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for nonlinear equations of Patlak-Keller-Segel type*
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Abstract

We study a system of interacting diffusions that models chemotaxis of biological cells
or microorganisms (referred to as particles) in a chemical field that is dynamically
modified through the collective contributions from the particles. Such systems of
reinforced diffusions have been widely studied and their hydrodynamic limits that
are nonlinear non-local partial differential equations are usually referred to as Patlak-
Keller-Segel (PKS) equations.

Solutions of the classical PKS equation may blow up in finite time and much of the
PDE literature has been focused on understanding this blow-up phenomenon. In this
work we study a modified form of the PKS equation that is natural for applications and
for which global existence and uniqueness of solutions are easily seen to hold. Our
focus here is instead on the study of the long time behavior through certain interacting
particle systems.

Under the so-called “quasi-stationary hypothesis” on the chemical field, the limit
PDE reduces to a parabolic-elliptic system that is closely related to granular media
equations whose time asymptotic properties have been extensively studied proba-
bilistically through certain Lyapunov functions [17, 4, 9]. The modified PKS equation
studied in the current work is a parabolic-parabolic system for which analogous Lya-
punov function constructions are not available. A key challenge in the analysis is that
the associated interacting particle system is not a Markov process as the interaction
term depends on the whole history of the empirical measure.

We establish, under suitable conditions, uniform in time convergence of the empiri-
cal measure of particle states to the solution of the PDE. We also provide uniform in
time exponential concentration bounds for rate of the above convergence under addi-
tional integrability conditions. Finally, we introduce an Euler discretization scheme
for the simulation of the interacting particle system and give error bounds that show
that the scheme converges uniformly in time and in the size of the particle system as
the discretization parameter approaches zero.
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1 Introduction

Consider the following system of nonlinear nonlocal partial differential equations
∂tu(t, x) =

1

2
∆u(t, x)−∇ ·

(
u(t, x)[χ∇h(t, x)−∇V (x)]

)
1

γ
∂th(t, x) =

1

2
∆h(t, x)− αh(t, x) + β

∫
Rd
u(t, z) g(z − x) dz,

(1.1)

where (t, x) ∈ (0,∞)×Rd and α, β, γ, χ are positive constants. The symbols ∇, ∇· and
∆ denote the gradient operator, the divergence operator and the standard Laplacian
respectively. Equations of the above form arise as reinforced diffusion models for
chemotaxis of particles representing biological cells or microorganisms in which the
particle diffusions are directed by the gradient of a chemical field which in turn is
dynamically modified by the contributions of the particles themselves(cf. [20, 15]).
The functions u(t, x) and h(t, x) represent, respectively, the continuum limits of the
densities of the biological particles and the particles constituting the chemical field.
The parameters α and β in the second equation model the decay rate of the chemical
particles and the rate at which the biological particles contribute to the chemical field,
respectively. The function g is the dispersal kernel which models the spread and amount
of the chemical produced by the biological particles. A natural form for g is a Gaussian
kernel g(x, y)

.
= (2πδ)−d/2 exp{−|y − x|2/2δ}, where δ is a small parameter. The first

equation describes the collective motion of the biological particles. The dynamics of the
individual particles is coupled through the gradient of the chemical field, i.e. ∇h, which
defines their drift coefficient (up to a positive constant multiplier χ). Finally, the function
V models a confinement potential for the particle motions. Thus the reinforcement
mechanism is as follows. Particles are attracted to the chemical and they emit the
chemical at a constant rate, resulting in a positive feedback: the more the cells are
aggregated, the more concentrated in their vicinity is the chemical they produce which
in turn attracts other cells.

The key feature of the model is the competition between the aggregation resulting
from the above reinforcement mechanism and the diffusive effect which spreads out
the biological and chemical particles in space. When V = 0 and g(z − x)dz is the Dirac
delta measure δx, (1.1) becomes the classical Patlak-Keller-Segel (PKS) model [20, 15]
which has been studied extensively. It is well known that for the 2-d PKS model (i.e.
d = 2), there is a critical mass Mc such that (i) the solution to (1.1) blows up in finite
time if the initial mass

∫
u(0, x)dx > Mc, and (ii) a smooth solution exists for all time if∫

u(0, x)dx < Mc. For d ≥ 3, the blow up of the solution is related to the Ld/2 norm of
the initial density but here the theory is less well developed. We refer the reader to the
survey articles [13, 14] for references to the large literature on the PKS model and its
variants.

