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Attracting random walks

Julia Gaudio* Yury Polyanskiy†

Abstract

This paper introduces the Attracting Random Walks model, which describes the dy-
namics of a system of particles on a graph with n vertices. At each step, a single
particle moves to an adjacent vertex (or stays at the current one) with probability
proportional to the exponent of the number of other particles at a vertex. From an
applied standpoint, the model captures the rich get richer phenomenon. We show
that the Markov chain exhibits a phase transition in mixing time, as the parameter
governing the attraction is varied. Namely, mixing time is O(n logn) when the temper-
ature is sufficiently high and exp(Ω(n)) when temperature is sufficiently low. When
G is the complete graph, the model is a projection of the Potts model, whose mixing
properties and the critical temperature have been known previously. However, for
any other graph our model is non-reversible and does not seem to admit a simple
Gibbsian description of a stationary distribution. Notably, we demonstrate existence
of the dynamic phase transition without decomposing the stationary distribution into
phases.
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1 Introduction

In this paper, we introduce the Attracting Random Walks (ARW) model. The motiva-
tion of the model is to understand the formation of wealth disparities in an economic
network. Consider a network of economic agents, each with a certain number of coins
representing their wealth. At each time step, one coin is selected uniformly at random,
and moves to a neighbor of its owner with a probability that depends on how wealthy
the neighbors are. Those who are well-connected and initially wealthy will tend to
accumulate more wealth. We refer to particles instead of coins in what follows.
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Attracting random walks

This is a flexible model based on a few principles: There are a fixed number of
particles moving around on a graph. Movements are asynchronous, and particles
make choices about where to move based on their local environment. The model can
encompass a variety of situations. Further, the model can be extended by allowing for
multiple particle types, with intra– and inter–group attraction parameters, though we do
not consider this extension in this paper. There are many more applications beyond the
economic application. As an interacting particle system, it could be relevant for physics
or chemistry applications.

This paper analyzes the Attracting Random Walks model and establishes phase tran-
sition properties. The difficulty in bounding mixing times, particularly in finding lower
bounds, is due to the fact that the stationary distribution cannot be simply formulated.
Additionally, the model is not reversible unless the graph is complete (Theorem 2.5),
meaning that familiar techniques do not apply.

We establish the existence of phase transition in mixing time as the attraction
parameter, β, is varied. Slow mixing for β large enough is established by relating the
mixing time to a suitable hitting time. Fast mixing for β small enough is proven by a path
coupling approach that relates the Attracting Random Walks chain to the simple (non-
interacting) random walk on the same graph (i.e. with β = 0). As a corollary of our main
results, we establish properties of the Cheeger cut for the stationary distribution. We
find it interesting that even though the stationary distribution is not known analytically
for general graphs, we have shown that it undergoes a phase transition (i.e. develops an
exponentially small Cheeger cut) by arguing indirectly via mixing times.

The rest of the paper is structured as follows. We describe the dynamics of the
model in Section 2, along with some possible applications. The remainder of the paper is
focused on properties of the Markov chain governing the dynamics. In Section 2.2 we
discuss a link to the Potts model. Section 3 proves the existence of phase transition in
mixing time for general graphs, and is the main theoretical contribution of this work. In
Section 4, we collect partial results on the version of the model in which particles repel
each other instead of attracting, a model we call “Repelling Random Walks.”

2 The model

2.1 Definitions and main results

The model is a discrete time process on a simple graph G = (V, E), where V is the
set of vertices and E is the set of undirected edges. We assume throughout that G is
connected. We write i ∼ j if (i, j) ∈ E . Let k = |V|. Initially, n indistinguishable particles
are placed on the vertices of G in some configuration. Let x(i) be the number of particles
at vertex i. The particle configuration is updated in two stages, according to a fixed
parameter β:

1. Choose a particle uniformly at random. Let i be the location of that particle.

2. Move the particle to a vertex j ∼ i, j 6= i, with probability 1
Z exp

(
β
nx(j)

)
. Keep the

particle at vertex i with probability 1
Z exp

(
β
n (x(i)− 1)

)
, where Z is the normaliza-

tion constant.

Let P be the transition probability matrix of the resulting Markov chain. Let ei denote
the ith standard basis vector in Rk. Then for two configurations x and y such that
y = x− ei + ej for i ∼ j or i = j, we have

P (x, y) =

x(i)
n

exp( βnx(j))
Z if i ∼ j

x(i)
n

exp( βn (x(i)−1))
Z if i = j

,
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Attracting random walks

with Z =
∑
l∼i exp

(
β
nx(l)

)
+ exp

(
β
n (x(i)− 1)

)
.

The probabilities are a function of the numbers of particles at each vertex, excluding
the particle that is to move. This modeling choice means that the moving particle is
neutral toward itself, and relates the ARW model to the Potts model, as will be explained
below.

When β is positive (ferromagnetic dynamics), the particle is more likely to travel
to a vertex that has more particles. Greater β encourages stronger aggregation of the
particles. On the other hand, taking β < 0 (antiferromagnetic dynamics) encourages
particles to spread. Note that β = 0 corresponds to the case of independent (lazy)
random walks.

For an application with β < 0, consider an ensemble of identical gas particles in a
container. We can discretize the container into blocks. Each block becomes a vertex in
our graph. Vertices are connected by an edge whenever the corresponding blocks share
a face. Note that depending on the type of gas, particles may primarily repel each other,
in which case β < 0, which discourages particles from occupying the same block, does
become reasonable. The focus of this paper is the case of β > 0, though. we collect some
results on the β < 0 case as well.

To get an idea of the effect of β, Figure 1 displays some instances of the Attracting
Random Walks model run for 105 steps for different values of β. The graph is the 8× 8

grid graph, with n = 320, for an average of 5 particles per vertex.

Figure 1: Simulation of the Attracting Random Walks model on a grid graph. From left
to right: β = 0, β = 300, and β = 500. Three trials are shown for each.

We now state our main results regarding the phase transition in mixing time. We let
‖P −Q‖TV denote the total variation distance between two discrete probability measures
P and Q, and let d(X, t) , maxx∈X ‖P t(x, ·)− π‖TV be the worst-case (with respect to the
initial state) total variation distance for a chain {Xt} with stationary distribution π. Let
tmix(X, ε) , min {t : d(X, t) ≤ ε} denote the mixing time of a chain {Xt}.
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Theorem 2.1. For any graph G, there exists β+ > 0 such that if β > β+, the mixing time
of the ARW model is exp(Ω(n)).

Theorem 2.2. For any graph G, there exists β− > 0 such that if 0 ≤ β < β−, the mixing
time of the ARW model is O(n log n).

Note that we do not prove that one value β+ = β− satisfies both statements.
Through our analysis of mixing time, we establish a transition in the dynamics of the

chain. By standard results, this also indirectly implies that the stationary distribution
develops multiple almost disjoint phases for β > β+, while this is not the case for β < β−.
More precisely, we have the following corollary.

Definition 2.3 (Cheeger constant [6]). Let P be the transition matrix of a Markov chain
that is irreducible and aperiodic. Let X denote the state space of the chain, and let π be
the stationary distribution. Define the edge measure Q by

Q(x, y) , π(x)P (x, y).

For two sets A,B ⊂ X , let Q(A,B) =
∑
x∈A,y∈B Q(x, y). For S ⊂ X , let

Φ(S) ,
Q(S, Sc)

π(S)
.

Finally, the Cheeger constant is defined as

Φ∗ , min
S:π(S)≤ 1

2

Φ(S).

Our results on fast and slow mixing allow us to indirectly bound the Cheeger constant
of the Attracting Random Walks chain on a given graph. We obtain the following corollary
of Theorems 2.1 and 2.2.

Corollary 2.4. Fix a graph G, and let P be the transition probability matrix of the
Attracting Random Walks chain on G. Let Φ∗ be the Cheeger constant of P . Then if
0 ≤ β < β− we have Φ∗ = 1

O(n logn) . If β > β+ then Φ∗ = exp(−Ω(n)).

2.2 Connection to the Potts model

In the case where G is the complete graph, the Attracting Random Walks model is
a projection of Glauber dynamics of the Curie–Weiss Potts model. The Potts model is a
multicolor generalization of the Ising model, and the Curie–Weiss version considers a
complete graph. In the Curie–Weiss Potts model, the vertices of a complete graph are
assigned a color from [q] = {1, . . . , q}. Setting q = 2 corresponds to the Ising model.

Let s(i) be the color of vertex i for each 1 ≤ i ≤ n. Define

δ (s(i), s(j)) ,

{
1, for s(i) = s(j)

0, for s(i) 6= s(j)
.

The stationary distribution of the Potts model, with no external field, is

π(s) =
1

Z
exp

β
n

∑
(i,j),i6=j

δ (s(i), s(j))

 .

The Glauber dynamics for the Curie–Weiss Potts model are as follows:

1. Choose a vertex i uniformly at random.

2. Update the color of vertex i to color k ∈ [q] with probability proportional to

exp
(
β
n

∑
j 6=i δ (k, s(j))

)
.
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Observe that the summation
∑
j 6=i δ (k, s(j)) is equal to the number of vertices, apart

from vertex i, that have color k. Therefore if each vertex in the Potts model corresponds
to a particle in the ARW model, and each color in the Potts model corresponds to a vertex
in the ARW model, then the ARW model is a projection of the Glauber dynamics for the
Potts model. The correspondence is illustrated in Figure 2. Under the correspondence,
the ARW chain is exactly the “vector of proportions” chain in the Potts model.

Figure 2: Correspondence of the Curie–Weiss Potts model to the Attracting Random
Walks model. A Potts configuration is drawn on the left, and the corresponding ARW
configuration is drawn on the right.

Let v(i) be the vertex location of the ith particle in the ARW model, for 1 ≤ i ≤ n. By
the correspondence, we show that the stationary distribution of the ARW model is

π(x) =
1

Z

(
n

x(1), x(2), . . . , x(k)

)
exp

β
n

∑
(i,j),i6=j

δ (v(i), v(j))


=

1

Z

(
n

x(1), x(2), . . . , x(k)

)
exp

(
β

2n

n∑
i=1

(x (v(i))− 1)

)

=
1

Z

(
n

x(1), x(2), . . . , x(k)

)
exp

(
β

2n

k∑
i=1

x(i)2 − β

2

)

=
1

Z ′

(
n

x(1), x(2), . . . , x(k)

)
exp

(
β

2n

k∑
i=1

x(i)2

)
.

