
size-biased samplings follows from [Pit06, Sec. 3.2].

It remains to consider the case ρ ∈ {0, 1}. By [Sat13, Thm 24.11], X (resp. −X) is a
subordinator if ρ = 1 (resp. ρ = 0) satisfying (D). Then, clearly, ρ = 1, τT = 0, C→ = C

(resp. ρ = 0, τT = T , C← = C) and the proposition follows from (2.3).

2.3 Lévy meanders and their convex minorants

If 0 is regular for (0,∞), then it is possible to define the Lévy meander Xme,T =

(Xme,T
t )t∈[0,T ] as the weak limit as ε ↓ 0 of the law of X conditioned on the event

{XT > −ε} (see [CD05, Lem. 7] and [CD08, Cor. 1]). Condition (P) and Rogozin’s
criterion [Ber96, Prop. VI.3.11] readily imply that 0 is regular for (0,∞) if ρ > 0, in which
case the respective Lévy meander is well defined. As discussed in Section 2.2, the case
ρ = 0 corresponds to the negative of a subordinator where the meander does not exist.

In this section we will use the following assumption, which implies the existence of a
density of Xt for every t > 0 and hence also Assumption (D).

Assumption 2.6 (K).
∫
R

∣∣E (eiuXt)∣∣ du <∞ for every t > 0.

Lévy meanders arise under certain path transformations of Lévy processes [Ber96,
Sec. VI.4]. For instance, by [UB14, Thm 2], if (K) holds and 0 is regular for both (−∞, 0)

and (0,∞), then the pre- and post-minimum processes X← and X→ are conditionally in-
dependent given τT and distributed as meanders of −X and X on the intervals [0, τT ] and
[0, T−τT ], respectively, generalising the result for stable processes [Ber96, Cor. VIII.4.17].
The next theorem constitutes the main result of this section.

Theorem 2.7. Assume X satisfies (P) with ρ ∈ (0, 1] and (K). Pick a finite time horizon
T > 0 and let Xme,T be the Lévy meander and let ((`me

n , ξme
n ))n∈N be the lengths and

heights of the faces of C(Xme,T ) chosen independently at random uniformly on lengths.
The sequence ((`me

n , ξme
n ))n∈N encodes a marked Dirichlet process as follows:

T−1
∞∑
n=1

`me
n δξme

n
∼ D(T,ρU(1−ρ,1),G). (2.5)

Proof. The case ρ = 1 is trivial since X is then a subordinator by [Sat13, Thm 24.11],
clearly equal to its meander, and (2.5) is the same as (2.3). If ρ ∈ (0, 1), then 0 is regular
for both half lines by Rogozin’s criterion [Ber96, Prop. VI.3.11]. Fix T ′ > T and consider
the Lévy process X on [0, T ′]. Conditional on τT ′ = T ′ − T , the post-minimum process
(X→t )t∈[0,T ′] defined in (2.1) is killed at τT ′ = T ′ − T and the law of (X→t )t∈[0,T ] prior to
the killing time is the same as the law of the meander Xme,T on [0, T ] by [UB14, Thm 2].
Hence, conditional on τT ′ = T ′ − T , the law of the faces of the convex minorant C(X→)

on [0, T ] agree with those of the convex minorant C(Xme,T ). Thus, the distributional
characterisation of Proposition 2.3 also applies to T−1

∑∞
n=1 `

me
n δξme

n
.

Remark 2.8. (i) Condition (K) is slightly stronger than (D). In fact, it holds if there is
a Brownian component or if the Lévy measure has sufficient activity [Kal81, Sec. 5]
(see also Lemma B.1 in Appendix B below). Hence Condition (K) is satisfied by most
subordinated stable processes.
(ii) Although sufficient and simple, Condition (K) is not a necessary condition for [UB14,
Thm 2]. The minimal requirement is that the density (t, x) 7→ ∂

∂xF (t, x) exists and is
uniformly continuous for t > 0 bounded away from 0.
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(iii) Identity (2.3) (in the form of [PUB12, Thm 1]), applied to concave majorants, was used
in [GCMUB18a] to obtain a geometrically convergent simulation algorithm of the triplet
(XT , XT , τT (−X)), where τT (−X) is the location of the supremum XT = supt∈[0,T ]Xt. In

the same manner, a geometrically convergent simulation of the marginal Xme,T
T can be

constructed using the identity in (2.5).

(iv) The proof of Theorem 2.7 and Remark 2.4(iv) above imply that if T is taken to be
an independent gamma random variable with shape parameter ρ and scale parameter
θ > 0, then the random measure

∑∞
n=1 δ(`me

n ,ξ
me
n ) is a Poisson point process on (t, x) ∈

[0,∞)× [0,∞) with intensity e−t/θt−1dtP(Xt ∈ dx). This description and [PR12, Thm 6]
imply [PR12, Thm 4], the description of the chronologically ordered faces of the convex
minorant of a Brownian meander. However, as noted in [PR12], a direct proof of [PR12,
Thm 6], linking the chronological and Poisson point process descriptions of the convex
minorant of a Brownian meander, appears to be out of reach.

3 ε-strong simulation algorithms for convex minorants

As mentioned in the introduction, εSS algorithm is a simulation procedure with
random running time, which constructs a random element that is ε-close in the essential
supremum norm to the random element of interest, where ε > 0 is an a priori specified
tolerance level. Moreover, the simulation procedure can be continued retrospectively
if, given the value of the simulated random element, the tolerance level ε needs to be
reduced. Thus an εSS scheme provides a way to compute the random element of interest
to arbitrary precision almost surely, leading to a number of applications (including exact
and unbiased algorithms for related random elements) discussed in Subsection 4.1.

We now give a precise definition of an εSS algorithm. Consider a random element
Λ taking values in a metric space (X, d). A simulation algorithm that for any ε > 0

constructs in finitely many steps a random element Λε in X satisfying (I) and (II) below
is termed an εSS algorithm: (I) there exists a coupling (Λ,Λε) on a probability space
Ω such that the essential supremum ess sup{d(Λ(ω),Λε(ω)) : ω ∈ Ω} is at most ε; (II)
for any m ∈ N, decreasing sequence ε1 > · · · > εm > 0, random elements Λε1 , . . . ,Λεm

(satisfying (I) for the respective ε1, . . . , εm) and ε′ ∈ (0, εm), we can sample Λε
′
, given

Λε1 , . . . ,Λεm , which satisfies (I) for ε′. Condition (II), known as the tolerance-enforcement
property of εSS, can be seen as a measurement of the realisation of the random element
Λ whose error may be reduced in exchange for additional computational effort.

Throughout this paper, the metric d in the definition above is given by the supremum
norm on either the space of continuous functions on a compact interval or on a finite
dimensional Euclidean space. The remainder of this section is structured as follows. Sec-
tion 3.1 reduces the problems of constructing εSS algorithms for the finite dimensional
distributions of Lévy meanders and the convex minorants of Lévy processes, to construct-
ing an εSS algorithm of the convex minorants of Lévy meanders. In Subsection 3.2 we
apply Theorem 2.7 of Section 2 to construct an εSS algorithm for the convex minorant of
a Lévy meander under certain technical conditions. In Theorem 3.4 we state a stochastic
perpetuity equation (3.2), established in Section 5 using Theorem 2.7, that implies these
technical conditions in the case of stable meanders. Subsection 3.2 concludes with the
statement of Theorem 3.6 describing the computational complexity of the εSS algorithm
constructed in Subsection 3.2.

3.1 εSS of the convex minorants of Lévy processes

In the present subsection we construct εSS algorithms for the convex minorant
C(X) and for the finite dimensional distributions of Xme,T . Both algorithms require the
following assumption.
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Assumption 3.1 (S). There is an εSS algorithm for C((±X)me,t) for any t > 0.

In the case of stable processes, an algorithm satisfying Assumption (S) is given in the
next subsection. In this subsection we assume that (P) and (S) hold for the process TcX
for some c ∈ R, where Tc denotes the linear tilting functional Tc : f 7→ (t 7→ f(t) + ct)

for any real function f . We construct an εSS algorithm for the convex minorant C(X),
and hence for (XT , XT ), as follows (L(·) denotes the law of the random element in its
argument).

Algorithm 1 εSS of the convex minorant C(X) of a Lévy process X, such that TcX
satisfies Assumptions (P) and (S) for some c ∈ R.

Require: Time horizon T > 0, accuracy ε > 0 and c ∈ R.
1: Sample β ∼ B(1− ρ, ρ) and put s← Tβ

2: Sample ε/2-strongly f← from L(C((−TcX)me,s)) . Assumption (S)
3: Sample ε/2-strongly f→ from L(C(TcX

me,T−s)) . Assumption (S)
4: return fε : t 7→ −ct+ f←(s−min{t, s})− f←(s) + f→(max{t, s} − s) for t ∈ [0, T ].

Remark 3.2. (i) Note that (fε(T ), fε(T )) is an εSS of (XT , XT ) as f 7→ f(T ) is a Lipschitz
functional on the space of càdlàg funcitons with respect to the supremum norm. Although
τ[0,T ](fε) = inf{t ∈ [0, T ] : fε(t) = fε(T )} → τ[0,T ](X) as ε ↓ 0 by [Kal02, Lem. 14.12], a
priori control on the error does not follow directly in general. In the case of weakly stable
processes, we will construct in steps 2 and 3 of Algorithm 1, piecewise linear convex
functions that sandwich C(X), which yield a control on the error of the approximation of
τT by Proposition 5.4(c).

(ii) The algorithm may be used to obtain an εSS of −C(−X), the concave majorant of X.

Fix 0 = t0 < t1 < . . . < tm ≤ tm+1 = T and recall from Subsection 2.3 above that
Xme,T follows the law of (X)t∈[0,T ] conditional on {XT ≥ 0}. Note that P(XT ≥ 0) = 0,

but P(XT ≥ 0|Xt1
≥ 0) > 0 by Assumption (D). Thus, sampling (Xme,T

t1 , . . . , Xme,T
tm )

is reduced to jointly simulating (Xt1 , . . . , Xtm) and XT conditional on {Xt1
≥ 0} and

rejecting all samples not in the event {XT ≥ 0}. More precisely, we get the following
algorithm.

Algorithm 2 ε-strong simulation of the vector (Xme,T
t1 , . . . , Xme,T

tm ).

Require: Times 0 = t0 < t1 < . . . < tm ≤ tm+1 = T and accuracy ε > 0.
1: repeat
2: Put (Π0, ε0, i)← (∅, 2ε/(m+ 1), 0)

3: repeat Conditionally on the variables in the set Πi

4: Put (εi+1, i)← (εi/2, i+ 1)

5: Sample εi-strongly zεi1 from L(Xme,t1
t1 ) and put (xεi1 , x

εi
1 )← (zεi1 , z

εi
1 ) .