One line of active research has focused on the prevention of finite time blowup of
solutions via various modifications of the classical PKS equation that discourage mass
concentration (cf. [10, 1, 7] and references therein.) The replacement of the Dirac delta
measure by a smooth density g(z − x)dz, as is considered in the current work, can be
regarded as one such natural modification of the PKS model in which chemicals are
dispersed by cells over a region of positive area rather than over a single point. It is
easy to see that there are global unique solutions for general initial conditions for the
system (1.1) (cf. Proposition 2.3). The focus of this work is instead on the study of
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the long time behavior of (1.1) and their particle approximations, for which very little
is known. Long time behavior of weakly interacting particle systems of various types
has been investigated in many recent works ([25, 8, 17, 9, 4]) and although our work
uses many ideas similar to those in these works, one key distinguishing feature and
challenge in the model considered here is that the associated weakly interacting particle
system is not a Markov process. In particular, Lyapunov function constructions that have
been extensively used in the proofs in the above works are not available for the model
considered here.

Note that if (u, h) solve (1.1) and
∫
u(0, x)dx = m, then (u/m, h) solves (1.1) with

β replaced by βm. Thus we can (and will) assume without loss of generality that∫
u(0, x)dx = 1. Our starting point is the following probabilistic representation for the

solution of (1.1) in terms of a nonlinear diffusion of the McKean-Vlasov type.
dX̄t = dBt −∇V (X̄t) dt+ χ∇h(t, X̄t) dt,

1

γ
∂th(t, x) =

1

2
∆h(t, x)− αh(t, x) + β

∫
Rd
g(z − x) dµt(z),

L(X̄t) = µt,

(1.2)

where {Bt} is the standard Brownian motion in Rd and L(X̄t) denotes the probability
law of X̄t. In Proposition 2.3 we will show that the above equation has a unique
pathwise solution (X̄t, h(t, ·)) under natural conditions on the initial data and the kernel
g. Furthermore, for t > 0 the measure µt admits a density u(t, ·) with respect to the
Lebesgue measure. The first equation in (1.1) can be regarded as the Kolmogorov’s
forward equation for the first equation in (1.2). In particular, it is easy to check that the
pair (u(t, ·), h(t, ·)) is a solution of (1.1). Along with the nonlinear diffusion (1.2) we will
also study a mesoscopic particle model for the chemotaxis phenomenon described above
that is given through a stochastic system of weakly interacting particles of the following
form. 

dXi,N
t = dBit −∇V (Xi,N

t ) dt+ χ∇hN (t,Xi,N
t ) dt, i = 1, . . . , N

1

γ
∂thN (t, x) =

1

2
∆hN (t, x)− αhN (t, x) +

β

N

N∑
i=1

g(Xi,N
t − x), x ∈ Rd

(1.3)

where {Bi}Ni=1 are independent standard Brownian motions in Rd. Note that the second
equation in (1.3) is the same as that in (1.2) with µt replaced by the empirical measure

µNt
.
=

1

N

N∑
i=1

δXi,Nt
. (1.4)