Observe that the exp
(
β
2n

∑
i x(i)2

)
factor encourages particle aggregation, while the

multinomial encourages particle spread.
The reader is encouraged to refer to [2] for a detailed study of the mixing time of the

Curie–Weiss Potts model, for different values of β. For instance, [2] shows that there
exists βs(q) such that if β < βs(q), the mixing time is Θ(n log n), and if β > βs(q), the
mixing time is exponential in n. In the ARW context, these results hold with q replaced
by k. On the other hand, when G is not the complete graph, the correspondence to the
Potts model is lost. In fact, the following can be shown:

Theorem 2.5. For n ≥ 3, the ARW Markov chain is reversible for all β if and only if the
graph G is complete.

The non-reversibility can be shown by applying Kolmogorov’s cycle criterion, demon-
strating a cycle of states (configurations) that violates the criterion.

Lemma 2.6 (Kolmogorov’s criterion). A finite state space Markov chain associated with
the transition probability matrix P is reversible if and only if for all cyclic sequences of
states i1, i2, . . . , il−1, il, i1 it holds thatl−1∏

j=1

P (ij , ij+1)

P (il, i1) = P (i1, il)

l−2∏
j=0

P (il−j , il−j−1)

 .
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In other words, the forward product of transition probabilities must equal the reverse
product, for all cycles of states.

u v wdu

dv

dw

Figure 3: Initial state of a cycle that breaks Kolmogorov’s criterion.

Proof of Theorem 2.5. First, if the graph is complete, then the chain is a projection of
Glauber dynamics, which is automatically reversible. Now suppose G is not complete. We
apply Kolmogorov’s cycle criterion. In the ARW model, a state is a particle configuration.
A cycle of states is then a sequence of particle configurations such that

1. Subsequent configurations differ by the movement of a single particle.

2. The first and last configurations are the same.

If G is not a complete graph, then it is straightforward to show that there exist three
vertices u ∼ v ∼ w such that u � w. Now we demonstrate a cycle of states that breaks
Kolmogorov’s criterion. We have the following situation, illustrated by Figure 3. The
values du, dv, and dw indicate the degrees of the vertices, excluding the named vertices.
Place n − 2 particles at u and 2 particles at v. The particle movements are as follows:
v → u, v → w, u→ v, w → v.

For clarity, let f(z) = exp
(
β
nz
)

. The forward transition probabilities are

(
2

n

f(n− 2)

f(n− 2) + f(1) + 1 + dv

)(
1

n

1

f(n− 1) + 1 + 1 + dv

)(
n− 1

n

1

f(n− 2) + 1 + du

)(
1

n

f(1)

f(1) + 1 + dw

)
.

The reverse transition probabilities are(
2

n

1

f(n− 2) + f(1) + 1 + dv

)(
1

n

f(n− 2)

f(n− 2) + 1 + f(1) + dv

)(
1

n

1

1 + 1 + dw

)(
n− 1

n

f(1)

f(n− 2) + f(1) + du

)
.

Canceling factors that appear in both products, we are left comparing

(f(n− 1) + 1 + 1 + dv) (f(n− 2) + 1 + du) (f(1) + 1 + dw)

to
(f(n− 2) + 1 + f(1) + dv) (1 + 1 + dw) (f(n− 2) + f(1) + du) .

Observe that f(z1)f(z2) = f(z1 + z2). Taking leading terms, the first product is therefore
a degree-(2n − 2) polynomial in eβ. Since n − 2 ≥ 1, the second is a degree-(2n − 4)

polynomial in eβ. These polynomials have a finite number of solutions for eβ, and
therefore β itself. Therefore the Markov chain is not reversible.

3 Mixing time on general graphs

In this section, we show the existence of phase transition in mixing time in the ARW
model when β is varied, for a general fixed graph. First, we show exponentially slow
mixing for β suitably large, namely prove Theorem 2.1 by relating mixing times to hitting
times. Next, we show polynomial time mixing for small values of β. The proof is by an
adaptation of path coupling. We use definitions and notations on Markov chains from [6].
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3.1 Slow mixing

The idea of the proof of slow mixing is to show that with substantial probability, the
chain takes an exponential time to access a constant portion of the state space. We now
outline the proof, deferring the proofs of the lemmas. First we state a helper lemma.

Lemma 3.1. For any graph G = (V, E), there exists a vertex v ∈ V such that for the set
of configurations Sv , {x : x(v) = maxw x(w)}, it holds that π(Sv) ≥ 1/k. In other words,
the states where v has the greatest number of particles contribute at least 1/k to the
stationary probability mass.

By Lemma 3.1, there exists a vertex v such that π(Sv) ≥ 1/k. Choose any other vertex
u. Whenever x(u) > n/2, we can be sure that v is not the maximizing vertex, and therefore
that a set of states having at least 1/k mass under the stationary measure has not been
reached. It therefore suffices to lower bound the time until vertex u has lost sufficient
particles for vertex v to have the maximum number of particles.

Let Tx , inf{t : Xt(u) ≤ 1
2n,X0 = x}. If the probability that {Xt} has reached the

set {x ∈ Ω : x(0) ≤ n/2} by time t is less than some p, then the total variation distance
at time t is at least (1− p) 1

k . Therefore we get the following relationship between the
mixing time and hitting time:

Proposition 3.2.

tmix

(
X, (1− p) 1

k

)
≥ inf

{
t : min

x
P (Tx ≤ t) ≥ p

}
.

The problem now reduces to lower bounding this hitting time. The idea is that when
particles leave vertex u, there is a strong drift back to u. However, controlling the
hitting times of a multidimensional Markov chain is challenging, and direct comparison
is difficult to establish. We instead reason by comparison to another Markov chain, Z,
which lower-bounds the particle occupancy at vertex u.

Let l(w) be the length of the shortest path connecting vertex u to vertex w. Let X̃t be
a projection of the Xt chain defined by X̃t(d) ,

∑
w:l(w)=dXt(w), and let Ω̃ be its state

space. In other words, the dth coordinate of the projected chain counts the number of
particles that are a distance d away from vertex u. Note that X̃t(0) = Xt(u). We let F
denote this projection, writing, X̃ = F (X). For any 0 < δ < 1/2, define

Tx(δ) , inf{t : Xt(u) ≤ (1− δ)n,X0 = x} = inf{t : X̃t(0) ≤ (1− δ)n, X̃0 = F (x)}.

For some δ > 0 to be determined, let

S , {x ∈ Ω̃ : x(0) > (1− δ)n} and Sc , Ω̃ \ S.

We now build a chain Z on Ω̃ coupled to X̃ such that as long as X̃t ∈ S, Zt(0)
st
≤ X̃t(0).

Then Tx(δ)
st
≥ inft{Zt ∈ Sc}. The remainder the proof of slow mixing is as follows.

1. Construct a lower-bounding comparison chain Z satisfying Zt(0)
st
≤ X̃t(0) when

t ≤ Tx(δ).

2. Compute EπZ [Z(0)] and use a concentration bound to show that Z(0) ∼ πZ(0)

places exponentially little mass on the set Sc.

3. Comparing the chain X to Z, show that X takes exponential time to achieve
X(u) ≤ (1− δ)n. The result is complete by 1− δ > 1/2.

We now define the lower-bounding comparison chain Z, which is a chain on n

independent particles. These particles move on the discrete line with points {0, 1, . . . , D},
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where D = diam(G). We first describe the case D ≥ 2. Since the comparison needs to
hold only when X̃t(0) ≥ (1− δ)n, we assume that X̃t(0) ≥ (1− δ)n. The idea is to identify
a uniform constant lower bound on the probability of a particle moving closer to u under
this assumption, which tells us that once the particle is at u, there is a high probability
of remaining there.

Let N (u) denote the neighbourhood of u, i.e. N (u) = {w : w ∼ u}. In the X chain,
when a particle is at a vertex w /∈ {u} ∪ N (u), its probability of moving to any one of its
neighbors is at least

p ,
1

eβδ + ∆
,

where ∆ is the maximum degree of the graph. This is because the lowest probability
when β is large corresponds to placing all δn movable particles at some other neighbor
of w. When a particle is at a vertex u, it stays there with probability at least

q ,
exp

(
β(1− δ)− β

n

)
exp

(
β(1− δ)− β

n

)
+ eβδ + ∆− 1

,

When a particle is at a vertex w ∈ N (u), it moves to u with probability at least

exp (β(1− δ))
exp (β(1− δ)) + eβδ + ∆− 1

> q.

Note that q > p.
The transitions of the Z chain are chosen in order to maintain comparison. At each

time step, a particle is selected uniformly at random. When the chosen particle is located
at d /∈ {0, 1}, the particle moves to d− 1 with probability p and moves to min{d+ 1, D}
with probability (1− p). When the chosen particle is located at d ∈ {0, 1}, it moves to 0

with probability q, and moves to d+ 1 with probability 1− q. The transition probabilities
for single particle movements are depicted in Figure 4. When D = 1 (i.e., G is the
complete graph), we instead have the transitions depicted by Figure 5. Lemma 3.3
establishes the comparison.

0 1 2 3 D − 1 D. . .

q 1− p

1− q

q

1− q

p

1− p

p

1− p

p

1− p

p

Figure 4: Single-particle Markov chain from the Z chain (D ≥ 2)

0 1

q 1− q

1− q

q

Figure 5: Single-particle Markov chain from the Z chain (D = 1)

Let πZ denote the stationary distribution of the Z chain, and let λ(w) be the probability
according to πZ of a particular particle being located at vertex w in the line graph. The
following results about the Z chain are required to complete the proof.
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Lemma 3.3. For a configuration x ∈ Ω, set Z0 = X̃0 = F (x). As long as t ≤ Tx(δ), the
chain Zt satisfies

d∑
r=0

Zt(r)
st
≤

d∑
r=0

X̃t(r)

for all d ∈ {0, 1, . . . , D} and t ∈ {0, 1, 2, . . . }. In particular, Zt(0)
st
≤ X̃t(0).

Lemma 3.4. Recall that D = diam(G). Let δ = 1
3D and fix 0 < ε < δ/2. For all β large

enough, Eπ(Z) [Z(0)] ≥ (1− δ + ε)n. Moreover,

Pπ(Z)

(
Z(0) ≤ Eπ(Z) [Z(0)]− εn

)
≤ 2 exp

(
−2ε2n

)
,

which implies
Pπ(Z) (Z(0) ≤ (1− δ)n) ≤ 2 exp

(
−2ε2n

)
.