Assumption (S)
6: for k = 2, . . . ,m+ 1 do
7: Sample εi-strongly (zεik , z

εi
k ) from (Xtk−tk−1

, Xtk−tk−1
) . Remark 3.2(i)

8: Put (xεik , x
εi
k )← (xεik−1 + zεik ,min{xεik−1, x

εi
k−1 + zεik })

9: end for
10: Put Πi ← Πi−1 ∪ {(zεik , z

εi
k )}m+1

k=1

11: until xεim+1 − (m+ 1)εi ≥ 0 or xεim+1 + (m+ 1)εi < 0

12: until xεim+1 − (m+ 1)εi ≥ 0

13: return (xεi1 , . . . , x
εi
m).
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Remark 3.3. (i) All the simulated values are dropped when the condition in line 13 fails.

(ii) If the algorithm satisfying Assumption (S) is the result of a sequential procedure, one
may remove the explicit reference to εi in line 4 and instead run all pertinent algorithms
for another step until condition in line 12 holds. This is, for instance, the case for the
algorithms we present for stable meanders.

3.2 Simulation of the convex minorant of stable meanders

In the remainder of the paper, we let Z = (Zt)t∈[0,T ] be a stable process with stability
parameter α ∈ (0, 2] and positivity parameter P(Z1 > 0) = ρ ∈ (0, 1], using Zolotarev’s
(C) form (see e.g. [GCMUB19, App. A]). It follows from [GCMUB19, Eq. (A.1)&(A.2)]
that Assumptions (K) and (P) are satisfied by Z. In the present subsection, we will
construct an εSS algorithm for the convex minorant of stable meanders, required by
Assumption (S) of Subsection 3.1.

The scaling property implies that (Zme,T
sT )s∈[0,1]

d
= (T 1/αZme,1

s )s∈[0,1] and thus

(C(Zme,T )(sT ))s∈[0,1]
d
= (C(T 1/αZme,1)(s))s∈[0,1] = (T 1/αC(Zme,1)(s))s∈[0,1].

By the relation in display, it is sufficient to consider the case of the normalised stable
meander Zme = Zme,1 in the remainder of the paper.

3.2.1 Sandwiching

To obtain an εSS of the convex minorant of a meander, we will construct two convex and
piecewise linear functions with finitely many faces that sandwich the convex minorant
and whose distance from each other, in the supremum norm, is at most ε. Intuitively,
the sandwiching procedure relies on two ingredients: (I) the ability to sample, for each
n, the first n faces in the minorant and (II) doing so jointly with a variable cn > 0 that
dominates the sum of the heights of all the unsampled faces. Conditions (I) and (II) are,
by Proposition 5.2 below, sufficient to sandwich the convex minorant: lower (resp. upper)
bound C(Zme)↓n (resp. C(Zme)↑n) is constructed by adding a final face of height 0 (resp.
cn) and length equal to the sum of the lengths of the remaining faces and sorting all n+ 1

faces in increasing order of slopes. The distance (in the supremum norm) between the
convex functions C(Zme)↓n and C(Zme)↑n equals cn (see Proposition 5.2 for details). The
εSS algorithm is then obtained by stopping at −N(ε), the smallest integer n for which
the error cn is smaller than ε (see Algorithm 3 below).

In general, condition (I) is relatively easy to satisfy under the assumptions of Theo-
rem 2.7. Condition (II) however, is more challenging. In the stable case, we first establish
a stochastic perpetuity in Theorem 3.4 and use ideas from [GCMUB19] to sample the
variables cn, n ∈ N, in condition (II) (see Equation (3.3)).

Figure 3(a) above illustrates the output of the εSS Algorithm 3 below for the convex
minorant C(Zme). By gluing two such outputs for the (unnormalised) stable meanders
Z← and Z→, straddling the minimum of Z over the interval [0, 1] as in (2.1), with n

and m faces, respectively, we obtain a convex function C(Z)↓n,m (resp. C(Z)↑n,m) that is
smaller (resp. larger) than the convex minorant C(Z) of the stable process (see details in
Proposition 5.4). Figure 3(b) illustrates how these approximations sandwich the convex
minorant C(Z).

A linear tilting can be applied, as in Algorithm 1 above, to obtaina sandwich for the
convex minorant of a weakly stable processes for all α ∈ (0, 2] \ {1} (see a numerical
example in Subsection 4.2.2 below).
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t

C(Zme)↓n and C(Zme)↑n for (α, ρ) = (1.3, 0.69)

n = 4
n = 6
n = 9
n = 17

(a) Sandwiching C(Zme)

t

C(Z)↓n,m and C(Z)↑n,m for (α, ρ) = (1.8, 0.52)

n = m = 8
n = m = 20

(b) Sandwiching C(Z)

Figure 3: (A) Sandwiching of the convex minorant C(Zme) using n faces. The lower
and upper bounds are numerically indistinguishable for n = 17. (B) Sandwiching of
the convex minorant C(Z) using n and m faces of the convex minorants C(Z←) and
C(Z→) of the meanders Z← and Z→, respectively. Again the bounds are numerically
indistinguishable for n = m = 20.

3.2.2 The construction of cn

Since stable processes satisfy Assumptions (P) and (K), we may use Theorem 2.7 and
the scaling property of stable laws as stepping stones to obtain a Markovian description
of the convex minorants of the corresponding meanders. Let S(α, ρ), S+(α, ρ) and
Sme(α, ρ) be the laws of Z1, Z1 conditioned to be positive and Zme

1 , respectively, where
(Zt)t∈[0,1] is a stable process with parameters (α, ρ). Recall the definition of the sets
Zn = {k ∈ Z : k < n} and Znm = Zn \ Zm for n,m ∈ Z.

Theorem 3.4. Let ((`me
n , ξme

n ))n∈N be the faces of C(Zme) chosen independently at
random uniformly on lengths. Define the random variables Ln+1 =

∑
m∈Zn+1 `me

−m,
Un = `me

−n/Ln+1,

Sn = (`me
1−n)−1/αξme

1−n and Mn+1 = L
−1/α
n+1

∑
m∈Zn+1

ξme
−m, (3.1)

for all n ∈ Z0. Then the following statements hold.
(a) ((Sn, Un))n∈Z0 is an iid sequence with common law S+(α, ρ)× Beta(1, ρ).
(b) (Mn)n∈Z1 is a stationary Markov chain satisfying M0 = Zme

1 ∼ Sme(α, ρ) and

Mn+1 = (1− Un)1/αMn + U1/α
n Sn, for all n ∈ Z0. (3.2)

(c) The law of Zme
1 is the unique solution to the perpetuity Zme

1
d
= (1− U)1/αZme

1 + U1/αS

for independent (S,U) ∼ S+(α, ρ)× Beta(1, ρ).

Theorem 3.4, proved in Subsection 5.2 below, enables us to construct a process
(Dn)n∈Z1 that dominates (Mn)n∈Z1 : Dn ≥ Mn for n ∈ Z1 and can be simulated jointly
with the sequence ((Sn, Un))n∈Z0 (see details in Appendix A). Thus, by (3.1), we may con-
struct the sandwiching convex functions in Algorithm 3 below (see also Subsection 3.2.1
above for an intuitive description) by setting

c−n = L1/α
n Dn ≥

∑
m∈Zn

ξme
−m, n ∈ Z0. (3.3)

3.2.3 The algorithm and its running time

Let −N(ε) be the smallest n ∈ N with c−n < ε (see (5.8) below for the precise definition).

Remark 3.5. (i) Given the faces {(`me
k , ξme

k )}k∈Zn+1
1

, the output (C(Zme)↓n, C(Zme)↑n) of
Algorithm 3 is defined in Proposition 5.2, see also Lemma 5.1. In particular, Proposi-
tion 5.2 requires to sort (n+ 1) faces, sampled in Algorithm 3. This has a complexity of
at most O(n log(n)) under the Timsort algorithm, making the complexity of Algorithm 3
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Algorithm 3 ε-strong simulation of the convex minorant C(Zme).

Require: Tolerance ε > 0 and burn-in parameter m ∈ N ∪ {0}
1: Sample independently (Sk, Uk) for k ∈ Z0

−m from the law S+(α, ρ)× Beta(1, ρ)

2: Sample backwards in time (Sk, Uk, Dk) for k ∈ Z−m−max{m+1,|N(ε)|} . [GCMUB19,
Alg. 2]

3: Set n = max{m+ 1, |N(ε)|}
4: For k ∈ {1, . . . , n}, set `me

k = U−k
∏
j∈Z0

1−k
(1− Uj) and ξme

k = (`me
k )1/αS1−k

5: Put cn = (
∏
k∈Z0

−n
(1− Uk))1/αD−n and return (C(Zme)↓n, C(Zme)↑n)

proportional to |N(ε)| log |N(ε)|. Moreover, the burn-in parameter m is conceptually
inessential (i.e. we can take it to be equal to zero without affecting the law of the output)
but practically very useful. Indeed, since Algorithm 3 terminates as soon as cn < ε, the
inexpensive simulation of the pairs (Sk, Uk) increases the probability of having to sample
fewer (computationally expensive) triplets (Sk, Uk, Dk) in line 2 (cf. [GCMUB19, Sec. 5]).
(ii) An alternative to Algorithm 3 is to run forward in time a Markov chain based on the
perpetuity in Theorem 3.4(c). This would converge in the Lγ -Wasserstein distance at the
rate O((1 + γ/(αρ))−n) (see [BDM16, Sec. 2.2.5]), yielding an approximate simulation
algorithm for the law Sme(α, ρ).

Note that the running time of Algorithm 3 is completely determined by max{m +

1, |N(ε)|}. Applications in Section 4.1 below rely on the exact simulation of 1{Zme
1 >x} for

arbitrary x > 0 via εSS (see Subsection 4.1.1 below), which is based the on sequen-
tial refinements of Algorithm 3. Moreover, Algorithms 1 and 2 rely on Algorithm 3.
Hence bounding the tails of N(ε) is key in bounding the running times of all those
algorithms. Proposition 5.13 establishes bounds on the tails of N(ε), which combined
with Lemma 5.11 below, implies the following result, proved in Subsection 5.3.2 below.

Theorem 3.6. The running times of Algorithms 1, 2 and 3 for the εSS of C(TcZ) (for any
c ∈ R), finite dimensional distributions of Zme and C(Zme), respectively, have exponential
moments. The same holds for the exact simulation algorithm of 1{Zme

1 >x} for any x > 0.

4 Applications and numerical examples

In Subsection 4.1 we describe applications of εSS paradigm to the exact and unbi-
ased sampling of certain functionals. In Subsection 4.2 we present specific numerical
examples. We apply algorithms from Section 3 to estimate expectations via MC methods
and construct natural confidence intervals.

4.1 Applications of εSS algorithms

Consider a metric space (X, d) and a random element Λ taking values in X. For every
ε > 0, the random element Λε is assumed to be the output of an εSS algorithm, i.e. it
satisfies d(Λ,Λε) < ε a.s. (see Section 3 for definition).