In this model a detailed evolution for biological particles is used whereas the chemical
field is regarded as the continuum limit of much smaller chemical molecules. One can also
consider a microscopic model where a detailed evolution equation of chemical particles
replaces the second equation in (1.3). Such ‘full particle system approximations’ of (1.1)
for the classical PKS model (i.e. when g is replaced by a Dirac probability measure) were
studied in [22] where the convergence of the empirical measures of the biological and
chemical particles to the solution of the limit PDE, up to the blow up time of the solutions,
was established. Starting from the works of McKean and Vlasov [18], nonlinear diffusions
and the associated weakly interacting particle models have been studied by many authors
(See, for instance, [23, 19, 17, 16].) One important difference in (1.2) (and similarly
(1.3)) from these classical papers is that the right side of the first equation depends not
only on µt but rather on the full past trajectory of the laws, i.e. {µs : 0 ≤ s ≤ t}.
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The first main goal of this work is to rigorously establish that under suitable condi-
tions, as N becomes large, the mesoscopic model (1.3) gives a good approximation for
(1.2) (and thus also for (1.1)), uniformly in time. Specifically, our results will give, under
conditions, uniform in time convergence of µNt to µt, in a suitable sense. Such a result is
important since it says in particular that the time asymptotic aggregation behavior of
the particle system is well captured by the asymptotic density function u(t, ·) as t→∞.
In general one would also like to know how well µN approximates µ for a fixed value of
N . In order to address such questions, in our second result, under stronger integrability
conditions, we will provide uniform in time exponential concentration bounds that give
estimates on rates of convergence of µN to µ.

A natural empirical approach for the study of long time properties of (1.3) is through
numerical simulations. For example, under the Neumann boundary condition, a nu-
merical simulation for (1.7) in a square demonstrates a separation of time scale: after
an initial short time interval during which particles aggregates to form many crowded
subpopulations, the subpopulations merge to form a stationary profile at a much slower
time scale. See [11] and Figure 3.9 in [21] for such simulation results. Note however that
the system cannot be simulated exactly and in practice one needs to do a suitable time
discretization. For such simulations to form a reliable basis for mathematical intuition on
the long time behavior, it is key that they approximate the system (1.3) or the PDE (1.1),
uniformly in time. We will show that under suitable conditions a natural discretization
scheme for (1.3) gives a uniform in time convergent approximation to the solution of
(1.2) as N → ∞ and as the discretization step size tends to zero. Our uniform in time
numerical approximations offer qualitative insights for the long time dynamical behavior
of such systems.

1.1 Existing results and some challenges

One of the key challenges in the study of (1.3) is that the Nd dimensional process
X(N) = (X1,N , · · · , XN,N ) is not a Markov process since the right side of the first equation
in (1.3) depends on the full past history of the empirical measure, i.e. {µNs }0≤s≤t. In
order to get a Markovian descriptor one needs to consider the pair (X(N), hN ) which is
an infinite dimensional Markov process. Similar difficulties arise in the study of (1.1)
where the form of the coupling between u and h makes the analysis challenging.

These difficulties do not occur for the reduced parabolic-elliptic system (1.5) obtained
by formally letting γ →∞ in (1.1):

∂tu(t, x) =
1

2
∆u(t, x)−∇ ·

(
u(t, x)[χ∇h(t, x)−∇V (x)]

)
0 =

1

2
∆h(t, x)− αh(t, x) + β

∫
Rd
u(t, z) g(z − x) dz.

(1.5)

In the context of chemotaxis, the model in (1.5) corresponds to a quasi-stationary
hypothesis for the chemical h, that is, the chemical diffuses at a much faster time scale
than the biological particles. Equation (1.5) is mathematically more tractable since here
one can solve for h explicitly in terms of u and g as

h = βGα ∗ u,

where ∗ denotes the standard convolution operator, Gα(z) =
∫∞

0
e−αtPtg(z) dt and Pt is

the standard heat semigroup, i.e. the semigroup generated by 1
2 ∆. Using this expression

for h, the system (1.5) can be expressed as a single equation of the form

∂tu =
1

2
∆u+∇ · (u [∇V − χβ∇Gα ∗ u]). (1.6)
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Kinetic equations of the above form have been well studied in the literature [18, 25,
23, 8, 9, 17, 4] where they are sometimes referred to as granular media equations
because of their use in the modeling of granular flows (cf. [2]). An interacting particle
approximation for this equation takes the following simple form

dX
(N)
t = dB

(N)
t −∇ΦN (X

(N)
t ) dt, (1.7)

where X(N)
t = (X1,N

t , . . . , XN,N
t ), {B(N)

t } is a standard Brownian motion in RdN and for
x = (x1, · · · , xN ) ∈ RdN ,

ΦN (x)
.
=

N∑
i=1

V (xi)−
χβ

2N

N∑
i=1

N∑
j=1

Gα(xi − xj).