Proof of Theorem 2.1. Recall the choices of u and v above. Lemma 3.4 tells us that the
Z chain places exponentially little stationary mass on the set Sc. We now combine this
fact with the comparison established in Lemma 3.3.

Recall Tx(δ) = inf{t : Xt(u) ≤ (1− δ)n,X0 = x} = inf{t : X̃t(0) ≤ (1− δ)n, X̃0 = F (x)}.
Applying Proposition 3.2 with p = 1/2,

tmix

(
X,

1

2k

)
≥ min

{
t : min

x
P

(
Tx

(
1

2

)
≤ t
)
≥ 1

2

}
.

Since 1/2 < 1− δ, it also holds that

tmix

(
X,

1

2k

)
≥ min

{
t : min

x
P (Tx (δ) ≤ t) ≥ 1

2

}
= min

{
t : P(Tx(δ) ≤ t) ≥ 1

2
,∀x ∈ Ω

}
= min

{
t : P(Tx(δ) ≤ t) ≥ 1

2
,∀x ∈ S

}
. (3.1)

The last equality is due to the fact that P(Tx(δ) ≤ t) = 1 for all x in Sc.
Additionally define

TZx , inf {t : Zt ∈ Sc, Z0 = F (x)} .

Now because Zt is a lower-bounding chain, it holds that

P (Tx(δ) ≤ t) ≤ P
(
TZx ≤ t

)
for all x ∈ S and t ≥ 0. Therefore,

tmix

(
X,

1

2k

)
≥ min

{
t : P

(
TZx ≤ t

)
≥ 1

2
,∀x ∈ S

}
.

Finally, from Lemma 3.4 we know that πZ(Sc) ≤ 2 exp
(
−2ε2n

)
. Suppose that Z0 is

distributed according to πZ and consider the hitting time TZπz . It holds that

TZπz
st
≥ Geom

(
2 exp

(
−2ε2n

))
.

Therefore, t = eΘ(n) time is required for P
(
TZπZ ≤ t

)
≥ 1

2 . The same is true when Z0 = x,
for some x ∈ S. Therefore min

{
t : P

(
TZx ≤ t

)
≥ 1

2 ,∀x ∈ S
}

= eΘ(n) and tmix

(
X, 1

2k

)
=

eΩ(n), which proves Theorem 2.1.
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We now provide the deferred proofs.

Proof of Lemma 3.1. By the Union Bound,∑
v∈V

π(Sv) ≥ Pπ
(
∪v∈V

{
x(v) = max

w
x(w)

})
= 1.

Proof of Lemma 3.3. We show that there exists a coupling (X̃t, Zt) satisfying

d∑
r=0

Zt(r) ≤
d∑
r=0

X̃t(r) (3.2)

for all d ∈ {0, 1, . . . , D} and t ≤ Tx(δ). Since Z0 = X̃0, we can pair up the particles at
time t = 0 and design a synchronous coupling, i.e. when a certain particle is chosen in
the X̃ process, its copy is chosen in the Z chain. We design the coupling so that for each
particle, the X̃–copy is at least as close to 0 as the Z–copy, for all t ≤ Tx(δ). Note that
this implies (3.2) for all d ∈ {0, 1, . . . , D} and t < Tx(δ). The uniformity of p and q over all
configurations in S ensures that the coupling will maintain the requirement (3.2), which
is established by induction on t. The following analysis applies to both D ≥ 2 and D = 1

by considering the relevant cases.
The base case (t = 0) holds since Z0 = X̃0. Suppose that at time t < Tx(δ), each

particle in the X̃ chain is at least as close to 0 as its copy in the Z chain. We will show
that the same property holds for time t+ 1. First consider a particle located at 0 in the
Z chain. By the inductive hypothesis, its copy must be located at 0 in the X̃ process
also, and the corresponding particle in the X chain must be at u. The probability of the
particle staying at 0 in the Z chain is smaller than the probability of the corresponding
particle staying at u in the X chain, since q is a uniform lower bound on the probability
of staying at u. Therefore in this case, the property is maintained in the next time step.

Next consider a particle located at vertex d 6= 0 in the Z chain and suppose its copy
is located at vertex d′ in the X̃ process. By the inductive hypothesis, d′ ≤ d. If d′ < d− 1,
then clearly the property is maintained in the next step. It remains to consider the cases
d′ = d and d′ = d − 1. Consider the case d = d′. We couple the particles so that if the
particle in the Z chain moves left to vertex d−1, then the particle in the X̃ process makes
the same transition. This coupling is possible by the uniformity of p and q. Otherwise,
the particle in the Z chain moves right, and the property is maintained.

Next consider the case d′ = d − 1. It suffices to design a coupling such that if the
particle in the X̃ process moves right, then so does the particle in the Z chain. If d ≥ 3,
this is possible due to the fact that 1 − p is a uniform upper bound on the probability
of moving right from these states. Next suppose that d = 2 and d′ = 1. The particle in
the X̃ process moves right with probability upper-bounded by 1 − q, which is smaller
than 1− p for δ sufficiently small and n sufficiently large. Therefore we can ensure the
property in the next step. Finally, suppose d = 1 and d′ = 0. Due to the fact that 1− q
is a uniform upper bound on the probability of moving right from these states, we can
again construct a coupling that maintains the property.

To prove Lemma 3.4, we need the stationary probability λ(0).

Proposition 3.5. It holds

λ(0) =


q if D = 1

q

[
1 + (1−q)2

p

(
p

1−p

)2−D
(

1−( p
1−p )

D−1

1− p
1−p

)]−1

if D ≥ 2
.

The proof of Proposition 3.5 is deferred to the appendix.
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Proof of Lemma 3.4. When D = 1, we have λ(0) = q. Since q(β)→ 1 as β →∞, it holds
that λ(0) ≥ 1− δ + ε for β large enough. Next, for D ≥ 2 we have

λ(0) =
q

1 + (1−q)2
p

(
p

1−p

)2−D
(

1−( p
1−p )

D−1

1− p
1−p

)
=

q

1 + (1−q)2
p

(
p

1−p

)1−D
(

p
1−p−( p

1−p )
D

1− p
1−p

)
≥ q

1 + (1−q)2
p

(
p

1−p

)1−D ( p
1−p

1− p
1−p

)
=

q

1 + (1−q)2
1−2p

(
p

1−p

)1−D . (3.3)

We show that λ(0) ≥ 1− δ + ε for β and n large enough. Again, for β large enough, we
have q ≥ 1− δ + 2ε. Next,

1− q =
eβδ + ∆− 1

exp
(
β(1− δ)− β

n

)
+ eβδ + ∆− 1

≤ eβδ + ∆− 1

exp
(
β(1− δ)− β

n

)
= exp

(
β

(
2

3D
− 1 +

1

n

))
+ (∆− 1) exp

(
β

(
1

3D
− 1 +

1

n

))
(3.4)

≤ exp

(
β

(
1

D
− 1

))
,

where the last inequality holds for β and n large enough, since the first term of (3.4)
dominates. Since p < 1

∆+1 , we have 1− 2p > ∆−1
∆+1 . Finally,(

p

1− p

)1−D

=
(
eβδ + ∆− 1

)D−1
=
(
e
β/(3D) + ∆− 1

)D−1

≤
(
e
β/(2D)

)D−1

< e
β/2,

where the first inequality holds for β large enough. Substituting into (3.3), we obtain for
β and n large enough

λ(0) ≥ 1− δ + 2ε

1 + ∆+1
∆−1 exp

(
2β
(

1
D − 1

)
+ β

2

) =
1− δ + 2ε

1 + ∆+1
∆−1 exp

(
β
(

2
D −

3
2

)) ≥ 1− δ + ε,

where the second inequality holds for β large enough, due to 2/D − 3/2 < 0 for D ≥ 2.
We conclude that the expectation is linearly separated from the boundary:

EπZ [Z(0)] = λ(0)n ≥ (1− δ + ε)n.

Next we show concentration. Label all the particles, and define Ui = 1 if particle
i is at vertex 0 in the line graph, and Ui = 0 otherwise. Then Z(0) =

∑
i Ui, and Ui is

independent of Uj for all i 6= j. Applying Hoeffding’s inequality,

PπZ
(∣∣Z(0)− Eπ(Z)[Z(0)]

∣∣ ≥ cn) ≤ 2 exp

(
−2(cn)2

n

)
= 2 exp

(
−2c2n

)
.

for c > 0. Let c = ε. Then the above implies

PπZ (Z(0) ≤ EπZ [Z(0)]− εn) ≤ 2 exp
(
−2ε2n

)
=⇒ PπZ (Z(0) ≤ (1− δ)n) ≤ 2 exp

(
−2ε2n

)
.
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3.2 Fast mixing

The proof is by a modification of path coupling, which is a method to find an upper
bound on mixing time through contraction of the Wasserstein distance. 1 The following
definition can be found in [6], pp. 189.

Definition 3.6 (Transportation metric). Given a metric ρ on a state space Ω, the as-
sociated transportation metric ρT for two probability distributions µ and ν is defined
as

ρT (µ, ν) , inf
X∼µ,Y∼ν

E[ρ(X,Y )]

where the infimum is over all couplings of µ and ν on Ω× Ω.

Definition 3.7 (Wasserstein distance). Let P be the transition probability matrix of a
Markov chain on a state space Ω, and let ρ be a metric on Ω. The Wasserstein distance
WP
ρ (x, y) of two states x, y ∈ Ω with respect to P and ρ is defined as follows:

WP
ρ (x, y) , ρT (P (x, ·), P (y, ·)) = inf

X1∼P (x,·),Y1∼P (y,·)
EX1,Y1

[ρ(X1, Y1)] .

In other words, the Wasserstein distance is the transportation metric distance between
the next state distributions from initial states x and y.

The following lemma is the path coupling result which can be found in [7] and [6].
Given a Markov chain on state space Ω with transition probability matrix P , consider a
connected graph H = (Ω, EH), i.e. the vertices of H are the states in Ω and the edges
are EH. Let l be a “length function” for the edges of H, which is an arbitrary function
l : EH → [1,∞). For x, y ∈ Ω, define ρ(x, y) to be the path metric, i.e. ρ(x, y) is the length
of the shortest path from x to y in terms of l and H.