4.1.1 Exact simulation of indicators

One may use εSS algorithms to sample exactly indicators 1A(Λ) for any set A ⊂ X with
P(Λ ∈ ∂A) = 0, where ∂A denotes the boundary of A in X. Since d(Λε, ∂A) > ε implies
1A(Λ) = 1A(Λε), it suffices to sample the sequence (Λ2−n)n∈N until d(Λ2−n , ∂A) > 2−n.
Finite termination is ensured because {d(Λ, ∂A) > 0} =

⋃
n∈N{d(Λ, ∂A) > 2−n} ⊂⋃

n∈N{d(Λ2−n−1

, ∂A) > 2−n−1}. In particular, line 12 in Algorithm 2 is based on this
principle.
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4.1.2 Unbiased simulation of finite variation transformations of a continuous
functional

Let f1 : X→ R be continuous, f2 : R→ [0,∞) be of finite variation on compact intervals
and define f = f2 ◦ f1. The functional ZT · 1{ZT>b}, for some b < 0, is a concrete
example defined on the space of continuous functions, since the maps C(Z) 7→ ZT and
ZT 7→ ZT · 1{ZT>b} are continuous and of finite variation, respectively.

By linearity, it suffices to consider a monotone f2 : R → [0,∞). Let ς be an in-
dependent random variable with positive density g : [0,∞) → (0,∞). Then Σ =

1(ς,∞)(f(Λ))/g(ς) is simulatable and unbiased for E[f(Λ)]. Indeed, it is easily seen
that P(Λ ∈ ∂f−1({ς})) = 0. Thus Subsection 4.1.1 shows that the indicator 1(ς,∞)(f(Λ)),
and hence Σ, may be simulated exactly. Moreover, Σ is unbiased since

E[Σ] = E [E[Σ|Λ]] = E

[∫ ∞
0

1[0,f(Λ))(s)g(s)−1g(s)ds

]
= E[f(Λ)],

and its variance equals E[Σ2]−E[f(Λ)]2 = E[G(f(Λ))]−E[f(Λ)]2, whereG(r) =
∫ t

0
ds/g(s).

If we use the density g : s 7→ δ(1 + s)−1−δ, for some δ > 0, then the variance of Σ (resp.
f(Λ)) is E

[
1

δ(2+δ) ((1 + f(Λ))2+δ − 1)
]
−E[f(Λ)]2 (resp. E[f(Λ)2]−E[f(Λ)]2). Thus, Σ can

have finite variance if f(Λ) has a finite 2 + δ-moment. This application was proposed
in [BCD17] for the identity function f2(t) = t and any Lipschitz functional f1.

4.1.3 Unbiased simulation of a continuous finite variation function of the first
passage time

Let (Xt)t∈[0,T ), 0 < T ≤ ∞ be a real-valued càdlàg process such that X0 = 0 and, for
every t > 0, there is an εSS algorithm of X t = sups∈[0,t]∩[0,T ) Xs. Fix any x > 0 satisfying

P(X t = x) = 0 for almost every t ∈ [0, T ). Then σx = min{T, inf{t ∈ (0, T ) : Xt > x}}
(using the convention inf ∅ = ∞) is the first passage time of level x and satisfies the
identity {t < σx} = {Xmin{t,T} ≤ x}, for t ≥ 0. By linearity, it suffices to consider a
nondecreasing continuous function f : [0, T )→ [0,∞) with generalised inverse f∗.

Let ς be as in Subsection 4.1.2 and f(T ) = limt↑T f(t). By [dLF15, Prop. 4.2], f∗ is
strictly increasing and {ς < f(σx)} = {f∗(ς) < σx} = {f∗(ς) < T,X f∗(ς) ≤ x}, where
P(X f∗(ς) = x, f∗(ς) < T ) = 0 by assumption. Hence Σ = 1(ς,∞)(f(σx))/g(ς) is simulated
by sampling ς and then, as in Subsection 4.1.1, setting Σ = 1[0,x](Xf∗(ς))/g(ς) if f∗(ς) < T

and otherwise putting Σ = 0. Moreover, by Subsection 4.1.2, Σ is unbiased for E[f(σx)].
We stress that, unlike the functionals considered in Subsections 4.1.1 and 4.1.2 above,
it is not immediately clear how to estimate E[f(σx)] using a simulation algorithm for
X t, t ∈ [0, T ). In Subsection 4.2.2 we present a concrete example for weakly stable
processes.

We end with the following remark. Consider the time the process X down-crosses
(resp. up-crosses) a convex (resp. concave) function mapping [0,∞) to R started below
(resp. above) X0 = 0. If one has an εSS algorithm for the convex minorant (resp. concave
majorant) of X , then a simple modification of the argument in the previous paragraph
yields an unbiased simulation algorithm of any finite variation continuous function of
such a first passage time.

4.2 Numerical results

In this subsection we explore three applications of the εSS of stable meanders and
their convex minorants. Since Algorithm 3 uses [GCMUB19, Alg. 2] for backward
simulation, we specify the values of the parameters (d, δ, γ, κ,m,m∗) = $(α, ρ) appearing
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in [GCMUB19, Sec. 4] and m in Algorithm 3 as follows: (d∗, r) = ( 2
3αρ ,

19
20 ) and

$(α, ρ)=

(
d∗,

d∗

2
, rα, 4+max

{
log(2)

3η(d∗)
,

1

αρ

}
,

⌈
| log(ε/2)|

log
( Γ(1+ρ+1/α)

Γ(1+ρ)Γ(1+1/α)

)⌉, 12+
⌊3ρ

r
logESrα

⌋+
)
,

where η(d) = −αρ−W−1(−αρde−αρd)/d is the unique positive root of the equation dt =

log(1+ t/(αρ)) (here,W−1 is the secondary branch of the Lambert W function [CGH+96])
and S follows the law S+(α, ρ). As usual, bxc = sup{n ∈ Z : n ≤ x} and dxe = inf{n ∈ Z :

n ≥ x} denote the floor and ceiling functions and x+ = max{0, x} for any x ∈ R. This
choice of m satisfies E[U1/α]m ≈ ε/2 for ε < 1, where U ∼ Beta(1, ρ). We fix ε = 2−32

throughout unless adaptive precision is required (see Subsections 4.1.1–4.1.3).
Figure 4 graphs the empirical distribution function for the running time of Algorithm 3,

suggesting the existence of exponential moments of |N(ε)|, cf. Proposition 5.13 below.
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Figure 4: The graphs show the estimated value of n 7→ logP(|N(ε)| > n) in the spectrally
negative, symmetric and positive cases for α = 1.5, ε = 2−32 and based on N = 5× 105

samples. The curvature in all three graphs suggests that |N(ε)| has exponential moments
of all orders, a stronger claim than those of Theorem 3.6 (see also Proposition 5.13).

To demonstrate practical feasibility, we first study the running time of Algorithm 3.
We implemented Algorithm 3 in the Julia 1.0 programming language (see [GCMUB18b])
and ran it on macOS Mojave 10.14.3 (18D109) with a 4.2 GHz Intel®Core™i7 processor
and an 8 GB 2400 MHz DDR4 memory. Under these conditions, generating N = 104

samples takes approximately 1.30 seconds for any α > 1 and all permissible ρ as long
as ρ is bounded away from 0. This task much less time for α < 1 so long as α and ρ are
bounded away from 0. The performance worsens dramatically as either α→ 0 or ρ→ 0.

This behaviour is as expected since the coefficient in front of Mn in (3.2) of Theo-
rem 3.4 follows the law Beta(1, αρ) with mean 1

1+αρ , which tends to 1 as αρ→ 0. Hence,
the Markov chain decreases very slowly when αρ is close to 0. From a geometric view-
point, note that as ρ → 0, the mean length of each sampled face (as a proportion of
the lengths of the remaining faces) satisfies E`me

1 = ρ
1+ρ → 0, implying that large faces

are increasingly rare. Moreover, as the stability index α decreases, the tails of the
density of the Lévy measure become very heavy, making a face of small length and huge
height likely. To illustrate this numerically, the approximate time (in seconds) taken by
Algorithm 3 to produce N = 104 samples for certain combinations of parameters is found
in the following table:

α \ ρ 0.95 0.5 0.1 0.05 0.01 0.005
0.5 0.301 0.314 0.690 1.165 4.904 9.724
0.1 0.197 0.242 0.738 1.367 6.257 12.148
0.05 0.229 0.318 1.125 2.137 9.864 20.131

The remainder of the subsection is as follows. In Subsection 4.2.1 we estimate
the mean of Zme

1 as a function of the stability parameter α in the spectrally negative,
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symmetric and positive cases. The results are compared with the exact mean, computed
in Corollary 5.9 via the perpetuity in Theorem 3.4(c). In Subsection 4.2.2 we numerically
analyse the first passage times of weakly stable processes. In Subsection 4.2.3 we esti-
mate the mean of the normalised stable excursion at time 1/2 and construct confidence
intervals.

4.2.1 Marginal of the normalised stable meander Zme
1

Let {(ζε,↓i , ζε,↑i )}i∈N be an iid sequence of ε-strong samples of Zme
1 . Put differently, for all

i ∈ N, we have 0 < ζε,↑i −ζ
ε,↓
i < ε and the corresponding sample of Zme

1 lies in the interval
(ζε,↓i , ζε,↑i ). For any continuous function f : R+ → R+ with E[|f(Zme

1 )|] < ∞, a Monte
Carlo estimate of E[f(Zme

1 )] is given by 1
2N

∑N
i=1(f(ζε,↓i ) + f(ζε,↑i )). If f is nondecreasing

we clearly have the inequalities E[f(ζε,↓1 )] ≤ E[f(Zme
1 )] ≤ E[f(ζε,↑1 )]. Thus, a confidence

interval (a, b) for E[f(Zme
1 )] may be constructed as follows: a (resp. b) is given by the

lower (resp. upper) end of the confidence interval (CI) for E[f(ζε,↓1 )] (resp. E[f(ζε,↑1 )]).
We now use Algorithm 3 to estimate E[Zme

1 ] (for α > 1) and E[(Zme
1 )−αρ] and compare

the estimates with the formulae for the expectations from Corollary 5.9. The results are
shown in Figure 5 below.
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Figure 5: Top (resp. bottom) graphs show the true and estimated means EZme
1 (resp.

moments E[(Zme
1 )−αρ]) with 95% confidence intervals based on N = 104 samples as a

function of α for the spectrally negative (ρ = 1/α as α > 1), symmetric (ρ = 1/2) and
positive (ρ = 1− 1/α if α > 1 and ρ = 1 otherwise) cases. The estimates and confidence
intervals of EZme

1 are larger and more unstable for values of α close to 1 (except for the
spectrally negative case) since the tails of its distribution are at their heaviest.

The CLT is not applicable when the variables have infinite variance and can hence
not be used for the CIs of EZme

1 (except for the spectrally negative case). Thus, we use
bootstrapping CIs throughout, constructed as follows. Given an iid sample {xk}nk=1 and

a confidence level 1− λ, we construct the sequence {µi}ni=1, where µi = 1
n

∑n
k=1 x

(i)
k and

{x(i)
k }nk=1 is obtained by resampling with replacement from the set {xk}nk=1. We then use

the quantiles λ/2 and 1− λ/2 of the empirical distribution of the sample {µi}ni=1 as the
CI’s endpoints for E[x1] with the point estimator µ = 1

n

∑n
k=1 xk.