Note that in this case XN is a Markov process given as a Nd dimensional diffusion with a
gradient form drift. Law of large number results and propagation of chaos properties for
such models over a finite time interval that rigorously connect the asymptotic behavior
of (1.7) as N →∞ with the equation in (1.6) are classical and go back to the works of
McKean [18] and Sznitman [23]. In recent years there has also been significant progress
in the study of the time asymptotic behavior of (1.7) and (1.6). Under suitable growth
and convexity assumptions on V and Gα, [25] studied the existence and local exponential
stability of fixed points of (1.5) by a suitable construction of a Lyapunov function. Similar
Lyapunov functions were used in [8, 17, 9] to establish a uniform in time propagation
of chaos property and convergence of µNt (dx) to u(t, x)dx along with uniform in time
exponential concentration bounds. In the context of the model in (1.7) and (1.6), simple
modifications of arguments in proofs of [17, Theorem 1.3] and [9, Theorem 3.1] imply
the following results. Suppose

〈x− y, ∇V (x)−∇V (y) ≥ λ|x− y|2 for all x, y ∈ Rd (1.8)

and

λ > 2 d βχ
‖Hess g‖∞

α
(1.9)

where ‖Hess f‖∞
.
= supi,j supx |∂xi∂xjf(x)|. Then as N →∞,

sup
t≥0
W2

(
L(X1,N

t , X2,N
t , · · · , Xk,N

t ),
(
u(t, x)dx

)⊗ k) −→ 0 (1.10)

for all positive integers k, where for p ≥ 1, Wp is the Wasserstein-p distance (see
Section 1.2) on the space of probability measures on Rdk and u is the solution to (1.6).
Under the same assumptions (1.8) and (1.9), a uniform concentration bound of the form

sup
t≥0

P (W1(µNt , u(t, x)dx) > ε) ≤ C1(1 + ε−2) exp
(
−C2N ε2

)
is obtained in [4, Theorem 2.12], where C1, C2 ∈ (0,∞) (the condition β + 2γ > 0 in
[4, Theorem 2.12] is implied by (1.9).) The paper [17] proves uniform in time weak
convergence of empirical measures constructed from an implicit Euler discretization
scheme for the Markovian system (1.7) to the solution of (1.6). As remarked earlier,
uniform in time numerical approximations are useful for obtaining qualitative insights
for the long time dynamical behavior of such systems.

Much less is known for the model (1.1)–(1.3). For the classical parabolic-parabolic
Patlak-Keller-Segel PDE a global existence in the subcritical case (i.e the initial mass
is less than 8π) in R2 is established in [6] and the corresponding uniqueness result is
established in [5]. We refer the reader to references in [5] for recent development of
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the parabolic-parabolic Patlak-Keller-Segel PDE. None of these works consider particle
approximations or long time behavior (however see [5] for recent stability results in the
plane in a quasi parabolic-elliptic regime.) The goal of the current work is to develop the
theory for the long time behavior of (1.1)–(1.3), analogous to the one for parabolic-elliptic
model described above. As noted earlier, our approach is inspired by the ideas developed
in [25, 8, 17, 9, 4]. Our main contributions are as follows.

1.2 Contributions of this work

In this work we identify conditions under which the particle system (1.3) converges
to the nonlinear process (1.2) uniformly over the infinite time horizon and construct
time stable numerical approximations for (1.3) and (1.2). More precisely, the main
contributions of this paper are as follows.

1. Under suitable conditions, well-posedness of (1.2) and (1.3) is established in Propo-
sitions 2.2 and 2.3.

2. Sufficient conditions for a uniform in time propagation of chaos (POC) property
for (1.3) are identified in Theorem 3.4. This implies, under the same conditions,
a uniform in time law of large numbers (LLN) for the empirical measures µN

(Corollary 3.5).