Lemma 3.8 (Path Coupling). Under the above construction, if there exists δ > 0 such
that for all x, y that are connected by an edge in H it holds that

WP
ρ (x, y) ≤ (1− δ)ρ(x, y),

then
d(X, t) ≤ (1− δ)tdiam(Ω),

where diam(Ω) = maxx,y∈Ω ρ(x, y) is the diameter of the graph H with respect to ρ.

Our proof of rapid mixing for small enough β relies on rapid mixing of a single random
walk. The following lemma demonstrates the existence of a contracting metric for a
single random walk. It is possible that such a result appears elsewhere, but we are not
aware of a published proof.

Lemma 3.9. Consider a random walk on G which makes a uniform choice among staying
or moving to any of the neighbors and denote by Q its transition matrix. Let d(x, y)

be the expected meeting time of two independent copies of a random walk on a graph
started from states x and y. Then d(x, y) is a metric and Q contracts the respective
Wasserstein distance. In particular,

WQ
d (x, y) ≤

(
1− 1

dmax

)
d(x, y),

where dmax = maxx,y d(x, y). Furthermore, if x ∼ y, then

WQ
d (x, y) ≤

(
1− 1

d′max

)
d(x, y), (3.5)

where d′max = maxx,y:x∼y d(x, y). 2

1An alternative prove of fast mixing is to use a variable-length path coupling, as introduced in [5]. For
further details, see [4].

2The statement for x ∼ y was pointed out by the reviewer.
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Remark 3.10. In fact, we can show a stronger result (i.e. with a smaller value in the
place of dmax): we can allow arbitrary Markovian coupling between two copies of the
random walk and define d(x, y) to be the meeting time under that coupling.

In order to apply path coupling, we let H = (Ω, EH) be a graph on particle configu-
rations, where (x, y) ∈ EH whenever y = x − ei + ej for some pair of distinct vertices
i and j in G. In other words, x and y differ by the position of a single particle. Note
that i and j need not be neighboring vertices in G. For such a pair of neighboring
configurations (x, y), let l(x, y) = d(i, j). Clearly, l(x, y) ≥ 1{x 6= y}. Now for any two
configurations x, y ∈ Ω, let ρ(x, y) denote the path metric induced by H and l(·, ·). We
show that ρ(x, y) = l(x, y) for neighboring configurations.

Proposition 3.11. For any two configurations x, y such that y = x− ei + ej , it holds that
ρ(x, y) = l(x, y).

Let Px(i, ·) be the probability distribution of the next location of the selected particle,
when it is initially located at vertex i ∈ V in configuration x. Recall that Q(i, ·) is the
probability distribution of the next location of a simple random walk on G, initially
located at vertex i. Note that when β = 0, it holds that Px(i, ·) = Q(i, ·). When β is small,
Px(i, ·) ≈ Q(i, ·). Lemma 3.12 quantifies this statement.

Lemma 3.12. For all configurations x and vertices i ∈ G, it holds that

‖Px(i, ·)−Q(i, ·)‖TV ≤
eβ/2 − 1

eβ/2 + 1
.

Next, consider two neighbouring configurations x and y. Because only the position of
one particle is different between the two configurations, Px(v, ·) ≈ Py(v, ·). The following
lemma makes this precise.

Lemma 3.13. Let x and y be neighbouring configurations. Recall that ∆ is the maximum
degree of the vertices in V. The following holds:

‖Px(v, ·)− Py(v, ·)‖TV ≤
∆ + 1

n
β.

With these results stated, we prove Theorem 2.2.

Proof of Theorem 2.2. Suppose d(i, j) ≥ 1{i 6= j} is a metric on G such that a single-
particle random walk’s kernel Q satisfies

WQ
d (i, j) ≤ (1− δ)d(i, j) (3.6)

for all i 6= j and d(i, j) ≤ dmax. Note that the existence of such a metric d(·, ·) was
established in Lemma 3.9 with an estimate of δ = 1/dmax.

Now we wish to bound WP
ρ (x, y) for all neighboring particle configurations x and y

related by y = x−ei+ej . We may choose any coupling in order to obtain an upper bound.
The coupling will be synchronous: the choice of particle to be moved will be coordinated
between the chains. Namely, if the “extra” particle is chosen in configuration x, then so
too will the “extra” particle be chosen in configuration y. Similarly, if some other particle
is chosen in x, than a particle at the same vertex will be chosen in y. For an illustration,
see Figure 6.

Let X1 ∼ P (x, ·) and Y1 ∼ P (y, ·) denote the coupled random variables corresponding
to the next configurations. Let p? be the “extra” particle. Let p̃ be a random variable
that denotes the uniformly selected particle. Since our coupling gives an upper bound,
we can write

WP
ρ (x, y) ≤ 1

n
E [ρ(X1, Y1)|p̃ = p?] +

n− 1

n
E [ρ(X1, Y1)|p̃ 6= p?] . (3.7)
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i

j

x y

Figure 6: Pairing of particles in the coupling. The edges between vertices are omitted.

First, suppose the “extra” particle, p?, is chosen in both chains. This happens with
probability 1

n . By Lemma 3.12, we can couple the distributions Px(i, ·) and Py(j, ·) to

Q(i, ·) and Q(j, ·) respectively with probability at least 1− (e
β/2−1)/(eβ/2+1). In that case,

we get contraction by a factor of (1− δ). With the remaining probability, we assume the
worst-case distance of dmax. Therefore, the conditional Wasserstein distance is upper
bounded as follows:

E [ρ(X1, Y1)|p̃ = p?] ≤
(

1− eβ/2 − 1

eβ/2 + 1

)
(1− δ)d(i, j) +

(
eβ/2 − 1

eβ/2 + 1

)
dmax. (3.8)

Next, suppose some other particle (located at v) is chosen in both chains. This
happens with probability n−1

n . We claim

E [ρ(X1, Y1)|p̃ 6= p?] ≤ ρ(x, y) + 2dmax
∆ + 1

n
β. (3.9)

Indeed, by Lemma 3.13, we can couple particle p̃ so that it moves to the same vertex in
both chains with probability at least

1− ∆ + 1

n
β.

By Proposition 3.11, it holds that ρ(X1, Y1) = d(i, j) = ρ(x, y) in the case that the particle
p̃ moves to the same vertex in both chains. Otherwise, an additional distance of at most
2dmax is incurred.

Finally, we substitute the bounds (3.8) and (3.9) into (3.7).

WP
ρ (x, y)

≤ ρ(x, y) +
1

n

(
−ρ(x, y) +

(
1− eβ/2 − 1

eβ/2 + 1

)
(1− δ)ρ(x, y) +

(
eβ/2 − 1

eβ/2 + 1

)
dmax

)
+
n− 1

n

(
∆ + 1

n
2βdmax

)
= ρ(x, y)

[
1− 1

n

(
1−

(
1− eβ/2 − 1

eβ/2 + 1

)
(1− δ)−

(
eβ/2 − 1

eβ/2 + 1

)
dmax

ρ(x, y)

−n− 1

n

(
∆ + 1

ρ(x, y)
2βdmax

))]
≤ ρ(x, y)

[
1− 1

n

(
1−

(
1− eβ/2 − 1

eβ/2 + 1

)
(1− δ)−

(
eβ/2 − 1

eβ/2 + 1

)
dmax − (∆ + 1)2βdmax

)]
(3.10)
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where the last inequality is due to ρ(x, y) ≥ 1 and n−1
n < 1. In order to show contraction,

it is sufficient that the expression multiplying 1
n be positive:

1−
(

1− eβ/2 − 1

eβ/2 + 1

)
(1− δ)−

(
eβ/2 − 1

eβ/2 + 1

)
dmax − (∆ + 1)2βdmax > 0

⇐⇒ eβ/2 − 1

eβ/2 + 1
<
δ − (∆ + 1)2βdmax

dmax + δ − 1
.

For an example of a satisfying β, choose β so that

(∆ + 1)2βdmax <
δ

2
and

eβ/2 − 1

eβ/2 + 1
= tanh

(
β

4

)
<

δ

2 (dmax + δ − 1)
.

Therefore, we can choose

0 < β− < min

{
δ

4dmax(∆ + 1)
, 4 tanh−1

(
δ

2 (dmax + δ − 1)

)}
.

Substituting β = β− into (3.10), we obtain for some δ′ > 0

WP
ρ (x, y) ≤ ρ(x, y)

(
1− 1

n
δ′
)
.

Applying the path coupling lemma (Lemma 3.8), we obtain

d(X, t) ≤
(

1− 1

n
δ′
)t
diam(Ω) ≤

(
1− 1

n
δ′
)t
ndmax.

Setting the right hand side to be less than ε > 0 in order to bound tmix(X, ε),

(
1− 1

n
δ′
)t
ndmax ≤ ε ⇐⇒ t ≥

log
(

ε
ndmax

)
log
(
1− 1

nδ
′
) ⇐⇒ t ≥

log
(
ndmax

ε

)
log
(

n
n−δ′

) .
Since

log

(
n

n− δ′

)
= log

(
1 +

δ′

n− δ′

)
≥

δ′

n−δ′

1 + δ′

n−δ′
,

we have

log
(
ndmax

ε

)
log
(

n
n−δ′

) ≤ log

(
ndmax

ε

)(
1 +

δ′

n− δ′

)
n− δ′

δ′
= O(n log n).

Therefore, tmix(X, ε) = O(n log n), which completes the proof of Theorem 2.2.

Remark 3.14. Arguably, a more natural approach to show fast mixing would be through
a more traditional path coupling approach: Let H have an edge between configurations
x and y = x − ei + ej if i and j are adjacent vertices in G. Set l(x, y) = 1 for adjacent
configurations. However, this approach does not yield contraction in the Wasserstein
distance, which we show at the end of this section.

We now provide the deferred proofs.