4.2.2 First passage times of weakly stable processes

Define the first passage time σ̂x = inf{t > 0 : Ẑt > x} of the weakly stable process
Ẑ = (Ẑt)t≥0 = (Zt + µt)t≥0 for some µ ∈ R and all x > 0. As a concrete example of
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the unbiased simulation from Subsection 4.1.3 above, we estimate Eσ̂x in the present
subsection. To ensure that the previous expectation is finite, it suffices that EẐ1 =

µ + EZ1 > 0 [Ber96, Ex. VI.6.3], where EZ1 = (sin(πρ) − sin(π(1 − ρ)))Γ(1 − 1
α )/π (see

e.g. [GCMUB19, Eq. (A.2)]). Since the time horizon over which the weakly stable process
is simulated is random and equal to ς, we chose g : s 7→ 2(1 + s)−3 to ensure Eς < ∞.
The results presented in Figure 6 used the fixed values µ = 1− EZ1 and x = 1.
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Figure 6: The graphs show estimates of Eσ̂x with 95% CIs based on N = 4× 104 samples
as a function of α ∈ (1, 2] for the spectrally negative, symmetric and positive cases. The
estimates are obtained using the procedure in Subsection 4.1.3 with the density function
g : s 7→ δ(1 + s)−1−δ for δ = 2. The computation of each estimate (employing N = 4× 104

samples) took approximately 290 seconds, with little variation for different values of α.

4.2.3 Marginal of normalised stable excursions

Let Zex = (Zex
t )t∈[0,1] be a normalised stable excursion associated to the stable process

Z with parameters (α, ρ). By [Cha97, Thm 3], if Z has negative jumps (i.e. ρ ∈ (0, 1) &
α ≤ 1 or ρ ∈ (1− 1

α ,
1
α ] & α > 1), the laws of (Zme

t )t∈[0,1) and (Zex
t )t∈[0,1) are equivalent :

P(Zex ∈ A) = E[(Zme
1 )−α1{Zme∈A}]/E[(Zme

1 )−α] for any measurable set A in the Sko-
rokhod space D[0, 1) [Bil99, Ch. 3]. We remark that Zme

1 = Zme
1− a.s. and E[(Zme

1 )−α] <∞
since α < 1 + αρ and E[(Zme

1 )γ ] < ∞ for all γ ∈ (−1 − αρ, α) [DS10, Thm 1]. As
an illustration of Algorithm 2, we now present a Monte Carlo estimation of EZex

1/2 by
applying the procedure of Subsection 4.2.1 for the expectations on the right side of
EZex

1/2 = E[Zme
1/2(Zme

1 )−α]/E[(Zme
1 )−α].
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Figure 7: The pictures show the quotient of the Monte Carlo estimates of the expectations
on the right side of EZex

1/2 = E[Zme
1/2(Zme

1 )−α]/E[(Zme
1 )−α] as a function of the stability

parameter α ∈ (1, 2) for N = 4 × 104 samples. Computing each estimate (for N =

4× 104) took approximately 160.8 (resp. 123.1) seconds in the spectrally negative (resp.
symmetric) case, with little variation in α.

As before, we use the fixed precision of ε = 2−32. The CIs are naturally constructed
from the bootstrapping CIs (as in Subsection 4.2.1 above) for each of the expectations
E[Zme

1/2(Zme
1 )−α] and E[(Zme

1 )−α] and combined to construct a CI for EZex
1/2.
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5 Proofs and technical results

5.1 Approximation of piecewise linear convex functions

The main aim of the present subsection is to prove Proposition 5.2 and Proposition 5.4,
key ingredients of the algorithms in Section 3. Throughout this subsection, we will
assume that f is a continuous piecewise linear finite variation function on some compact
interval [a, b] with at most countably many faces. More precisely, there exists a set
{(an, bn) : n ∈ ZN+1

1 } consisting of N ∈ N ∪ {∞} pairwise disjoint nondegenerate
subintervals of [a, b] such that

∑N
n=1(bn − an) = b − a, f is linear on each (an, bn), and∑N

n=1 |f(bn) − f(an)| < ∞ (if N = ∞ we set Z∞ = Z and thus Z∞1 = N; recall also
Zn = {k ∈ Z : k < n} and Znm = Zn \ Zm for n,m ∈ Z). A face of f , corresponding to a
subinterval (an, bn), is given by the pair (ln, hn), where ln = bn − an > 0 is its length and
hn = f(bn)− f(an) ∈ R its height. Consequently, its slope equals hn/ln and the following
representation holds (recall x+ = max{0, x} for x ∈ R):

f(t) = f(a) +

N∑
n=1

hn min{(t− an)+/ln, 1}, t ∈ [a, b]. (5.1)

The number N in representation (5.1) is not unique in general as any face may be
subdivided into two faces with the same slope. Moreover, for a fixed f and N , the set
of intervals {(an, bn) : n ∈ ZN+1

1 } need not be unique. Furthermore we stress that the
sequence of faces in (5.1) does not necessarily respect the chronological ordering. Put
differently, the sequence (an)n∈ZN+1

1
need not be increasing. We start with an elementary

but useful result.

Lemma 5.1. Let f : [a, b] → R be a continuous piecewise linear function with N < ∞
faces (lk, hk), k ∈ ZN+1

1 . Let K be the set of piecewise linear functions fπ : [a, b] → R

with initial value f(a), obtained from f by sorting its faces according to a bijection
π : ZN+1

1 → ZN+1
1 . More precisely, defining aπk = a+

∑
j∈Zk1

lπ(j) for any k ∈ ZN+1
1 , fπ in

K is given by

fπ(t) = f(a) +

N∑
k=1

hπ(k) min
{(
t− aπk

)+
/lπ(k), 1

}
, t ∈ [a, b].

If π∗ : ZN+1
1 → ZN+1

1 sorts the faces by increasing slope, hπ∗(k)/lπ∗(k) ≤ hπ∗(k+1)/lπ∗(k+1)

for k ∈ ZN1 , then fπ∗ is the unique convex function in K and satisfies f ≥ fπ∗ pointwise.

Proof. Relabel the faces (lk, hk), k ∈ ZN+1
1 of f so that they are listed in the chronological

order, i.e. as they appear in the function t 7→ f(t) with increasing t. If every pair
of consecutive faces of f is ordered by slope (i.e. hi/li ≤ hi+1/li+1 for all i ∈ ZN1 ),
then f is convex and f = fπ∗ . Otherwise, two consecutive faces of f satisfy hi/li >
hi+1/li+1 for some i ∈ ZN1 . Swapping the two faces yields a smaller function fπ1 ,
see Figure 8. Indeed, after the swap, the functions f and fπ1 coincide on the set
[a, a +

∑
k∈Zi1

lk] ∪ [a +
∑
k∈Zi+2

1
lk, b]. In the interval [a +

∑
k∈Zi1

lk, a +
∑
k∈Zi+2

1
lk], the

segments form a parallelogram whose lower (resp. upper) sides belong to the graph of
fπ1 (resp. f ).

Applying the argument in the preceding paragraph to fπ1 , we either have fπ1 = fπ∗ or
we may construct fπ2 , which is strictly smaller than fπ1 on a non-empty open subinterval
of [a, b], satisfying fπ1 ≥ fπ2 . Since the set K is finite, this procedure necessarily
terminates at fπ∗ after finitely many steps, implying f ≥ fπ∗ . Since any convex function
in K must have a nondecreasing derivative a.e., it has to be equal to fπ∗ and the lemma
follows.
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f

fπ1

fπ∗

Figure 8: Swapping two consecutive and unsorted faces of f .

A natural approximation of a piecewise linear convex function f can be constructed
from the first n < N faces of f by filling in the remainder with a horizontal face. More
precisely, for any n ∈ ZN1 let fn be the piecewise linear convex function with fn(a) = f(a)

and faces {(lk, hk) : k ∈ Zn+1
1 } ∪ {(l̃n, 0)}, where l̃n =

∑N
k=n+1 lk. By Corollary 5.6, the

inequality ‖f−fn‖∞ ≤ max{
∑N
k=n+1 h

+
k ,
∑N
k=n+1 h

−
k } holds, where ‖g‖∞ = supt∈[a,b] |g(t)|

denotes the supremum norm of a function g : [a, b] → R and x− = max{0,−x} for any
x ∈ R. If f = C(X) is the convex minorant of a Lévy process X, both tail sums decay to
zero geometrically fast [GCMUB18a, Thms 1 & 2]. However, it appears to be difficult
directly to obtain almost sure bounds on the maximum of the two (dependent!) sums,
which would be necessary for an εSS algorithm for C(X). We proceed by “splitting” the
problem as follows.

The slopes of the faces of a piecewise linear convex function f may form an unbounded
set. In particular, the slopes of the faces accumulating at a could be arbitrarily negative,
making it impossible to construct a piecewise linear lower bound with finitely many
faces starting at f(a). In Proposition 5.2 we focus on functions without faces of negative
slope (as is the case with the convex minorants of pre- and post-minimum processes and
Lévy meanders in Proposition 2.3 and Theorem 2.7), which makes it easier to isolate the
errors. We deal with the general case in Proposition 5.4 below.

Proposition 5.2. Let f : [a, b] → R be a piecewise linear convex function with N = ∞
faces (ln, hn), n ∈ N, satisfying hn ≥ 0 for all n. Let the constants (cn)n∈N satisfy
the inequalities cn ≥

∑∞
k=n+1 hk and cn+1 ≤ cn − hn+1 for n ∈ N. There exist unique

piecewise linear convex functions f↓n and f↑n on [a, b], satisfying f↓n(a) = f↑n(a) = f(a), with
faces {(lk, hk) : k ∈ Zn+1

1 } ∪ {(l̃n, 0)} and {(lk, hk) : k ∈ Zn+1
1 } ∪ {(l̃n, cn)}, respectively,

where l̃n =
∑∞
k=n+1 lk. Moreover, for all n ∈ N the following statements holds:

(a) f↓n+1 ≥ f↓n, (b) f↑n ≥ f
↑
n+1, (c) f↑n ≥ f ≥ f↓n and (d) ‖f↑n − f↓n‖∞ = f↑n(b)− f↓n(b) = cn.

Remark 5.3. (i) Note that if cn → 0 as n → ∞, Proposition 5.2 implies the sequences
(f↓n)n∈N and (f↑n)n∈N converge uniformly and monotonically to f .
(ii) Note that the lower bounds f↓n do not depend on cn and satisfy ‖f−f↓n‖∞ =

∑∞
k=n+1 hk.

Indeed, set cn =
∑∞
k=n+1 hk (for all n ∈ N) and apply Proposition 5.2(c) & (d) to get

∞∑
k=n+1

hk = f(b)− f↓n(b) ≤ ‖f − f↓n‖∞ ≤ ‖f↑n − f↓n‖∞ =

∞∑
k=n+1

hk.