3. Under stronger integrability conditions, we establish uniform in time exponential
concentration bounds for µN given in Theorem 3.8. These bounds say that the
probability of observing deviation of µNt from its LLN prediction µt is exponentially
small, uniformly in t, as N increases.

4. An explicit Euler scheme for (1.3) is constructed and it is shown that it converges
to the solution of (1.3) uniformly in time and in N (Theorem 3.10). Together with
the POC result in 2 this shows that the Euler scheme gives a uniform in time
convergent approximation for the nonlinear process as N →∞ and step size goes
to 0 (Corollary 3.11).

Our main condition for uniform in time results in 2,3,4 is Assumption 2.4. This assumption
can be regarded as the analog of condition (1.9) used in the study of (1.6)–(1.7).

The paper is organized as follows. In Section 2, we present the basic wellposedness
results and introduce our main assumptions. Section 3 contains the main results of this
work. Finally Section 4 is devoted to proofs.

Notation: For a Polish space (i.e. a complete separable metric space) S, P(S) denotes
the space of all probability measures on S. This space is equipped with the topology of
weak convergence. Distance on a metric space S will be denoted as dS(·, ·) and if S is a
normed linear space S the corresponding norm will be denoted as ‖ · ‖S . If clear from
the context S will be suppressed from the notation. The space of continuous functions
from an interval I ⊂ [0,∞) to Rd is denoted by C(I : Rd). The space CT

.
= C([0, T ] : Rd)

will be equipped with the usual uniform norm and the Fréchet space C .
= C([0,∞) : Rd)

will be equipped with the distance

dC(x, y)
.
=

∞∑
k=1

‖x− y‖Ck ∧ 1

2k
.

Given metric spaces Si, i = 1, . . . k, the distance on the space S1 × · · · × Sk is taken to be
the sum of the k distances:

dS1×···×Sk(x, y)
.
=

k∑
i=1

dSi(xi, yi), x = (x1, · · ·xk), y = (y1, · · · yk).
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The law of a S valued random variable X (an element of P(S)), is denoted by L(X). A
collection of S valued random variables {Xα} is said to be tight if their laws {L(Xα)} are
tight in P(S). For a signed measure µ on S and a µ-integrable function f : S → R, we
write

∫
fdµ as 〈f, µ〉. For a polish space S, the Wasserstein-p distance on P(S) is defined

as

Wp(µ, ν)
.
=
(

inf
π

∫ ∫
dS(x, y)p dπ(x, y)

)1/p

, (1.11)

where the infimum is taken over all probability measures π ∈ P(S × S) with marginals
µ and ν. Let Pp(S) be the set of µ ∈ P(S) having finite p-th moments where p ∈ [1, ∞).
It is well known (cf. [26, Definition 6.8 and Theorem 6.9]) that Wp metrizes the weak
convergence in Pp(S). For p = 1, the Kantorovich-Rubenstein duality (cf. [26, Remark
6.5]) says that for probability measures µ and ν which have finite first moments,

W1(µ, ν) = sup
f∈Lip1(S)

|〈f, (µ− ν)〉| , (1.12)

where Lip1(S) is the space of Lipschitz functions on S whose Lipschitz constant is at
most 1.

Throughout, (Ω,F ,P) will denote a probability space which is equipped with a
filtration (Ft) satisfying the usual conditions. The symbol E denotes the expectation with
respect to the probability measure P. For a stochastic process X the notation Xt and
X(t) will be used interchangeably.

The space of all bounded continuous functions on S is denoted by Cb(S). The supre-
mum of a function f : S → R is denoted as ||f ||∞

.
= supx∈S |f(x)|. Space of functions

with k continuous (resp. continuous and bounded) derivatives will be denoted as Ck(Rd)

(resp. Ckb (Rd)). For f ∈ C1
b (Rd) and g ∈ C2

b (Rd) we denote

‖∇f‖∞ = sup
x

( d∑
i=1

(∂xif)2
)1/2

and ‖Hess g‖∞ = sup
i,j

sup
x
|∂xi∂xjg(x)|.