Proof of Lemma 3.9. First we verify that d(x, y) is a metric. It holds that d(x, y) = d(y, x),
and d(x, y) ≥ 0 with equality if and only if x = y. To show the triangle inequality,
start three random walks from vertices x, y, z and let τ(x, y) be the meeting time of
the walks started from x and y. The three random walks are advanced according to
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the independent coupling, and if a pair of walks collides, they are advanced identically
starting from that time. Under this coupling, observe that

τ(x, z) ≤ max{τ(x, y), τ(y, z)} ≤ τ(x, y) + τ(y, z)

and take expectations. Next we show that WQ
ρ (x, y) ≤ d(x, y) − 1 for x 6= y. We can

choose any coupling of X1 ∼ P (x, ·) and Y1 ∼ P (y, ·) to show an upper bound. Letting
X1 ∼ P (x, ·) and Y1 ∼ P (y, ·) be independent, we have

WQ
ρ (x, y) ≤ E [τ(X1, Y1)] =

∑
a,b

Q(x, a)Q(y, b)E[τ(a, b)]

and

d(x, y) = E[τ(x, y)] = 1 +
∑
a,b

Q(x, a)Q(y, b)E[τ(a, b)].

These two equations imply WQ
ρ (x, y) ≤ d(x, y)− 1. Finally, d(x, y)− 1 ≤ d(x, y) (1− 1/dmax).

If x ∼ y, then we conclude d(x, y)− 1 ≤ d(x, y) (1− 1/d′max).

Proof of Proposition 3.11. Consider any path from x to y: (x = x0, x1, . . . , xm−1, xm = y),
where xr+1 = xr − eir + ejr for r ∈ {0, 1, . . . ,m− 1}. Then we have

m−1∑
r=0

l(xr, xr+1) =

m−1∑
r=0

d(ir, jr).

We claim that we can rearrange this summation to be of the form

d(i, l1) +

m−2∑
r=1

d(lr, lr+1) + d(lm−1, j)

for some sequence l1, . . . , lm−1. Indeed, let I = {ir : 0 ≤ r ≤ m − 1} and J = {jr : 0 ≤
r ≤ m− 1} be the multisets that collect the “outbound” and “inbound” particle transfers,
respectively. The value i must appear one more time in I than in J . Similarly, the value
j must appear one more time in J than in I. All other values appear an equal number
of times in I and J . By choosing terms d(ir, jr) in order, beginning with d(i, l1), it is
possible to rearrange the sum into the given form. By the triangle inequality for d(·, ·),

d(i, l1) +

m−2∑
r=1

d(lr, lr+1) + d(lm−1, j) ≥ d(i, j) = l(x, y).

Therefore, the shortest distance between x and y is along the edge connecting them,
and we conclude that ρ(x, y) = l(x, y) for neighboring configurations.

To prove Lemma 3.12, we state the following proposition.

Proposition 3.15. The set of distributions {Px(i, ·) : x ∈ Ω} parametrized by the config-
uration x is contained within the convex set

Pβ ,

{
(p0, . . . , pd) :

pi
pj
≤ eβ ∀i, j;

d∑
i=0

pi = 1; pi ≥ 0 ∀i

}
.

Proof. To show this claim, we compute the ratio Px(i,j1)
Px(i,j2) when j1, j2 ∈ N (i) ∪ {i} and

j1 6= j2, and show that it is upper bounded by eβ . There are three cases to consider.
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1. The case j1 = i.

Px(i, j1)

Px(i, j2)
=

exp
(
β
n (x(j1)− 1)

)
exp

(
β
nx(j2)

) = exp

(
β

n
(x(j1)− x(j2)− 1)

)
.

Since x(j1)− x(j2)− 1 ≤ n− 1 < n, it holds that Px(i,j1)
Px(i,j2) < eβ .

2. The case j2 = i.

Px(i, j1)

Px(i, j2)
= exp

(
β

n
(x(j1)− x(j2) + 1)

)
.

Since j2 = i, we have j2 ≥ 1. Therefore, again Px(i,j1)
Px(i,j2) < eβ .

3. The case j1, j2 6= i.

Px(i, j1)

Px(i, j2)
= exp

(
β

n
(x(j1)− x(j2))

)
≤ eβ .

Proof of Lemma 3.12. Recall that N (i) is the neighbor set of vertex i in graph G. Let
d = |N (i)|. We have

Px(i, j) =


exp( βnx(j))∑

l∼i exp( βnx(l))+exp( βn (x(i)−1))
if i ∼ j

exp( βn (x(i)−1))∑
l∼i exp( βnx(l))+exp( βn (x(i)−1))

if i = j

0 otherwise

and

Q(i, j) =


1
d+1 if i ∼ j

1
d+1 if i = j

0 otherwise.

Using Proposition 3.15,

max
x
‖Px(i, ·)−Q(i, ·)‖TV ≤ sup

p∈Pβ
‖p−Q(i, ·)‖TV =

eβ

d+ eβ
− 1

d+ 1
. (3.11)

The inequality is due to the fact that {Px(i, ·) : x ∈ Ω} ⊂ Pβ and the equality is due to
the fact that the maximum of a convex function over a closed and bounded convex set
is achieved at an extreme point, namely

(
eβ

d+eβ
, 1
d+eβ

, . . . , 1
d+eβ

)
. To maximize the right

hand side of (3.11), let f(d) = eβ

d+eβ
− 1

d+1 . Then

f ′(d) = − eβ

(d+ eβ)
2 +

1

(d+ 1)2

=

(
d+ eβ

)2 − eβ (d+ 1)
2

(d+ eβ)
2

(d+ 1)
2

=

(
d+ eβ − eβ/2(d+ 1)

) (
d+ eβ + eβ/2(d+ 1)

)
(d+ eβ)

2
(d+ 1)

2
.

Setting f ′(d) = 0 we obtain the solutions d = ±eβ/2. The solution d = eβ/2 is the maximizer.
Substituting d = eβ/2 into (3.11),

max
x,i
‖Px(i, ·)−Q(i, ·)‖TV ≤

eβ

eβ/2 + eβ
− 1

eβ/2 + 1
=

eβ/2

eβ/2 + 1
− 1

eβ/2 + 1
=
eβ/2 − 1

eβ/2 + 1
,

which completes the proof.
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Proof of Lemma 3.13. First,

‖Px(v, ·), Py(v, ·)‖TV =
1

2

∑
w∈N (v)∪{v}

|Px(v, w)− Py(v, w)| .

We will show that each term is upper bounded by 2β
n . Since there are at most ∆ + 1

terms, the bound follows.
We compute maxx,y:x∼y |Px(v, w)− Py(v, w)| for w ∈ N (v) ∪ {v}. Since x and y are

interchangeable, we can drop the absolute value.

max
x,y:x∼y

|Px(v, w)− Py(v, w)| = max
x,y:x∼y

Px(v, w)− Py(v, w).

First consider the case that v 6= w. Then

max
x,y:x∼y

Px(v, w)− Py(v, w) = max
x,y:x∼y

exp
(
β
nx(w)

)
exp

(
β
n (x(v)− 1)

)
+
∑
u∼v exp

(
β
nx(u)

)
−

exp
(
β
ny(w)

)
exp

(
β
n (y(v)− 1)

)
+
∑
u∼v exp

(
β
ny(u)

) .
Let

A(z) = exp

(
β

n
(z(v)− 1)

)
+
∑
u∼v

exp

(
β

n
z(u)

)
.

Note that A(y) ≤ eβ/nA(x) for x ∼ y. We have

max
x,y:x∼y

Px(v, w)− Py(v, w) = max
x,y:x∼y

exp
(
β
nx(w)

)
A(x)

−
exp

(
β
ny(w)

)
A(y)

≤ max
x,y:x∼y

exp
(
β
nx(w)

)
A(x)

−
exp

(
β
ny(w)

)
eβ/nA(x)

= max
x,y:x∼y

exp
(
β
nx(w)

)
− exp

(
β
n (y(w)− 1)

)
A(x)

≤ max
x

exp
(
β
nx(w)

)
− exp

(
β
n (x(w)− 2)

)
A(x)

= max
x

exp
(
β
nx(w)

) (
1− e−2β/n

)
A(x)

≤ 1− e−2β/n

≤ 2β

n
.

Next, we consider the case v = w. We have

max
x,y:x∼y

Px(v, v)− Py(v, v) = max
x,y:x∼y

exp
(
β
n (x(v)− 1)

)
A(x)

−
exp

(
β
n (y(v)− 1)

)
A(y)

≤ max
x,y:x∼y

exp
(
β
n (x(v)− 1)

)
A(x)

−
exp

(
β
n (y(v)− 1)

)
eβ/nA(x)

= max
x,y:x∼y

exp
(
β
n (x(v)− 1)

)
− exp

(
β
n (y(v)− 2)

)
A(x)
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≤ max
x

exp
(
β
n (x(v)− 1)

)
− exp

(
β
n (x(v)− 3)

)
A(x)

= max
x

exp
(
β
n (x(v)− 1)

) (
1− e−2β/n

)
A(x)

≤ 1− e−2β/n

≤ 2β

n
.

We now show that the approach for proving Theorem 2.2 based on the natural
one-step path coupling does not yield the required contraction.

Theorem 3.16. Let H have an edge between configurations x and y = x − ei + ej
whenever i and j are adjacent vertices in G. Let l(x, y) = 1 for adjacent configurations.
There exists a graph G such that for β = 0,

WP
ρ (x, y) ≥ 1

for some adjacent configurations x, y.

Proof. Let G be the 4-vertex path graph. Label the vertices 1, 2, 3, 4 in order along the
path, and consider x and y related by y = x − e2 + e3 so that the two configurations
differ by a transfer from one middle vertex to the other. When β = 0, the transition
probabilities are simple: given that a particle is chosen at vertex v, it moves to vertex
w ∈ N (v) ∪ {v} with probability 1

deg(v)+1 . The optimal coupling of P (x, ·) and P (y, ·) may

be expressed as an optimal solution of a linear program, as follows. Write x′ ∼ x if x′ is
adjacent to x in H or x′ = x. For each x′ ∼ x and y′ ∼ y, let z(x′, y′) be the probability
of the next states being x′ and y′ in a coupling. The constraints require the collection
of z variables to be a valid coupling, and the objective function calculates the expected
distance under the coupling.

min
∑

x′∼x,y′∼y
z(x′, y′)ρ(x′, y′)

s.t.
∑
y′∼y

z(x′, y′) = P (x, x′) ∀x′ ∼ x

∑
x′∼x

z(x′, y′) = P (y, y′) ∀y′ ∼ y

z ≥ 0

This linear program is known as a Kantorovich problem. Our goal is to show that the
optimal objective value is at least 1. We will first write down the dual problem. By weak
duality, any feasible solution to the dual problem gives a lower bound to the optimal
value of the primal problem. Next we will construct a primal solution with objective
value equal to 1, and apply the complimentary slackness condition to help us construct a
dual solution whose objective value is also equal to 1. Finally we will conclude that the
optimal solution to the primal problem is equal to 1, by strong duality. For a reference to
linear programming duality, see e.g. Chapter 4 of [1].