(iii) Given constants (c′n)n∈N, satisfying c′n ≥
∑∞
k=n+1 hk, we may construct constants cn,

satisfying cn ≥
∑∞
k=n+1 hk and cn+1 ≤ cn − hn+1 for all n ∈ N as follows: set c1 = c′1 and

cn+1 = min{c′n+1, cn − hn+1} for n ∈ N. The condition cn+1 ≤ cn − hn+1 is only necessary
for part (b), but is assumed throughout Proposition 5.2 as it simplifies the proof of (c).
(iv) The function f in Proposition 5.2 may have infinitely many faces in a neighbourhood
of any point in [a, b]. If this occurs at b, the corresponding slopes may be arbitrarily large.
(v) Proposition 5.2 assumes that the slopes of the faces of f are nonnegative. This
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condition can be relaxed to all the slopes being bounded from below by some constant
c ≤ 0, in which case we use the auxiliary faces (l̃n, cl̃n) and (l̃n, cl̃n+cn) in the construction
of f↑n and f↓n.
(vi) If n = 0 and c0 ≥ c1 + h1, then l̃0 = b − a and the functions f↓0 : t 7→ f(a) and
f↑0 : t 7→ f(a) + (t− a)c0, t ∈ [a, b], satisfy the conclusion of Proposition 5.2 (with n = 0).
Moreover, Proposition 5.2 extends easily to the case when f has finitely many faces.

Proof. Note that the set K in Lemma 5.1 depends only on the value of the function f at
a and the set of its faces. Define the set of functions K↑n (resp. K↓n) by the set of faces
{(lk, hk) : k ∈ Zn+1

1 } ∪ {(l̃n, cn)} (resp. {(lk, hk) : k ∈ Zn+1
1 } ∪ {(l̃n, 0)}) and the starting

value f(a) as in Lemma 5.1. Let f↑n (resp. f↓n) be the unique convex function in K↑n (resp.
K↓n) constructed in Lemma 5.1.

For each n ∈ N, f↓n+1 and f↓n share all but a single face, which has nonnegative

slope in f↓n+1 and a horizontal slope in f↓n. Hence, replacing this face in f↓n+1 with
a horizontal one yields a smaller (possibly non-convex) continuous piecewise linear
function φ. Applying Lemma 5.1 to φ produces a convex function φ∗ satisfying f↓n+1 ≥ φ∗
and φ∗(a) = f(a) with faces equal to those of f↓n. Since f↓n is also convex and satisfies
f↓n(a) = f(a), we must have φ∗ = f↓n implying the inequality in (a).

To establish (b), construct a function ψ by replacing the face (l̃n, cn) in f↑n with the
faces (l̃n+1, cn+1) and (ln+1, hn+1) sorted by increasing slope (note ln+1 + l̃n+1 = l̃n).
More precisely, if (a′, a′ + l̃n) ⊂ [a, b] is the interval corresponding to the face (l̃n, cn) in
f↑n, for t ∈ [a, b] we set

ϕ(t) =

hn+1 min{(t− a′)+/ln+1, 1}+ cn+1 min{(t− a′ − ln+1)+/l̃n+1, 1}; hn+1

ln+1
≤ cn+1

l̃n+1
,

cn+1 min{(t− a′)+/l̃n+1, 1}+ hn+1 min{(t− a′ − l̃n+1)+/ln+1, 1}; hn+1

ln+1
> cn+1

l̃n+1
.

By the inequality cn ≥ cn+1 +hn+1, the graph of ϕ on the interval (a′, a′+ l̃n) is below the
line segment t 7→ cn(t− a′)/l̃n. We then define the continuous piecewise linear function

ψ(t) =


f↑n(t) t ∈ [a, a′],

f↑n(a′) + ϕ(t) t ∈ (a′, a′ + l̃n),

f↑n(t) + hn+1 + cn+1 − cn t ∈ [a′ + l̃n, b],

which clearly satisfies f↑n ≥ ψ. Furthermore, the faces of ψ coincide with those of f↑n+1.

Thus, applying Lemma 5.1 to ψ yields ψ ≥ f↑n+1, implying (b).
Recall that a face (lk, hk) of f satisfies lk = bk−ak and hk = f(bk)−f(ak) for any k ∈ N,

where (ak, bk) ⊂ [a, b]. Let gn be the piecewise linear function defined by truncating the
series in (5.1) at n:

gn(t) = f(a) +

n∑
k=1

hk min{(t− ak)+/lk, 1}, t ∈ [a, b].

By construction, gn+h̃n ≥ f ≥ gn and gn(b)+h̃n = f(b), where h̃n =
∑∞
k=n+1 hk, implying

‖f−gn‖∞ = h̃n. Since the set [a, b]\
⋃n
k=1[ak, bk] consists of at most n+1 disjoint intervals,

a representation of gn exists with at most 2n+ 1 faces. Moreover the slopes of gn over
all those intervals are equal to zero. Sorting the faces of gn by increasing slope yields f↓n.
By Lemma 5.1, the second inequality in (c), f ≥ gn ≥ f↓n, holds.

We now establish the inequality f↑n ≥ f for all n ∈ N. First note that f↑n ≥ f↓n for any
n ∈ N. Indeed, replacing the face (l̃n, cn) in f↑n with (0, cn) yields a smaller function with
the same faces as f↓n. Hence the convexity of f↓n and Lemma 5.1 imply the inequality
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f↑n ≥ f↓n. By (b), f↑n ≥ limk→∞ f↓k . Hence, part (c) follows if we show that limk→∞ f↓k = f

pointwise.
For k ∈ N and n ≥ k, define a′k,n and a′k by the formulae:

a′k,n = a+
∑
j∈Zk1

lj · 1{hj/lj}(hk/lk) +
∑

j∈Zn+1
1

lj · 1(hj/lj ,∞)(hk/lk) +
∑

j∈Z∞n+1

lj ,

a′k = a+
∑
j∈Zk1

lj · 1{hj/lj}(hk/lk) +
∑
j∈Z∞1

lj · 1(hj/lj ,∞)(hk/lk).

It is clear that a′k,n ↘ a′k as n→∞. Moreover, for t ∈ [a, b], we have

f↓n(t) = f(a) +

n∑
k=1

hk min{(t− a′k,n)+/lk, 1}, f(t) = f(a) +

∞∑
k=1

hk min{(t− a′k)+/lk, 1}.

In other words, for any k ∈ N and k ≥ n, a′k,n (resp. a′k) is the left endpoint of the interval

corresponding to the face (lk, hk) in a representation of f↑n (resp. f ). Thus, for fixed
t ∈ [a, b], the terms hk min{(t − a′k,n)+/lk, 1} are a monotonically increasing sequence
with limit hk min{(t − a′k)+/lk, 1} as n → ∞. By the monotone convergence theorem
applied to the counting measure we deduce that f↓n → f pointwise, proving (c).

Since ‖f↑n − f↓n‖∞ ≥ f↑n(b) − f↓n(b) = cn, claim in (d) follows if we prove the reverse
inequality. Without loss of generality, the first face of f↓n in the chronological order is
(l̃n, 0). Replace this face with (l̃n, cn) to obtain a piecewise linear function un(t) = f(a) +

cnt/l̃n1[0,l̃n](t)+(f↓n(t)+cn)1(l̃n,1](t). Since un has the same faces as f↑n, Lemma 5.1 implies

un ≥ f↑n. Hence (d) follows from (c): ‖f↑n − f↓n‖∞ ≤ ‖un − f↓n‖∞ = cn = f↑n(b)− f↓n(b).

Define τ[a,b](g) = inf{t ∈ [a, b] : min{g(t), g(t−)} = infr∈[a,b] g(r)} for any càdlàg func-
tion g : [a, b] → R. Consider now the problem of sandwiching a convex function f

with both positive and negative slopes. Splitting f into two convex functions, the pre-
minimum f← and post-minimum f→ (see Proposition 5.4 for definition), it is natural
to apply Proposition 5.2 directly to each of them and attempt to construct the bounds
for f by concatenating the two sandwiches. However, this strategy does not yield an
upper and lower bounds for f for the following reason: since we may not assume to have
access to the minimal value f(s) of the function f , the concatenated sandwich cannot be
anchored at f(s) (note that we may and do assume that we know the time s = τ[a,b](f)

of the minimum of f ). Proposition 5.4 is the analogue of Proposition 5.2 for general
piecewise linear convex functions.

Proposition 5.4. Let f be a piecewise linear convex function on [a, b] with infinitely
many faces of both signs. Set s = τ[a,b](f) and let f← : t 7→ f(s − t) − f(s) and f→ :

t 7→ f(s + t) − f(s) be the pre- and post-minimum functions, defined on [0, s − a] and
[0, b − s] with sets of faces {(l←n , h←n ) : n ∈ N} and {(l→n , h→n ) : n ∈ N} of nonnegative
slope, respectively. Let the constants c←n and c→n be as in Proposition 5.2 for f← and f→,
respectively. For any n,m ∈ N, define the functions f↑n,m, f

↓
n,m : [a, b]→ R by

f↑n,m(t) = f(a) + [(f←)↓n((s− t)+)− (f←)↓n(s− a)] + (f→)↑m((t− s)+),

f↓n,m(t) = f(a) + [(f←)↓n((s− t)+)− (f←)↓n(s− a)− c←n ] + (f→)↓m((t− s)+).
(5.2)

For any c ∈ R, let Tc be the linear tilting defined in Subsection 3.1 above. Set sc =

τ[a,b](Tcf) and sn,m = τ[a,b](Tcf
↓
n,m). Then the following statements hold for any n,m ∈ N:

(a) Tcf↑n,m ≥ Tcf ≥ Tcf↓n,m;
(b) ‖Tcf↑n,m − Tcf↓n,m‖∞ = f↑n,m(b)− f↓n,m(b) = c←n + c→m ;

(c) sn,m ≤ sc ≤ sn,m + l̃←n (resp. sn,m − l̃→m ≤ sc ≤ sn,m) if c ≥ 0 (resp. c < 0), where we
denote l̃←n =

∑∞
k=n+1 l

←
k (resp. l̃→m =

∑∞
k=m+1 l

→
k );
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(d) Tcf↑n,m ≥ Tcf
↑
n,m+1 and Tcf↑n,m ≥ Tcf

↑
n+1,m;

(e) Tcf
↓
n,m+1 ≥ Tcf↓n,m and Tcf

↓
n+1,m ≥ Tcf↓n,m.

Remark 5.5. (i) The upper and lower bounds f↑n,m and f↓n,m, restricted to [s, b], have the
same “derivative” as the corresponding bounds in Proposition 5.2. The behaviour of
f↑n,m and f↓n,m on [a, s] differs from that of the bounds in Proposition 5.2. Indeed, the
lower bound f↓n,m does not start with value f(a) because the slopes of the faces of f
may become arbitrarily negative as t approcheas a. Thus, f↓n,m is defined as a vertical
translation of f↑n,m on [a, s].
(ii) Note that all bounds in Proposition 5.4 hold uniformly in c ∈ R, with the exception of
part (c) which depends on the sign of c. Proposition 5.4 extends easily to the case of a
function f without infinitely many faces of both signs. Moreover, if either n = 0 or m = 0,
then as in Remark 5.3(vi) above, Proposition 5.4 still holds.