2 Preliminaries and well-posedness

Note that for a bounded function g : Rd → R, a solution h to (1.2) by the variation of
constants formula satisfies

h(t, x) = Qt h0 (x) + γ β

∫ t

0

Qt−s

(∫
g(y − ·) dµs(y)

)
(x) ds, (2.1)

where {Qt}t≥0 is the semigroup for f 7→ γ
2 ∆f − γαf . That is for suitable φ : Rd → R,

Qtφ(x)
.
= E[φ(x+Bγt)e

−γαt], (2.2)

where {Bt} is a standard d-dimensional Brownian motion. The equation in (2.1) can be
rewritten as follows. For m ∈ P

(
C([0,∞) : Rd)

)
, let

Θm
t (x)

.
=

∫ t

0

Qt−s

(∫
g(y − ·) dms(y)

)
(x) ds, x ∈ Rd (2.3)

where ms ∈ P(Rd) is the marginal of m at time s, namely ms = m ◦ (πs)
−1, where

πs : C([0,∞) : Rd)→ Rd is the projection map, πs(w)
.
= w(s). Then (2.1) is same as

h(t, x) = Qt h0 (x) + γ βΘµ
t (x) (2.4)

where µ ∈ P
(
C([0,∞) : Rd)

)
is the probability law of X = (Xt)t≥0 defined by the first

equation in (1.2). Similarly, the solution hN of (1.3) can be written as

hN (t, x) = Qt h0 (x) + γ βΘµN

t (x), (2.5)

where µN
.
= 1

N

∑N
i=1 δXi,N is the corresponding empirical measure.
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2.1 Wellposedness

This section gives the basic wellposedness results for equations (1.2) and (1.3) under
suitable conditions on the dispersal kernel g and initial chemical field h0. Lemma 2.1
below gives a uniform boundedness and a uniform Lipschitz property for ∇h and ∇hN .
Its proof is straightforward but is included for completeness in Section 4.1.

Lemma 2.1. Suppose g, h0 ∈ C2
b (Rd). Define, for m ∈ P

(
C([0,∞) : Rd)

)
and (t, x) ∈

[0,∞)×Rd,
hm(t, x) = Qt h0 (x) + γ βΘm

t (x), (2.6)

where Θm
t is given by (2.3). Then there exists C ∈ (0,∞) such that

sup
m

sup
t≥0

sup
x∈Rd

|∇hm(t, x)| ≤ C and

sup
m

sup
t≥0
|∇hm(t, x)−∇hm(t, y)| ≤ C |x− y|, for all x, y ∈ Rd,

where the outside supremum is taken over all m ∈ P
(
C([0,∞) : Rd)

)
.

Denote by C∗([0,∞) × Rd) the class of continuous functions ζ : [0,∞) × Rd → R

such that for each t ≥ 0, ζ(t, ·) is continuously differentiable and ∇ζ(t, ·) is a bounded
Lipschitz function. The space C∗([0, T ]×Rd) is defined similarly. The above lemma shows
that for an arbitrary m ∈ P

(
C([0,∞) : Rd)

)
, hm ∈ C∗([0,∞)×Rd). In Section 4.1, using

Lemma 2.1 we prove the following proposition which gives the wellposedness of (1.3).

Proposition 2.2. Suppose g, h0 ∈ C2
b (Rd), V ∈ C1(Rd) and ∇V is Lipschitz. Let

µ0 ∈ P2(Rd) and ξN0 = (ξ1,N
0 , · · · , ξN,N0 ) be a F0 measurable square integrable RdN

valued random variable with probability law µ⊗N0 . Then the system of equations (1.3)
has a unique pathwise solution (XN , hN ) ∈ C([0,∞) : RNd) × C∗([0,∞) × Rd) with
(XN (0), hN (0)) = (ξN0 , h0).

With another application of Lemma 2.1 and straightforward modifications of classical
fixed point arguments (cf. [23]), we prove the following proposition in Section 4.1 as
well.