First we take the dual of the linear program, introducing dual variables u(x′) for
x′ ∼ x and v(y′) for y′ ∼ y:

max
∑
x′∼x

u(x′)P (x, x′) +
∑
y′∼y

v(y′)P (y, y′)

s.t. u(x′) + v(y′) ≤ ρ(x′, y′) ∀x′ ∼ x, y′ ∼ y
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This linear program is a Kantorovich dual problem. By weak duality, if there exists a
dual solution with objective value Z, then the optimal solution of the primal is at least Z.
Therefore our goal is to find a dual solution with objective value at least 1.

For x′ = x − ea + eb with a, b ∈ {1, 2, 3, 4}, P (x, x′) = x(a)
n(deg(a)+1) . Similarly, for

y′ = y − ea + eb, P (y, y′) = y(a)
n(deg(a)+1) . The value of ρ is given by

ρ(x′, y′) =



0 if [x′ = y′ = x] or [x′ = y′ = y]

1 if [x′ = y, y′ 6= y] or [y′ = x, x′ 6= x]

1 if [x′ = x− ea + eb, y
′ = y − ea + eb, a 6= b]

2 if [x′ = x, y′ /∈ {x, y}] or [y′ = y, x′ /∈ {x, y}]
3 otherwise

.

There exists a primal solution with objective value 1: Set

z(x− ea + eb, y − ea + eb) = min {P (x, x− ea + eb), P (y, y − ea + eb)} ,

z(x− e2 + e1, y − e3 + e2) =
1

3n
,

and

z(x− e2 + e3, y − e3 + e4) =
1

3n
.

Other values of z(x′, y′) are set to zero. In other words, z describes a synchronous
coupling according to the pairing in Figure 6, with particles moving in the same direction
always. Now supposing this is an optimal solution, we apply complementary slackness
to identify candidate dual optimal solutions. The complementary slackness condition
states that if z and (u, v) are optimal primal and dual solutions, then it holds that for all
x′ ∼ x, y′ ∼ y,

z(x′, y′) [ρ(x′, y′)− u(x′)− v(y′)] = 0.

If our primal solution z is optimal, then whenever z(x′, y′) 6= 0, we need u(x′) + v(y′) =

ρ(x′, y′). These additional constraints help us construct the following dual feasible
solution:

u(x) = 1, u(x− e1 + e2) = 0, u(x− e2 + e1) = 2, u(x− e2 + e3) = 0,

u(x− e3 + e2) = 2, u(x− e3 + e4) = 0, u(x− e4 + e3) = 0

v(y) = 0, v(y − e1 + e2) = 1, v(y − e2 + e1) = −1, v(y − e2 + e3) = 1,

v(y − e3 + e2) = −1, v(y − e3 + e4) = 1, v(y − e4 + e3) = 1.

We find that the objective value of this solution is equal to 1. By strong duality, we
conclude that the optimal value of the primal problem is equal to 1, and therefore there
does not exist a contractive coupling.

Remark 3.17. The argument in the proof of Theorem 3.16 should apply to all graphs G
that contain the a four-vertex path graph as a subgraph, and possibly to other graphs as
well.

3.3 Bounding the Cheeger constant

The following results will be useful in proving Corollary 2.4.

Lemma 3.18 ([6]). Let Φ∗ be the Cheeger constant of an aperiodic and irreducible
Markov chain, and let tmix be its mixing time. Then

tmix

(
1

4

)
≥ 1

4Φ∗
.
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The following result follows directly from Equation 2.28 in [3].

Lemma 3.19. Let P be the transition probability matrix of an aperiodic and irreducible
Markov chain on state space X , satisfying P (x, x) ≥ 1

2 for all x ∈ X . Let π denote the
stationary distribution, and let πmin = minx∈X π(x). Let Φ∗ be the Cheeger constant of
this chain, and let tmix be its mixing time. Then

tmix(ε) ≤
2 log

(
1

2ε
√
πmin

)
log
(

2
2−Φ2

∗

) .

Proof of Corollary 2.4. We first prove the lower bound. Let 0 ≤ β < β−. By Lemma 3.18
and Theorem 2.2, we have

1

4Φ∗
= O (n log n) =⇒ Φ∗ =

1

O (n log n)
.

We next prove the upper bound. Let P = 1
2 (P + I) denote the lazy version of the ARW

chain. Note that π is also the stationary distribution of the lazy chain. Let Φ denote its
Cheeger constant. Observe that for all S ⊂ Ω, it holds that Φ(S) = 2Φ(S). Therefore,

Φ∗ = min
S:π(S)≤ 1

2

Φ(S) = 2 min
S:π(S)≤ 1

2

Φ(S) = 2Φ∗,

and so it suffices to show Φ∗ = e−Ω(n).
Fix β > β+. We claim that the mixing time of the lazy chain is eΩ(n). To show this, we

modify the proof of Theorem 2.1 as follows. We define Z to be the lazy version of the
Z chain. That way, we can couple the Z chain to the chain advancing according to P .
Observe that the lower-bounding property still holds. Furthermore, the hitting time of
the Z chain to the set {x ∈ Ω̃ : x(0) ≤ (1− δ)n} is greater than the hitting time for the Z
chain. Finally, since the stationary distributions of the Z and Z chains coincide, the rest
of the proof follows identically.

We now apply Lemma 3.19 to the lazy chain. We need a lower bound on πmin. Observe
that if t ∈ N and p ∈ [0, 1] are such that P t(x, y) ≥ p for all x, y ∈ Ω, then πmin ≥ p. Set
t = n · diam(G). There exists at least one sequence of possible transitions in t steps to
get from x to y. Each step in the sequence has probability at least 1

n(∆+eβ)
. Therefore,

πmin ≥
(

1

n(∆ + eβ)

)n·diam(G)

.

By Lemma 3.19, we have

2 log
(

1
2ε
√
πmin

)
log
(

2

2−Φ
2
∗

) = eΩ(n).

Since log(x) ≥ 1− 1
x for x > 0, we have

2 log
(

1
2ε
√
πmin

)
1− 2−Φ

2
∗

2

= eΩ(n)

Φ
2

∗ = 4e−Ω(n) log

(
1

2ε
√
πmin

)
Φ

2

∗ = e−Ω(n) log

(
1

πmin

)
.
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Substituting the lower bound for πmin, we obtain

Φ
2

∗ = e−Ω(n) log
((

2n(∆ + eβ)
)n·diam(G)

)
= n log(n)e−Ω(n) = e−Ω(n),

which implies Φ∗ = e−Ω(n).

4 Repelling random walks

Throughout our analysis, we have only considered β ≥ 0. However, the case β < 0

(“Repelling Random Walks”) is theoretically and practically interesting to study also.
Simulations confirm the intuition that the particles behave like independent random
walks when β is close to zero, and spread evenly when β is very negative (see Figure 7).
We conjecture that there are not any hard-to-escape subsets of the state space for all
β < 0.

Figure 7: Simulation of the Attracting Random Walks model on an 8× 8 grid graph after
106 steps for n = 320, β = −500.

Conjecture 4.1. For all β < 0 and any graph, the mixing time of the ARW model is
polynomial in n.

We consider two cases: the extreme case of β = −∞, and the case where G is the
complete graph, for certain values of β.

4.1 The case β = −∞
Theorem 4.2. When β = −∞, the mixing time of the Attracting Random Walks model is
O(n2).

Proof. When β = −∞, the dynamics are simplified. Suppose a particle is chosen
at vertex i. Let A be the set of vertices corresponding to the minimal value(s) of
{x(i) − 1} ∪ {x(j) : j ∼ i}. The chosen particle moves to a vertex among those in A,
uniformly at random.

Our goal is to show that the set

C ,
{
x : x(v) ∈

{⌊n
k

⌋
,
⌊n
k

⌋
+ 1
}
∀v ∈ V

}
∩ Ω

satisfies the following three properties: (1) It is absorbing, meaning that once the chain
enters C, it cannot escape C; (2) The chain enters C in polynomial time; (3) Within C,
the chain mixes in constant time with respect to n.

We claim that the maximum particle occupancy cannot increase, and the minimum
particle occupancy cannot decrease. We now show that the maximum particle occupancy,
Mt , maxvXt(v), is monotonically non-increasing over time. Suppose that at time t, a
particle at vertex i is selected and moves to vertex j. There are five cases:
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1. i = j. The maximum does not change.

2. i 6= j, and both are maximizers. This case is not possible, since x(j) > x(i)− 1.

3. i 6= j, i is a maximizer, and j is not. The new maximum value is at most Mt, in the
case that Xt(j) = Xt(i)− 1.

4. i 6= j, i is not a maximizer, and j is. This case is not possible, since x(j) > x(i)− 1.

5. i 6= j, i and j are not maximizers. The new maximum value is at most Mt, in the
case that Xt(j) = Xt(i)− 1.

Therefore Mt+1 ≤Mt. A similar argument shows that the minimum particle occupancy
is monotonically non-decreasing over time. Together, they imply Property (1).

Next, we show Property (2). Assume Xt /∈ C. Let Mt be the set of maximizing
vertices at time t. We claim there exists at least one vertex u ∈Mt such that there exists
a path of distinct vertices u = i1 ∼ i2 ∼ · · · ∼ ip satisfying xi2 = xi3 = · · · = xip−1

= Mt−1

and xip ≤Mt− 2 (allowing p = 2). In other words, there is a walkable path from u = i1 to
ip. The maximum length of the path is k− 1. The probability that a particle is transferred
along this path before any other events happen is therefore lower bounded by(

Mt

n
· 1

∆ + 1

)k−1

≥
(

1

k
· 1

∆ + 1

)k−1

.

Therefore the probability that such a transfer happens within T1 trials is at least

p , 1−

(
1−

(
1

k
· 1

∆ + 1

)k−1
)T1

.

If there had been at least two maximizing vertices to start, the number of maximizing
vertices would have fallen by 1. If there had been only one maximizing vertex to start,
the maximum value itself would have fallen by 1.