Proof. Since Tcg1 − Tcg2 = g1 − g2 for any functions g1, g2 : [a, b]→ R, it suffices to prove
the claims (a), (b), (d) and (e) for c = 0.
(a) Let h̃←n =

∑∞
k=n+1 h

←
k , then Remark 5.3(ii) gives ‖f← − (f←)↓n‖∞ ≤ h̃←n , so the

inequality c←n ≥ h̃←n implies (f←)↓n+ h̃←n ≥ f← ≥ (f←)↓n+ h̃←n −c←n . Note that f(t) = f(a)+

f←(s− t)−f←(s−a) for t ∈ [a, s]. Moreover, since h̃←n −f←(s−a) = −(f←)↓n(s−a), (5.2)
yields (f←)↑n,m(t) ≥ f(t) ≥ (f←)↓n,m(t) for t ∈ [a, s]. Similarly, Proposition 5.2 and the
inequality (f→)↑m ≥ f→ ≥ (f→)↓m show that the inequalities in (a) also hold on [s, b].
(b) The equalities follow from the definition in (5.2) and Proposition 5.2(d).
(c) Note that the minimum of Tcf and Tcf↓n,m is attained after all the faces of negative
slope. In terms of the functions f and f↓n,m, the minimum takes place after all the faces
with slopes less than −c. Put differently,

sc =

∞∑
k=1

l←k · 1(−∞,h←k /l
←
k )(c) +

∞∑
k=1

l→k · 1(−∞,−h→k /l
→
k )(c)

sn,m =

n∑
k=1

l←k ·1(−∞,h←k /l
←
k )(c)+ l̃←n · 1(−∞,0)(c)+

m∑
k=1

l→k · 1(−∞,−h→k /l
→
k )(c)+ l̃→m · 1(−∞,0)(c).

If c ≥ 0, then all the terms coming from f→ are 0 and so is l̃←n · 1(−∞,0)(c), implying the
first claim in (c). A similar analysis for c < 0 gives the corresponding claim.
(d) The result follows from the definition in (5.2) and Proposition 5.2(a)&(b).
(e) The result follows from the definition in (5.2) and Proposition 5.2(a)&(b)&(d).

Corollary 5.6. Let f : [a, b] → R be a piecewise linear convex function with faces
{(lk, hk) : k ∈ N}. Pick n ∈ N and let g : [a, b] → R be the piecewise linear convex
function with faces {(lk, hk) : k ∈ Zn+1

1 } ∪ {(l̃n, 0)} (recall l̃n =
∑∞
m=n+1 lm), satisfying

g(a) = f(a). Then the following inequality holds:

‖f − g‖∞ ≤ max

{ ∞∑
k=n+1

h−k ,

∞∑
k=n+1

h+
k

}
. (5.3)

Proof. Let m1 =
∑n
k=1 1(−∞,−0)(hk) and m2 = n − m1. Define c←m1

=
∑∞
k=n+1 h

−
k and

c→m2
=
∑∞
k=n+1 h

+
k . Then, using the notation from Proposition 5.4, the following holds

g(t) = f(a) + [(f←)↓m1
((s− t)+)− (f←)↓m1

(s− a)] + (f→)↓m2
((t− s)+) for any t ∈ [a, b].

Moreover, by Propositions 5.2 and 5.4, we have g+ c→m2
≥ f↑m1,m2

≥ f ≥ f↓m1,m2
= g− c←m1

and (5.3) follows.
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Remark 5.7. The proof of Corollary 5.6 shows that using g to construct lower and upper
bounds on f yields poorer estimates than the ones in Proposition 5.4. Indeed, the upper
(resp. lower) bound in Proposition 5.4 is smaller than (resp. equal to) g + c→m2

(resp.
g − c←m1

).

5.2 Convex minorant of stable meanders

Proof of Theorem 3.4. (a) This is a consequence of Theorem 2.7. Indeed, by the scaling
property of the law of ξme

1−n, each Sn has the desired law. Moreover, (`me
m )m∈N is a stick-

breaking process based on Beta(1, ρ). By the definition of the stick-breaking process, the
sequence (Un)n∈Z0 has the required law. The independence structure is again implied by
Theorem 2.7, since the conditional law of (Sn)n∈Z0 , given (`me

m )m∈N, no longer depends
on the lengths of the sticks.
(b) The recursion (3.2) follows form the definition in (3.1). Since Mn is independent of
(Un, Sn),the Markov property is a direct consequencel of (a) and [Kal02, Prop. 7.6]. The
stationarity of ((Sn, Un))n∈Z0 in (a) and the identity

Mn =
∑
m∈Zn

( ∏
k∈Znm+1

(1− Uk)1/α

)
U1/α
m Sm, n ∈ Z1,

imply that (Mn)n∈Z1 is also stationary.
(c) The perpetuity follows from (b). It has a unique solution by [BDM16, Thm 2.1.3].

Remark 5.8. A result analogous to Theorem 3.4 for stable processes and their convex
minorants holds (see [GCMUB19, Prop. 1]). In fact, the proof in [GCMUB19] implies a
slightly stronger result, namely, a perpetuity for the triplet (ZT , ZT , τ[0,T ](Z)).

The following result, which may be of independent interest, is a consequence of
Theorem 3.4. Parts of it were used to numerically test our algorithms in Subsection 4.2
above.

Corollary 5.9. Consider some S ∼ S+(α, ρ).
(a) If α > 1, then EZme

1 = Γ(1/α)Γ(1+ρ)
Γ(ρ+1/α) ES = Γ(1/α)Γ(1−1/α)

Γ(ρ+1/α)Γ(1−ρ) .

(b) For any (α, ρ) we have E
[
(Zme

1 )−αρ
]

= Γ(1 + ρ)/Γ(1 + αρ).

(c) For γ > 0 let kα,γ =
(
(1 + γ/α)min{γ−1,1} − 1

)−max{γ,1}
. Then we have

ρE[Sγ ] ≤ E[(Zme
1 )γ ]

Γ(ρ+ γ/α)

Γ(ρ)Γ(1 + γ/α)
≤ min{ρkα,γ , 1}E[Sγ ].

(d) For γ ∈ (0, αρ), we have E
[
(Zme

1 )−γ
]
≤ Γ(1 + ρ)Γ(1− γ/α)E

[
S−γ

]
/Γ(1 + ρ− γ/α).

Proof. (a) Recall that E[V r] = Γ(θ1+r)Γ(θ1+θ2)
Γ(θ1+θ2+r)Γ(θ1) for any V ∼ Beta(θ1, θ2). Taking expecta-

tions in (3.2) and solving for EZme
1 gives the formula.

(b) Let V ∼ Beta(ρ, 1 − ρ) be independent of Zme and denote the supremum of Z by

Z1 = supt∈[0,1] Zt. Then [Ber96, Cor. VIII.4.17] implies that V 1/αZme
1

d
= Z1. By Breiman’s

lemma [BDM16, Lem. B.5.1],

1 = lim
x→∞

P
(
V −1/α(Zme

1 )−1 > x
)

E
[
(Zme

1 )−αρ
]
P
(
V −1/α > x

) = lim
x→∞

P(Z
−1

1 > x)Γ(1 + ρ)Γ(1− ρ)

E
[
(Zme

1 )−αρ
]
x−αρ

.

Since [Bin73, Thm 3a] gives 1 = limx→∞ Γ(1− ρ)Γ(1 + αρ)P
(
Z
−1

1 > x
)
/x−αρ, we get (b).

(c) Note E
[(
Zme

1

)γ]
= Γ(ρ)Γ(1 + γ

α )E
[
Z
γ

1

]
/Γ(ρ + γ

α ) for γ > −αρ since V and Zme
1 are

independent and V 1/αZme
1

d
= Z1. Hence, we need only prove that

ρE[Sγ ] ≤ E[Z
γ

1 ] ≤ min{ρkα,ρ, 1}E[Sγ ]. (5.4)
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Recall that for a nonnegative random variable ϑ we have E[ϑγ ] =
∫∞

0
γxγ−1P(ϑ > x)dx.

Since P(Z1 > x) ≥ P(Z+
1 > x) = ρP(S > x), we get E[Z

γ

1 ] ≥ ρE[Sγ ]. Next, fix any x > 0

and let σx = inf{t > 0 : Zt > x}. By the strong Markov property, the process Z ′ given by
Z ′t = Zt+σx − Zσx , t > 0, has the same law as Z and is independent of σx. Thus, we have

P(Z1 > x) = P(Z1 > x) + P(Z1 > x,Z1 ≤ x) ≤ P(Z1 > x) + P(σx < 1, Z ′1−σx ≤ 0)

= P(Z1 > x) + (1− ρ)P(σx < 1) = P(Z1 > x) + (1− ρ)P(Z1 > x),

implying P(Z1 > x) ≤ P(S > x). Hence the same argument gives E[Sγ ] ≥ E[Z
γ

1 ]. Note

kα,γ =

{(
(1 + γ/α)1/γ − 1

)−γ
if γ > 1

α/γ if γ ≤ 1.

The last inequality E[Z
γ

1 ] ≤ ρkα,γE[Sγ ] in (5.4) follows from the perpetuity for the law of
Z1 in [GCMUB19, Eq. (2.1)] and the inequality in the proof of [BDM16, Lem. 2.3.1].
(d) Note that (3.2) and the Mellin transform of S (see [UZ99, Sec. 5.6]) imply

E
[(
Zme

1

)−γ]
= E

[(
U1/αZme

1 + (1− U)1/αS
)−γ] ≤ E[(1− U)−γ/α]E[S−γ]

=
Γ(1− γ

α )Γ(1 + ρ)

Γ(1 + ρ− γ
α )

E
[
S−γ

]
=

Γ(1 + ρ)Γ(1− γ)

Γ(1 + ρ− γ
α )

Γ(1− γ
α )Γ(1 + γ

α )

Γ(1− γρ)Γ(1 + γρ)
<∞.

Remark 5.10. (i) Bernoulli’s inequality implies kα,γ ≤ αγ for γ > 1.

(ii) From V 1/αZme
1

d
= Z1 we get EZ1 = αρES = αΓ(1−1/α)

Γ(ρ)Γ(1−ρ) when α > 1. Similarly, for

γ ∈ (0, αρ), we have E
[
Z
−γ
1

]
≤ ρ(1 + (1 − ρ)/(ρ − γ/α))E

[
S−γ

]
/(1 − γ/α) by the proof

in (d) applied to the perpetuity in [GCMUB19, Thm 1].
(iii) Note that equation (3.2) and the Grincevic̆ius-Grey theorem [BDM16, Thm 2.4.3] give
limx→∞

1+ρ
ρ P(U1/αS > x)/P(Zme

1 > x) = 1. Next, Breiman’s lemma [BDM16, Lem. B.5.1]

gives limx→∞(1 + ρ)P(U1/αS > x)/P(S > x) = 1. Hence, [UZ99, Sec. 4.3] gives the
assymptotic tail behaviour limx→∞P(Zme

1 > x)/x−α = Γ(α) sin(παρ)/(πρ) (cf. [DS10]).

