Open Access
2020 Sharp asymptotics for Fredholm Pfaffians related to interacting particle systems and random matrices
Will FitzGerald, Roger Tribe, Oleg Zaboronski
Electron. J. Probab. 25: 1-15 (2020). DOI: 10.1214/20-EJP512

Abstract

It has been known since the pioneering paper of Mark Kac [20], that the asymptotics of Fredholm determinants can be studied using probabilistic methods. We demonstrate the efficacy of Kac’ approach by studying the Fredholm Pfaffian describing the statistics of both non-Hermitian random matrices and annihilating Brownian motions. Namely, we establish the following two results. Firstly, let $\sqrt {N}+\lambda _{max}$ be the largest real eigenvalue of a random $N\times N$ matrix with independent $N(0,1)$ entries (the ‘real Ginibre matrix’). Consider the limiting $N\rightarrow \infty $ distribution $\mathbb {P}[\lambda _{max}<-L]$ of the shifted maximal real eigenvalue $\lambda _{max}$. Then \[ \lim _{L\rightarrow \infty } e^{\frac {1}{2\sqrt {2\pi }}\zeta \left (\frac {3}{2}\right )L} \mathbb {P}\left (\lambda _{max}<-L\right ) =e^{C_{e}}, \] where $\zeta $ is the Riemann zeta-function and \[ C_{e}=\frac {1}{2}\log 2+\frac {1}{4\pi }\sum _{n=1}^{\infty }\frac {1}{n} \left (-\pi +\sum _{m=1}^{n-1}\frac {1}{\sqrt {m(n-m)}}\right ). \] Secondly, let $X_{t}^{(max)}$ be the position of the rightmost particle at time $t$ for a system of annihilating Brownian motions (ABM’s) started from every point of $\mathbb {R}_{-}$. Then \[ \lim _{L\rightarrow \infty } e^{\frac {1}{2\sqrt {2\pi }}\zeta \left (\frac {3}{2}\right )L} \mathbb {P}\left (\frac {X_{t}^{(max)}}{\sqrt {4t}}<-L\right ) =e^{C_{e}}. \] These statements are a sharp counterpart of the results of [22], improved by computing the $O(L^{0})$ term in the asymptotic $L\rightarrow \infty $ expansion of the corresponding Fredholm Pfaffian.

Citation

Download Citation

Will FitzGerald. Roger Tribe. Oleg Zaboronski. "Sharp asymptotics for Fredholm Pfaffians related to interacting particle systems and random matrices." Electron. J. Probab. 25 1 - 15, 2020. https://doi.org/10.1214/20-EJP512

Information

Received: 14 May 2019; Accepted: 26 August 2020; Published: 2020
First available in Project Euclid: 25 September 2020

MathSciNet: MR4161126
Digital Object Identifier: 10.1214/20-EJP512

Subjects:
Primary: 60B20 , 82C22

Keywords: annihilating Brownian motions , Ginibre ensemble , Pfaffian point processes , Szego’s theorem

Vol.25 • 2020
Back to Top