We see that there are two types of “good” events: reducing the number of maximizing
vertices while the maximum value stays the same, or reducing the maximum value. We
claim that the number of “good” events that happen before the chain enters the set C
is upper bounded by n2. Indeed, imagine that the particles at each vertex are stacked
vertically. A particle movement from vertex i to vertex j is interpreted as a particle
moving from the top of the stack at vertex i to the top of the stack at vertex j. Observe
that the height of a particle cannot increase. Further, each particle’s height can fall
by at most n− 1 units over time, and can therefore drop at most n− 1 times. Since all
good events require a particle’s height to drop, the number of good events is at most
n(n− 1) < n2. Let T2 = d2n2 1

pe be the number of trials of length T1 each. Let N be the
number of successes during the T2 trials. By the Hoeffding inequality,

P
(
|N − E[N ]| ≥ n2

)
≤ 2 exp

(
−2n4

T2

)
≤ 2 exp

(
− 2n4

2n2 1
p + 1

)
.

Since E[N ] = pd2n2 1
pe ≥ 2n2,

P
(
N ≤ n2

)
≤ 2 exp

(
− 2n4

2n2 1
p + 1

)
≤ 2 exp

(
−1

2
pn2

)
.

Therefore the probability that the chain is in C after T1 × (k− 1)× T2 steps is at least
1− 2 exp(− 1

2pn
2). For an example, we can even set T1 = 1. Then

p =

(
1

k
· 1

∆ + 1

)k−1

and T2 ≤ 1 + 2n2

(
1

k
· 1

∆ + 1

)1−k

,
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Therefore, within O(n2) steps, the chain is in C with high probability.
Finally, we show Property (3). Once the chain is in C, there are two types of vertices:

those that have
⌊
n
k

⌋
particles, and those that have

⌊
n
k

⌋
+ 1 particles. Note that there

are always k̃ , n − kbnk c vertices with the higher number of particles. Therefore it is

equivalent to study an exclusion process with just k̃ particles on the graph G. With
probability

⌊
n
k

⌋
· k−k̃n , an unoccupied vertex is selected, and the chain stays in place.

With the remaining probability, an occupied vertex is chosen uniformly at random. Its
particle then moves to a neigboring empty vertex or stays where it is, uniformly at
random. Equivalently, the chain is lazy with probability

⌊
n
k

⌋
· k−k̃n , and otherwise one of

the k̃ particles is chosen, and either stays or moves to a neighbor. Since the number of
particles k̃ can be upper and lower bounded by constants (0 ≤ k̃ ≤ k), the mixing time
within C is independent of n. Therefore, we conclude that the overall mixing time is
O(n2).

4.2 The complete graph case

Note that the complete graph case for β < 0 is equivalent to the vector of proportions
chain in the antiferromagnetic Curie–Weiss Potts model.

Theorem 4.3. On the complete graph with k vertices, the mixing time is O (n log n) for
all β satisfying − k

10 < β ≤ 0.

The proof relies on the following two lemmas.

Lemma 4.4. Let (Xt, t ≥ 0) be the ARW chain for any β < 0 and let (Yt, t ≥ 0) be a chain
of independent particles (β = 0). Set X0 = Y0. For every vertex v and time t,∣∣∣Xt(v)− n

k

∣∣∣ st
≤
∣∣∣Yt(v)− n

k

∣∣∣ .
For λ ≥ 0, let C(λ) ,

{
x :
∣∣x(v)− n

k

∣∣ ≤ λn}.

Lemma 4.5. On the complete graph, if y = x− ei + ej and x, y ∈ C(λ), then

‖Px(v, ·)− Py(v, ·)‖TV ≤
−5β/n

2 + (k − 2)e2λβ

for

n ≥ −3β

log
(

5
4

) .
The proof of Lemma 4.4 appears later in this section, and the proof of Lemma 4.5 is

deferred to the appendix due to its technical nature.

Proof of Theorem 4.3. We may assume that n is large enough so that

n ≥ −3β

log
(

5
4

) ⇐⇒ e−
3β/n ≤ 5

4
.

Let {Y (v), v ∈ V} be a random variable distributed according to the stationary
distribution of the {Yt(v), v ∈ V, t ≥ 0} chain at stationarity. At stationarity, the vertex
occupancies are strongly concentrated around their means. By the Hoeffding Inequality,
for every λ > 0,

P
(∣∣∣Y (v)− n

k

∣∣∣ ≥ λn) ≤ 2e−2λ2n,

for every vertex v.
Fix ε > 0. We wish to upper bound tmix(X, ε). Note that the mixing time of the Y chain

is O(n log n). To see this, consider a synchronous coupling. The expected amount of time
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to select all the particles is O(n log n), and whenever a particle is selected, it moves to a
uniformly random location, which is coupled. Now, for all ε′, T1 , tmix (Y, ε′) = O(n log n).
Therefore at time T1, for every λ > 0,

P
(∣∣∣YT1

(v)− n

k

∣∣∣ ≥ λn) ≤ 2e−2λ2n + ε′,

for every vertex v. By Lemma 4.4, it also holds that for every λ > 0,

P
(∣∣∣XT1(v)− n

k

∣∣∣ ≥ λn) ≤ 2e−2λ2n + ε′

for every vertex v. Recall that C(λ) =
{
x :
∣∣x(v)− n

k

∣∣ ≤ λn}. Then by the Union Bound,

P (XT1
/∈ C(λ)) ≤ k

(
2e−2λ2n + ε′

)
,

for every λ and v. We observe that for n large enough, there is always an ε′ small enough
so that

k
(

2e−2λ2n + ε′
)
≤ ε

2
.

Then with probability at least 1− ε/2, XT1
belongs to C(λ).

Next, we establish that for every β < 0, there exists λβ such that (1) once the chain
enters C(λβ), it takes exponential time to leave C(2λβ), with high probability; (2) we
can applying path coupling within C(2λβ). The first claim is due to comparison with the
β = 0 chain, as established above.

We now demonstrate the required contraction for path coupling within C(2λ). Recall
that we need to define the edges of the graph H = (Ω, EH) and choose a length function
on the edges. Let (x, y) ∈ EH if y = x− ei + ej for some i 6= j, and let l(x, y) = 1. Consider
any pair of neighboring configurations x and y. We employ a synchronous coupling, as
in Figure 6. Namely, the “extra” particle at vertex i in configuration x is paired to the
“extra” particle at vertex j in configuration y. All other particles are paired by vertex
location. When a particle is selected to be moved in the x configuration, the particle that
it is paired to in the y configuration is also selected to be moved.

With probability n−1
n , one of the (n − 1) pairs that has the same vertex location is

chosen. Suppose it is located at vertex v. We couple the transitions in the two chains
according to the coupling achieving the total variation distance ‖Px(v, ·)− Py(v, ·)‖TV.

By Lemma 4.5, when one of the (n− 1) particles paired by vertex location is chosen,
we can couple them so that they move to the same vertex with probability at least

1−
−5β/n

2 + (k − 2)e4λβ
.

With the remaining probability, the distance increases by at most 2.
With the remaining 1

n probability, the “extra” particle is chosen in both chains. The
chains can then equalize with probability 1 because Px(i, ·) = Py(j, ·) on the complete
graph. Therefore, we can bound the Wasserstein distance as follows:

WP
ρ (x, y) ≤ 1 + 2

−5β/n

2 + (k − 2)e4λβ
− 1

n
= 1− 1

n

(
1 +

10β

2 + (k − 2)e4λβ

)
Therefore, in order to achieve contraction, it suffices that

1 +
10β

2 + (k − 2)e4λβ
> 0 ⇐⇒ −10β < 2 + (k − 2)e4λβ (4.1)

EJP 25 (2020), paper 73.
Page 25/31

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP471
http://www.imstat.org/ejp/


Attracting random walks

Fix 0 < δ < 1, and let λβ = 1
4β log(1 − δ) > 0. Then substituting λ = λβ, we obtain the

condition

−10β < 2 + (k − 2)(1− δ) = k + δ(2− k). (4.2)

When β ≤ 0 is such that −10β < k, there exists δ > 0 small enough so that the condition
(4.2) holds. We conclude that contraction holds for −k/10 < β ≤ 0.

To summarize the argument, we have shown that in time O(n log n), the chain enters
C(λβ). After that, the chain leaves the larger set, C(2λβ), with exponentially small
probability, which can be disregarded. Within C(2λβ), the Wasserstein distance with
respect to the chosen H and ρ contracts by a factor of

(
1− θ

(
1
n

))
, so an additional

O (n log n) steps are sufficient. Therefore, the overall mixing time is O (n log n).

Proof of Lemma 4.4. We claim that there exists a coupling of {Xt, Yt} such that for all v
and t,

∣∣Xt(v)− n
k

∣∣ ≤ ∣∣Yt(v)− n
k

∣∣. Let X̃t(v) =
∣∣Xt(v)− n

k

∣∣ and define Ỹt(v) similarly. We
claim that for all configurations x and vertices v, if x(v) 6= n

k , then

P
(
X̃t+1(v) = X̃t(v) + 1|Xt = x

)
≤ P

(
Ỹt+1(v) = Ỹt(v) + 1|Yt = x

)
(4.3)

and

P
(
X̃t+1(v) = X̃t(v)− 1|Xt = x

)
≥ P

(
Ỹt+1(v) = Ỹt(v)− 1|Yt = x

)
. (4.4)

If x(v) = n
k , then

P
(
Xt+1(v) =

n

k
+ 1|Xt = x

)
≤ P

(
Yt+1(v) =

n

k
+ 1|Yt = x

)
(4.5)

and

P
(
Xt+1(v) =

n

k
− 1|Xt = x

)
≤ P

(
Yt+1(v) =

n

k
− 1|Yt = x

)
. (4.6)

In other words, the inequalities (4.3)–(4.6) state that the X chain is less likely to move
in the absolute value–increasing direction, and more likely to move in the absolute
value–decreasing direction. These inequalities, along with the fact that X0 = Y0, suffice
to prove the lemma.