5.3 Computational complexity

The aim of the subsection is to analyse the computational complexity of the εSS
algorithms from Section 3 and the exact simulation algorithm of the indicator of cer-
tain events (see Subsection 4.1.1 above). Each algorithm in Section 3 constructs an
approximation of a random element Λ in a metric space (X, d), given by a sequence
(Λn)n∈N in (X, d) and upper bounds (∆n)n∈N satisfying ∆n ≥ d(Λ,Λn) for all n ∈ N. The
εSS algorithm terminates as soon as ∆n < ε. Moreover, the computational complexity
of constructing the finite sequences Λ1, . . . ,Λn and ∆1, . . . ,∆n is linear in n for the
algorithms in Section 3. For ε > 0, the runtime of the εSS algorithm is thus proportional
to NΛ(ε) = inf{n ∈ N : ∆n < ε} since the element ΛNΛ(ε) is the output of the εSS.
Proposition 5.13 below shows that for all the algorithms in Section 3, we have ∆n → 0

a.s. as n→∞, implying NΛ(ε) <∞ a.s. for ε > 0.
The exact simulation algorithm of an indicator 1A(Λ), for some subset A ⊂ X satisfy-

ing P(Λ ∈ ∂A) = 0, has a complexity proportional to

BΛ(A) = inf{n ∈ N : ∆n < d(Λn, ∂A)}, (5.5)

since 1A(Λ) = 1A(ΛBΛ(A)) a.s. Indeed, if d(Λ,Λn) ≤ ∆n < d(Λn, ∂A) then 1A(Λ) =

1A(Λn). Moreover, BΛ(A) < ∞ a.s. since d(Λn, ∂A) → d(Λ, ∂A) > 0 and ∆n → 0 a.s.
The next lemma provides a simple connection between the tail probabilities of the
complexities NΛ(ε) and BΛ(A). It will play a key role in the proof of Theorem 3.6.
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Lemma 5.11. Let A ⊂ X satisfy P(Λ ∈ ∂A) = 0. Assume that some positive constants r1,
r2, K1 and K2 and a nonincreasing function q : N→ [0, 1] with limn→∞ q(n) = 0 satisfy

P(d(Λ, ∂A) < ε) ≤ K1ε
r1 , P(NΛ(ε) > n) ≤ K2ε

−r2q(n), (5.6)

for all ε ∈ (0, 1] and n ∈ N. Then, for all n ∈ N, we have

P(BΛ(A) > n) ≤ (K1 + 2r2K2)q(n)r1/(r1+r2). (5.7)

Proof. Note that {d(Λ, ∂A) ≥ 2ε} ⊂ {NΛ(ε) ≥ BΛ(A)} for any ε > 0 since d(Λ, ∂A) ≥ 2ε

and d(Λ,Λn) ≤ ∆n < ε imply ∆n < ε < d(Λn, ∂A). Thus, if we define, for each n ∈ N,
εn = q(n)1/(r1+r2)/2 ∈ (0, 1/2), we get

P(BΛ(A) > n) = P(BΛ(A) > n, d(Λ, ∂A) < 2εn) + P(BΛ(A) > n, d(Λ, ∂A) ≥ 2εn)

≤ P(d(Λ, ∂A) < 2εn) + P(NΛ(εn) > n)

≤ 2r1K1ε
r1
n +K2ε

−r2
n q(n) = (K1 + 2r2K2)q(n)r1/(r1+r2).

5.3.1 Complexities of Algorithm 3 and the exact simulation algorithm of the
indicator 1{Zme

1 >x}

Recall the definition c−n = L
1/α
n Dn, n ∈ Z0, in (3.3). The dominating process (Dn)n∈Z1 ,

defined in Appendix A (see (A.4) below), is inspired by the one in [GCMUB19]. In fact, the
sampling of the process (Dn)n∈Z1 is achieved by using [GCMUB19, Alg. 2] as explained
in the appendix. The computational complexities of Algorithms 2 and 3 are completely
determined by

N(ε) = sup{n ∈ Z0 : L1/α
n Dn < ε}, ε > 0. (5.8)

It is thus our aim to develop bounds on the tail probabilities of N(ε), which requires the
analysis of the sampling algorithm in [GCMUB19, Alg. 2]. We start by proving that the
error bounds (cm)m∈N are strictly decreasing.

Lemma 5.12. The sequence (cm)m∈N, given by cm = L
1/α
−mD−m > 0, is strictly decreas-

ing: cm > cm+1 a.s. for all m ∈ N.

Proof. Fix n ∈ Z1 and note that by (A.4)

L1/α
n Dn = esupk∈Zn+1 WkEn, where

En =
e(d−δ)χn+nδ

1− eδ−d
+
∑

k∈Znχn

e(k+1)dU
1/α
k Sk.

The random walk (Wk)k∈Z1 , the random variables χn, n ∈ Z1, and the constants d, δ
are given in Appendix A below. The pairs (Uk, Sk) are given in Theorem 3.4 (see also
Algorithm 3). Since supk∈ZnWk ≤ supk∈Zn+1 Wk for all n ∈ Z1, it suffices to show that
En−1 < En. From the definition in (A.2) of χn it follows that∑
k∈Zχnχn−1

e(k+1)dU
1/α
k Sk ≤

∑
k∈Zχnχn−1

e(k+1)deδ(n−k−1) =
e(d−δ)χn+nδ

(
1− e(d−δ)(χn−1−χn)

)
1− eδ−d

.

The inequality in display then yields

En−1 − En =
e(d−δ)χn−1+(n−1)δ − e(d−δ)χn+nδ

1− eδ−d
− endU1/α

n−1Sn−1 +
∑

k∈Zχnχn−1

e(k+1)dU
1/α
k Sk

≤ e(d−δ)χn+nδ
(
e(d−δ)(χn−1−χn)−δ − 1 + 1− e(d−δ)(χn−1−χn)

)
/(1− eδ−d)

= e(d−δ)χn+nδe(d−δ)(χn−1−χn)
(
e−δ − 1

)
/(1− eδ−d) < 0,

implying En−1 < En and concluding the proof.
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We now analyse the tail of N(ε) defined in (5.8).

Proposition 5.13. Pick ε ∈ (0, 1) and let the constants d, δ, γ and η be as in Appendix A.
Define the constants r = (1 − eδ−d)/2 > 0, m∗ = b 1

δγ logE[Sγ ]c + 1 (here S ∼ S+(α, ρ))
and

K = edη + eδγ(edη − 1) max

{
E[Sγ ]

(1− e−δγ)(1− e−δγm∗E[Sγ ])
, eδγm

∗
}
> 0. (5.9)

Then |N(ε)| has exponential moments: for all n ∈ N, we have

P(|N(ε)| > n) ≤ (K/rη)ε−ηe−nmin{δγ,dη}
(
1R\{δγ}(dη)

|eδγ−dη − 1|
+ n · 1{δγ}(dη)

)
(5.10)

Proof of Proposition 5.13. Fix n ∈ Z0, put ε′ = − log((1 − eδ−d)ε/2) = − log(rε) > 0 and

let R0 = supm∈Z1 Wm. Since L1/α
n = exp(Wn + nd), then by (A.4), we have

L1/α
n Dn < end+supm∈Zn+1 Wm

(
1

1− eδ−d
+
∑
k∈Zn

e−(n−k−1)dSk

)

≤ eR0

(
end

1− eδ−d
+
∑
k∈Zn

e(k+1)dSk

)
.

Assume that n ≤ χm for some m ∈ Z1, then n ≤ χm < m and thus

∑
k∈Zn

e(k+1)dSk ≤
∑
k∈Zn

e(k+1)deδ(m−k−1) =
eδmen(d−δ)

1− eδ−d
<

emd

1− eδ−d
.

Hence L
1/α
n Dn < 2 exp(R0 + md)/(1 − eδ−d). Thus, the choice m = b−(ε′ + R0)/dc

gives L1/α
n Dn < ε where bxc = sup{n ∈ Z : n ≤ x} for x ∈ R. This yields the bound

|N(ε)| ≤ |χb−(ε′+R0)/dc|. Since (χn)n∈Z0 is a function of (Sn)n∈Z0 and R0 is a function of
(Un)n∈Z0 , the sequence (χn)n∈Z0 is independent of R0. By [EG00] (see also [GCMUB19,
Rem. 4.3]) there exists an exponential random variable E with mean one, independent
of (χn)n∈Z0 , satisfying R0 ≤ η−1E a.s. Since the sequence (χn)n∈Z0 is nonincreasing,
we have |χb−(ε′+R0)/dc| ≤ |χ−J | where J = d(ε′ + η−1E)/de. By definition (A.2), for any
n ∈ N we have

P(|N(ε)| > n) ≤ P(|χ−J | > n) = P(J ≥ n) + P(J < n, |χ−J | > n)

= P(J ≥ n) + 1(dε′/de,∞)(n)

n−1∑
k=dε′/de

P(J = k)P(|χ−k| > n)

≤ e(ε′−(n−1)d)η + 1(dε′/de,∞)(n)(edη − 1)eε
′η

n−1∑
k=dε′/de

e−kdηP(|χ−k| > n).

(5.11)

We proceed to bound the tail probabilities of the variables χ−k. For all n, k ∈ N,
by (A.2) and (A.3) below, we obtain

P(|χ−k| > n+ k) = P(|χ0| > n) ≤ K ′e−δγn, where K ′ = eδγm
∗

max{K0, 1}
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and K0 is defined in (A.3). Thus we find that, for n > dε′/de and m = n− dε′/de, we have

n−1∑
k=dε′/de

e−kdηP(|χ−k| > n)

≤
n−1∑

k=dε′/de

e−kdηK ′e−δγ(n−k) = K ′e−nδγ
n−1∑

k=dε′/de

ek(δγ−dη)

= K ′e−mδγe−dε
′/dedη

(
em(δγ−dη) − 1

eδγ−dη − 1
· 1R\{δγ}(dη) +m · 1{δγ}(dη)

)
≤ K ′e−mmin{δγ,dη}e−dε

′/dedη
(
1R\{δγ}(dη)

|eδγ−dη − 1|
+ n · 1{δγ}(dη)

)
.

Note that K defined in (5.9) equals K = edη + (edη − 1)K ′eδγ . Let n′ = n − ε′/d.
Using (5.11), ε′/d+ 1 > dε′/de ≥ ε′/d and the inequality in the previous display, we get

P(|N(ε)| > n)

≤ e−n
′dηedη + 1(dε′/de,∞)(n)(K − edη)e−n

′min{δγ,dη}
(
1R\{δγ}(dη)

|eδγ−dη − 1|
+ n · 1{δγ}(dη)

)
.

Since rε < 1 and en
′d = rεend, the result follows by simplifying the previous display.

Recall from Theorem 3.4 that M0 = Zme
1 . In applications, we often need to run the

chain in Algorithm 3 until, for a given x > 0, we can detect which of the events {M0 > x}
or {M0 < x} occurred (note that P(M0 = x) = 0 for all x > 0). This task is equivalent to
simulating exactly the indicator 1{M0>x}. We now analyse the tail of the running time of
such a simulation algorithm.