Proposition 2.3. Suppose g, h0 ∈ C2
b (Rd), V ∈ C1(Rd) and ∇V is Lipschitz. Let ξ0 be

a F0 measurable Rd valued random variable with probability law µ0 ∈ P2(Rd). Then
equation (1.2) has a unique pathwise solution (X, h) ∈ C([0,∞) : Rd)× C∗([0,∞)×Rd)
with (X(0), h(0)) = (ξ0, h0).

2.2 Assumptions

The following will be our standing assumptions.

• γ = 1 and
∫
Rd
g(x) dx = 1. The second assumption can be made without loss of

generality by modifying the value of β whereas the first assumption is for notational
convenience; the proofs for a general γ follows similarly.

• The functions g, h0 ∈ C2
b (Rd).

• The confinement potential V ∈ C1(Rd), is symmetric, V (0) = 0 and ∇V is Lipschitz.

• The initial measure µ0 ∈ P2(Rd).

The above assumptions will be used without further comment. Note that from the last
assumption it follows that ∇V (0) = 0.

In addition, for several results the following convexity assumption will be made.
This condition plays an analogous role in the study of the long-time properties of the
parabolic-parabolic system as condition (1.9) for the parabolic-elliptic system. Let

v∗
.
= inf
x 6=y

〈x− y,∇V (x)−∇V (y)〉
|x− y|2

. (2.7)
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Note that since ∇V is Lipschitz, |v∗| ≤ L∇V where latter is the the Lipschitz constant of
∇V . Let

λ
.
=

(
‖Hessh0‖∞ +

2β‖Hess g‖∞
α

)
χd.

Assumption 2.4. The confinement potential V is such that

v∗ > λ. (2.8)

A prototypical example of a V that satisfies Assumption 2.4 is V (x) = 〈x, Ax/2 where
A is a positive definite d× d matrix with spectrum bounded from below by λ.

3 Main results

3.1 Propagation of chaos

A standard approach to proving POC (see, for instance [23, 17, 9]) is by a coupling
method. Let {Bi}Ni=1 and {ξi,N0 }Ni=1 be collections of independent standard d-dimensional
{Ft}-Brownian motions and F0 measurable i.i.d. square integrable random variables
with probability law µ0 ∈ P2(Rd), respectively. Fix h0 ∈ C2

b (Rd). We construct coupled
systems {Xi,N}Ni=1 and {X̄i}Ni=1 of d-dimensional continuous stochastic processes in such
a way that

• X̄i
0 = Xi,N

0 = ξi,N0 for all i = 1, · · ·N .

• XN .
= (X1,N , . . . , XN,N ) is the solution to (1.3) with driving Brownian motions {Bi}

and for each i = 1, · · ·N , X̄i is the solution to (1.2) driven by the Brownian motion
Bi.

Using the above coupling we establish the following POC for any finite time horizon.
Note this result does not require the convexity assumption (i.e. Assumption 2.4).

Theorem 3.1. For each T ≥ 0, there exists CT ∈ (0,∞) such that

E
[

sup
t∈[0,T ]

|Xi,N
t − X̄i

t |2
]
≤ CT

N
.

As an immediate consequence of this result we have the following result on asymptotic
mutual independence of (X1,N , . . . , Xk,N ) for each fixed k and the convergence of each
Xi,N to X̄1 (cf. [23]). The result in particular says that L(X1,N , · · · , XN,N ) is L(X̄)-
chaotic in the terminology of [23].

Corollary 3.2. As N →∞, we have

W2

(
L(X1,N , X2,N , · · · , Xk,N ), L(X̄1)⊗ k

)
−→ 0

for all k ∈ N, whereW2 is the Wasserstein-2 distance on P
(
Ck
)
.

Proof. From the definition of the Wasserstein-2 distance and using the fact that (Xi,N , X̄i)

has same distribution as (X1,N , X̄1), for i = 1, . . . , N , we have

W2

(
L(X1,N , X2,N , · · · , Xk,N ), L(X̄1, X̄2, · · · , X̄k)

)
≤
√
k
√
E dC(X1,N , X̄1)2.