The transitions for the Yt(v) process are +1 with probability
(

1− Yt(v)
n

)
1
k , and −1

with probability Yt(v)
n

k−1
k . With the remaining probability, Yt+1(v) = Yt(v). Suppose

x(v) 6= n
k . There are two cases to analyze when x(v) 6= n

k :

1. Xt(v) < n
k . The probability that Xt+1(v) = Xt(v)− 1 is upper bounded by Xt(v)

n
k−1
k ,

because vertex v is a more likely than average destination. In other words, it is
harder to lose a particle from vertex v that has fewer than the average number of
particles when β < 0, compared to when β = 0. Formally,

Xt(v)

n

1−
exp

(
β
n (Xt(v)− 1)

)
exp

(
β
n (Xt(v)− 1)

)
+
∑
w 6=v exp

(
β
nXt(w)

)
 <

Xt(v)

n

(
1− 1

k

)
.

For the same reason, the probability that Xt+1(v) = Xt(v) + 1 is lower bounded by(
1− Xt(v)

n

)
1

k
.

Therefore, inequalities (4.3) and (4.4) hold in this case.
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2. Xt(v) > n
k . This time, v is a less likely than average destination. The probability

that Xt+1(v) = Xt(v)− 1 is lower bounded by

Xt(v)

n

k − 1

k
.

The probability that Xt+1(v) = Xt(v) + 1 is upper bounded by(
1− Xt(v)

n

)
1

k
.

Therefore, inequalities (4.3) and (4.4) hold in this case also.

Finally, suppose x(v) = n
k . Then the probability of losing a particle is upper bounded by

1
k
k−1
k , and the probability of gaining a particle is upper bounded by k−1

k
1
k . Therefore,

inequalities (4.5) and (4.6) hold.
We conclude that such a coupling exists, and therefore the stochastic dominance

holds.

5 Conclusion

In this paper we have introduced a new interacting particle system model. We have
shown that for any fixed graph, the mixing time of the Attracting Random Walks Markov
chain exhibits phase transition. We have also partially investigated the Repelling Random
Walks model, and we conjecture that model is always fast mixing. Beyond theoretical
results, it is our hope that the model will find practical use.

A Appendix

Proof of Proposition 3.5. To compute the stationary probabilities λ(r), r ∈ {0, 1, . . . , D},
note that we can disregard the initial uniform particle choice, and simply consider a
Markov chain on a graph with (D + 1) nodes as in Figure 4 or 5.

When D = 1, we have λ(0) = qλ(0) + qλ(1) =⇒ λ(0) = q.
Next, consider D = 2. We have

λ(2) = (1− p)λ(2) + (1− q)λ(1) =⇒ λ(1) =
p

1− q
λ(2)

λ(0) = qλ(0) + qλ(1) =⇒ λ(0) =
pq

(1− q)2
λ(2).

Since λ(0) + λ(1) + λ(2) = 1, we have(
pq

(1− q)2
+

p

1− q
+ 1

)
λ(2) = 1,

and so

λ(0) =

pq
(1−q)2

pq
(1−q)2 + p

1−q + 1
=

q

1 + (1−q)2
p

.

Finally, consider the case D ≥ 3. We solve the equations for the stationary distribution.

λ(D) = (1− p)λ(D) + (1− p)λ(D − 1)

=⇒ λ(D − 1) =
p

1− p
λ(D)

λ(D − 1) = pλ(D) + (1− p)λ(D − 2)
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=⇒ λ(D − 2) =
1

1− p

(
p

1− p
λ(D)− pλ(D)

)
=

(
p

1− p

)2

λ(D)

. . .

λ(D − i) =

(
p

1− p

)i
λ(D) for 0 ≤ i ≤ D − 2 (A.1)

λ(2) = pλ(3) + (1− q)λ(1) (A.2)

λ(0) = qλ(1) + qλ(0) (A.3)

Using Equations (A.1)–(A.3),

λ(1) =
1

1− q

((
p

1− p

)D−2

λ(D)− p
(

p

1− p

)D−3

λ(D)

)

=
p

1− q

(
p

1− p

)D−2

λ(D)

λ(0) =
pq

(1− q)2

(
p

1− p

)D−2

λ(D). (A.4)

Since
∑D
i=0 λ(i) = 1,

λ(D)

(
pq

(1− q)2

(
p

1− p

)D−2

+
p

1− q

(
p

1− p

)D−2

+

D−2∑
i=0

(
p

1− p

)i)
= 1

λ(D) =
1

p
(1−q)2

(
p

1−p

)D−2

+

(
1−( p

1−p )
D−1

1− p
1−p

) .
Substituting into (A.4)

λ(0) =
q

1 + (1−q)2
p

(
p

1−p

)2−D
(

1−( p
1−p )

D−1

1− p
1−p

) .
Proof of Lemma 4.5. Let

B(x) =
∑

u 6∈{i,j,v}

exp

(
β

n
x(u)

)
+ 1v 6∈{i,j} exp

(
β

n
(x(v)− 1)

)

C(x) = 1v 6=i exp

(
β

n
x(i)

)
+ 1v=i exp

(
β

n
(x(i)− 1)

)
+ 1v 6=j exp

(
β

n
x(j)

)
+ 1v=j exp

(
β

n
(x(j)− 1)

)
, and

D(x) = 1v 6=i exp

(
β

n
(x(i)− 1)

)
+ 1v=i exp

(
β

n
(x(i)− 2)

)
+ 1v 6=j exp

(
β

n
(x(j) + 1)

)
+ 1v=j exp

(
β

n
x(j)

)
.

Then we can write

Px(v, w) =
1v 6=w exp

(
β
nx(w)

)
+ 1v=w exp

(
β
n (x(w)− 1)

)
B(x) + C(x)

and

Py(v, w) =
1v 6=w exp

(
β
ny(w)

)
+ 1v=w exp

(
β
n (y(w)− 1)

)
B(x) +D(x)

.
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To check the sign of Px(v, w)− Py(v, w), it is equivalent to check the sign of

exp

(
β

n
x(w)

)
(B(x) +D(x))− exp

(
β

n
y(w)

)
(B(x) + C(x)) .

Next we show that for fixed v, the sign of Px(v, w)−Px(v, w) is the same for all w 6∈ {i, j}.
Suppose w 6∈ {i, j}. Then exp

(
β
nx(w)

)
= exp

(
β
ny(w)

)
, and is equivalent to check the

sign of the expression D(x) − C(x). Since this expression does not depend on w, we
conclude that the sign is the same for all w 6∈ {i, j}.

If Px(v, w)− Px(v, w) ≥ 0 for all w 6∈ {i, j}, then

‖Px(v, ·)− Py(v, ·)‖TV = max{Py(v, i)− Px(v, i), 0}+ max{Py(v, j)− Px(v, j), 0}.

Similarly, if Px(v, w)− Px(v, w) < 0 for all w 6∈ {i, j}, then

‖Px(v, ·)− Py(v, ·)‖TV = max{Px(v, i)− Py(v, i), 0}+ max{Px(v, j)− Py(v, j), 0}.

Therefore,

‖Px(v, ·)− Py(v, ·)‖TV ≤ |Px(v, i)− Py(v, i)|+ |Px(v, j)− Py(v, j)| .

Consider the ratio of denominators of Px(v, w) and Py(v, w). We have

e
β/n ≤ B(x) + C(x)

B(x) +D(x)
≤ e−β/n.

We first bound |Px(v, i)− Py(v, i)|. If v 6= i, we obtain

|Px(v, i)− Py(v, i)|

≤ 1

B(x) + C(x)
max

{∣∣∣∣exp

(
β

n
x(i)

)
− exp

(
β

n
(x(i)− 1)

)
e
β/n

∣∣∣∣ ,∣∣∣∣exp

(
β

n
x(i)

)
− exp

(
β

n
(x(i)− 1)

)
e−

β/n

∣∣∣∣}

=
exp

(
β
nx(i)

)
B(x) + C(x)

(
e−

2β/n − 1
)
.

Similarly, if v = i, we obtain

|Px(v, i)− Py(v, i)| ≤ e−β/n
exp

(
β
nx(i)

)
B(x) + C(x)

(
e−

2β/n − 1
)
.

We similarly bound |Px(v, j)− Py(v, j)|. If v 6= j, we obtain

|Px(v, j)− Py(v, j)|

≤ 1

B(x) + C(x)
max

{∣∣∣∣exp

(
β

n
x(j)

)
− exp

(
β

n
(x(j) + 1)

)
e
β/n

∣∣∣∣ ,∣∣∣∣exp

(
β

n
x(j)

)
− exp

(
β

n
(x(j) + 1)

)
e−

β/n

∣∣∣∣}

=
exp

(
β
nx(j)

)
B(x) + C(x)

(
1− e2β/n

)
.

If v = j, we obtain

|Px(v, j)− Py(v, j)| ≤ e−β/n
exp

(
β
nx(j)

)
B(x) + C(x)

(
1− e2β/n

)
.
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For any choice of v,

C(x) ≥ exp

(
β

n
x(i)

)
+ exp

(
β

n
x(j)

)
.

Therefore,

|Px(v, i)− Py(v, i)|+ |Px(v, j)− Py(v, j)|

≤ e−β/n

B(x) + exp
(
β
nx(i)

)
+ exp

(
β
nx(j)

) (exp

(
β

n
x(i)

)(
e−

2β/n − 1
)

+ exp

(
β

n
x(j)

)(
1− e2β/n

))
=

e−β/n
(
1− e2β/n

)
B(x) + exp

(
β
nx(i)

)
+ exp

(
β
nx(j)

) (exp

(
β

n
x(i)

)
e−

2β/n + exp

(
β

n
x(j)

))

≤
e−3β/n

(
1− e2β/n

)
B(x) + exp

(
β
nx(i)

)
+ exp

(
β
nx(j)

) (exp

(
β

n
x(i)

)
+ exp

(
β

n
x(j)

))
.

Recall that x ∈ C(λ). We upper bound by setting x(i) and x(j) to their lower bounds, and
x(u) to its upper bound for u 6∈ {i, j}.

|Px(v, i)− Py(v, i)|+ |Px(v, j)− Py(v, j)|

≤
e−3β/n

(
1− e2β/n

)
(k − 2) exp

(
β
n

(
n
k + λn

))
+ 2 exp

(
β
n

(
n
k − λn

))2 exp

(
β

n

(n
k
− λn

))

=
2e−3β/n

(
1− e2β/n

)
(k − 2)e2λβ + 2

≤ 2e−3β/n (−2β/n)

(k − 2)e2λβ + 2

≤ −5β/n

(k − 2)e2λβ + 2
,

where in the second-last inequality we have used the fact that 1 + z ≤ ez and the last
inequality holds when e−3β/n ≤ 5/4.
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