Proposition 5.14. For any x > 0, let B(x) be the number of steps required to sample
1{M0>x}. Let d, η, δ and γ be as in Proposition 5.13. Then B(x) has exponential moments:

P(B(x) > n) ≤ K0[e−sn(1 + n · 1{δγ}(dη))]1/(1+η), for all n ∈ N, (5.12)

where s = min{dη, δγ} and K0 > 0 do not depend on n.

Proof of Proposition 5.14. The inequality in (5.12) will follow from Lemma 5.11 once
we identify the constants r1, K1, r2, K2 and the function q : N → (0,∞) that satisfy
the inequalities in (5.6). By [DS10, Lem. 8], the distribution Sme(α, ρ) has a continuous
density fme, implying that the distribution function of Sme(α, ρ) is Lipschitz at x. Thus we
may set r1 = 1 and there exists some K1 > fme(x) such that the first inequality in (5.6)
holds. Similarly, (5.10) and (5.9) in Proposition 5.13 imply that the second inequality
in (5.6) holds if we set r2 = η, K2 = K/(rη|eδγ−dη − 1|) and q(n) = e−sn(1 + n · 1{δγ}(dη)),
where s = min{dη, δγ}. Thus, Lemma 5.11 implies (5.12) for K0 = K1 + 2r2K2.

Remark 5.15. We stress that the constant K0 is not explicit since the constant K1 in
the proof above depends on the behaviour of the density fme of Zme

1 in a neighbourhood
of x. To the best of our knowledge even the value fme(x) is currently not available in the
literature.

5.3.2 Proof of Theorem 3.6

The computational complexity of Algorithm 3 is bounded above by a constant multiple
of |N(ε)| log |N(ε)|, cf. Remark 3.5(i) following Algorithm 3. By Proposition 5.13, its
computational complexity has exponential moments. Since Algorithm 1 amounts to
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running Algorithm 3 twice, its computational complexity also has exponential moments.
By Proposition 5.14, the running time of the exact simulation algorithm for the indicator
1{M0>x} has exponential moments. It remains to analyse the runtime of Algorithm 2.

Recall that line 8 in Algorithm 2 requires sampling a beta random variable and two
meanders at time 1 with laws Zme

1 and (−Z)me
1 . The former (resp. latter) meander has

the positivity parameter ρ (resp. 1 − ρ). Moreover, we may use Algorithm 3 (see also
Remark 3.2) to obtain an εSS of Zme

1 and (−Z)me
1 by running backwards the dominating

processes (defined in (A.4), see Appendix A) of the Markov chains in Theorem 3.4. Let
(d, η, δ, γ) and (d′, η′, δ′, γ′) be the parameters required for the definition of the respective
dominating processes, introduced at the beginning of Appendix A. The εSS algorithms
invoked in line 8 of Algorithm 2 require 2m + 1 independent dominating processes to
be simulated (m+ 1 of them with parameters (d, η, δ, γ) and m of them with parameters
(d′, η′, δ′, γ′)). Denote by Nk(ε), k ∈ {1, . . . , 2m+1} and ε > 0, their respective termination
times, defined as in (5.8).

Note that, in the applications of Algorithm 3, the sampled faces need not be sorted
(see Remark 3.5), thus eliminating the logarithmic effect described in Remark 3.5(i). The
cumulative complexity of executing i times the loop from line 3 to line 12 in Algorithm 2,
producing an εi-strong sample of (Zt1 , . . . , Ztm) conditioned on Zt1 ≥ 0, only depends on
the precision εi and not on the index i. Hence, the cumulative complexity is bounded
by a constant multiple of NΛ(ε) =

∑2m+1
k=1 |Nk((tbk/2c+1 − tbk/2c)−1/αε/(2m+ 1))|, where

we set ε = εi. Let B′ denote the sum of the number of steps taken by the dominating
processes until the condition in line 12 of Algorithm 2 is satisfied. We now prove that B′

has exponential moments.
Note that NΛ(ε) ≤ (2m + 1) maxk={1,...,2m+1} |Nk(T−1/αε/(2m + 1))|. Moreover, for

any n′ independent random variables ϑ1, . . . , ϑn′ , we have

P

(
max

k∈{1,...,n′}
ϑk > x

)
= P

( n′⋃
k=1

{ϑk > x}
)
≤

n′∑
k=1

P(ϑk > x), x ∈ R.

Proposition 5.13 implies that the second inequality in (5.6) is satisfied by NΛ(ε) with
r2 = max{η, η′}, q(n) = e−snn and some K2 > 0, where s = min{dη, δγ, d′η′, δ′γ′}. Thus,
Lemma 5.11 gives P(B′ > n) ≤ K ′(e−snn)1/(1+max{η,η′}) for some K ′ > 0 and all n ∈ N.

The loop from line 2 to line 13 of Algorithm 2 executes lines 4 through 12 a geometric
number of times R with success probability p = P(Ztm ≥ 0|Zt1 ≥ 0) > 0. Hence, the

running time B′′ of Algorithm 2 can be expressed as
∑R
i=1B

′
i, where B′i are iid with the

same distribution as B′, independent of R. Note that m : λ 7→ E[eλB
′
] is finite for any

λ < s/(1 + max{η, η′}). Since m is an analytic function and m(0) = 1, then there exists
some x∗ > 0 such that m(x) < 1/(1−p) for all x ∈ (0, x∗). Hence, the moment generating
function of B′′ satisfies, EeλB

′′
= Em(λ)R, which is finite if λ < x∗, concluding the proof.

A Auxiliary processes and the construction of {Dn}
Fix constants d and δ satisfying 0 < δ < d < 1

αρ and let η = −αρ−W−1

(
−αρde−αρd

)
/d,

where W−1 is the secondary branch of the Lambert W function [CGH+96] (η is only
required in [GCMUB19, Alg. 2]). Let Ink = 1{Sk>eδ(n−k−1)} for all n ∈ Z0 and k ∈ Zn.
Fix γ > 0 with E[Sγ ] <∞ (see [GCMUB19, App. A]), where S ∼ S+(α, ρ). By Markov’s
inequality, we have

p(n) = P(S ≤ eδn) ≥ 1− e−δγnE[Sγ ], n ∈ N ∪ {0}, (A.1)

implying
∑∞
n=0(1 − p (n)) < ∞. Since the sequence (Sk)k∈Z0 is iid with distribution

S+(α, ρ) (as in Theorem 3.4), the Borel-Cantelli lemma ensures that, for a fixed n ∈ Z0,
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the events {Sk > eδ(n−k−1)} = {Ink = 1} occur for only finitely many k ∈ Zn a.s. For
n ∈ Z1 let χn be the smallest time beyond which the indicators Ink are all zero:

χn = min {n− 1, inf {k ∈ Zn : Ink = 1}} , (A.2)

with the convention inf ∅ = −∞. Note that −∞ < χn < n a.s. for all n ∈ Z0. Since Z0 is
countable, we have −∞ < χn < n for all n ∈ Z0 a.s. Let m∗ = b 1

δγ logE[Sγ ]c+ 1 and note

that e−δγmE[Sγ ] < 1 for all m ≥ m∗. Hence, for all n ∈ N ∪ {0}, the following inequality
holds (cf. [GCMUB19, Sec. 4.1])

P(|χ0| > n+m∗) ≤ K0e
−δγn, where K0 =

e−δγm
∗
E[Sγ ]

(1− e−δγ)(1− e−δγm∗E[Sγ ])
. (A.3)

Indeed, by the inequality (A.1), for every m ≥ m∗ we have

P(|χ0| ≤ m) =

∞∏
j=m

p(j) ≥
∞∏
j=m

(1− e−δγjE[Sγ ]) = exp

( ∞∑
j=m

log(1− e−δγjE[Sγ ])

)

= exp

(
−
∞∑
j=m

∞∑
k=1

1

k
e−δγjkE[Sγ ]k

)
≥ exp

(
−
∞∑
k=1

e−δγmkE[Sγ ]k

1− e−δγk

)

≥ exp

(
− e−δγmE[Sγ ]

(1− e−δγ)(1− e−δγmE[Sγ ])

)
≥ exp

(
−K0e

−δγ(m−m∗)) ≥ 1−K0e
−δγ(m−m∗).

Define the iid sequence (Fn)n∈Z0 by Fn = d + 1
α log(1 − Un). Note that d − Fn is

exponentially distributed with E[d− Fn] = 1
αρ . Let (Wn)n∈Z1 be a random walk defined

by Wn =
∑
k∈Z0

n
Fk. Let (Rn)n∈Z1 be reflected process of (Wn)n∈Z1 from the infinite past

Rn = max
k∈Zn+1

Wk −Wn, n ∈ Z1.

For any n ∈ Z1 define the following random variables

Dn = exp(Rn)

e(δ−d)(n−χn)

1− eδ−d
+
∑

k∈Znχn

e−(n−k−1)dU
1/α
k Sk

 ,

D′n = exp(Rn)

(
1

1− eδ−d
+D′′n

)
, where D′′n =

∑
k∈Zn

e−(n−k−1)dSk.

(A.4)

Note that the series in D′′n is absolutely convergent by the Borel-Cantelli lemma, but D′n
cannot be simulated directly as it depends on an infinite sum. In fact, as was proven
in [GCMUB19, Sec. 4], it is possible to simulate ((Θn, Dn+1))n∈Z0 backward in time.

Let A = (0,∞)× (0, 1) put Θn = (Sn, Un). Define the update function φ : (0,∞)×A →
(0,∞) given by φ(x, θ) = (1 − u)1/αx + u1/αs where θ = (s, u). By [GCMUB19, Lem. 2],
Mn ≤ Dn ≤ D′n for n ∈ Z1 and that ((Θn, Rn, D

′
n+1))n∈Z0 is Markov, stationary, and

ϕ-irreducible (see definition [MT09, p. 82]) with respect to its invariant distribution.
Hence, we may iterate (3.2) to obtain for m ∈ Z1 and n ∈ Zm,

Mm =

( ∏
k∈Zmn

(1− Uk)1/α

)
Mn +

∑
k∈Zmn

( ∏
j∈Zmk

(1− Uj)1/α

)
U

1/α
k Sk

= φ(· · ·φ︸ ︷︷ ︸
m−n

(Mn,Θn), . . . ,Θm−1).
(A.5)
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B On regularity

Lemma B.1. Assume that X is a Lévy process generated by (b, σ2, ν) and define the
function σ2(u) = σ2 +

∫ u
−u x

2ν(dx). If limu↘0 u
−2| log u|−1σ2(u) =∞, then (K) holds.

Proof. (the proof is due to Kallenberg [Kal81]) Let ψ(u) = logE[eiuX1 ] and note that for
large enough |u| and fixed t > 0 we have

− log
(∣∣etψ(u)

∣∣) =
1

2
tu2σ2 + t

∫ ∞
−∞

(1− cos(ux))ν(dx) ≥ 1

3
tu2σ2

(
|u|−1

)
≥ 2| log |u||.

Hence, |etψ(u)| = |E[eiuXt ]| = O(u−2) as |u| → ∞, which yields (K).
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