Open Access
2017 Uniqueness of critical Gaussian chaos
Janne Junnila, Eero Saksman
Electron. J. Probab. 22: 1-31 (2017). DOI: 10.1214/17-EJP28

Abstract

We consider Gaussian multiplicative chaos measures defined in a general setting of metric measure spaces. Uniqueness results are obtained, verifying that different sequences of approximating Gaussian fields lead to the same chaos measure. Specialized to Euclidean spaces, our setup covers both the subcritical chaos and the critical chaos, actually extending to all non-atomic Gaussian chaos measures.

Citation

Download Citation

Janne Junnila. Eero Saksman. "Uniqueness of critical Gaussian chaos." Electron. J. Probab. 22 1 - 31, 2017. https://doi.org/10.1214/17-EJP28

Information

Received: 28 April 2016; Accepted: 23 January 2017; Published: 2017
First available in Project Euclid: 3 February 2017

zbMATH: 1357.60040
MathSciNet: MR3613704
Digital Object Identifier: 10.1214/17-EJP28

Subjects:
Primary: 60G15 , 60G57
Secondary: 60G60 , 60K35

Keywords: Critical temperature , multiplicative chaos , uniqueness

Vol.22 • 2017
Back to Top