Abstract
We consider the zero-average Gaussian free field on a certain class of finite $d$-regular graphs for fixed $d\geq 3$. This class includes $d$-regular expanders of large girth and typical realisations of random $d$-regular graphs. We show that the level set of the zero-average Gaussian free field above level $h$ exhibits a phase transition at level $h_{\star }$, which agrees with the critical value for level-set percolation of the Gaussian free field on the infinite $d$-regular tree. More precisely, we show that, with probability tending to one as the size of the finite graphs tends to infinity, the level set above level $h$ does not contain any connected component of larger than logarithmic size whenever $h>h_{\star }$, and on the contrary, whenever $h<h_{\star }$, a linear fraction of the vertices is contained in connected components of the level set above level $h$ having a size of at least a small fractional power of the total size of the graph. It remains open whether in the supercritical phase $h<h_{\star }$, as the size of the graphs tends to infinity, one observes the emergence of a (potentially unique) giant connected component of the level set above level $h$. The proofs in this article make use of results from the accompanying paper [2].
Citation
Angelo Abächerli. Jiří Černý. "Level-set percolation of the Gaussian free field on regular graphs II: finite expanders." Electron. J. Probab. 25 1 - 39, 2020. https://doi.org/10.1214/20-EJP532
Information