The RHS tends to zero as N →∞ since E‖X1,N−X̄1‖2CT → 0 for all T ≥ 0 by Theorem 3.1.
The proof is complete since {X̄i} are i.i.d.

Since {Xi,N}Ni=1 are exchangeable, by [23, Proposition 2.2], we have the following
process level weak convergence of empirical distributions.
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Corollary 3.3. As N → ∞, the random measures µN
.
= 1

N

∑N
i=1 δXi,N converge to the

deterministic measure L(X̄) in probability in P (C)).
Observe that Corollary 3.2 implies in particular that

sup
t∈[0,T ]

W2

(
L(X1,N

t , X2,N
t , · · · , Xk,N

t ), L(X̄t)
⊗ k
)
−→ 0 (3.1)

for all T ≥ 0. However this result does not give uniform in time convergence of these
multidimensional laws. To obtain a uniform in time result, we will make the stronger
assumption in Assumption 2.4. The following is the analog of Theorem 3.1 over an
infinite time horizon.

Theorem 3.4. Suppose Assumption 2.4 is satisfied. Then there exists C ∈ (0,∞) such
that

sup
t≥0

E
[
|Xi,N

t − X̄i
t |2
]
≤ C

N
.

As an immediate consequence of the theorem we have the following uniform in time
propagation of chaos result and uniform in time convergence of the empirical measures
µN (t).

Corollary 3.5. Suppose Assumption 2.4 is satisfied. Then for all N, k ∈ N, we have

sup
t≥0
W2

(
L(X1,N

t , X2,N
t , · · · , Xk,N

t ), L(X̄1
t )⊗ k

)
≤ C
√
k√
N
,

where W2 is the Wasserstein-2 distance on P(Rdk). Furthermore, if µ0 ∈ Pq(Rd) for
some q > 2, then

sup
t≥0

E
[
W2

2 (µNt , µt)
]
→ 0

as N →∞, where µN (t) = 1
N

∑N
i=1 δXi,Nt

and µt = L(X̄1
t ).

Proofs of Theorem 3.1, Theorem 3.4 and Corollary 3.5 are given in Section 4.2.

3.2 Concentration bounds

In this section, we present our concentration estimates for µNt inW1-distance. As in
the previous subsection, we first give a result for finite time horizons (this result will not
use Assumption 2.4).

Theorem 3.6. Suppose the initial distribution µ0 ∈ P(Rd) has a finite square-exponential
moment, that is, there is θ0 > 0 such that∫

Rd
eθ0 |x|

2

dµ0(x) <∞. (3.2)

Fix T ∈ (0,∞). Then there is a K ∈ (0,∞) and, for any d′ ∈ (d,∞), N0 and C in (0,∞),
such that

P
(

sup
0≤t≤T

W1(µNt , µt) > ε
)
≤ C(1 + ε−2) exp

(
−KN ε2

)
for all N ≥ N0 max(ε−(d′+2), 1) and ε > 0.

We note that the constant K may depend on T but not on ε and d′; also C and N0

may depend on T and d′ but not on ε. The main idea in the proof is, as in [4], to (i) bound
W1(µNt , µt) in terms of

(
W1(νNs , µs)

)
s∈[0,t]

where

νNs
.
=

1

N

N∑
i=1

δX̄is , (3.3)
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and {X̄i}Ni=1 are the processes defined at the beginning of Section 3.1, and then; (ii)
estimate

(
W1(νNs , µs)

)
s∈[0,t]

which is a quantity that concerns i.i.d. random variables

{X̄i}Ni=1. The first step is accomplished in Subsection 4.3.1 via a coupling argument
similar to the one used in the proof of results in Section 3.1, while the second step
relies on an estimate from [4] for the tail probabilities for empirical measures of i.i.d.
random variables that is based on the equivalence between Talagrand’s transportation
inequalities (cf. [4]) and existence of a finite square-exponential moment. The precise
result obtained in [4] is as follows. For a, α ∈ (0,∞) we let

Pa,α
.
= {ν ∈ P(Rd) :

∫
Rd
eα |x|

2

dν(x) ≤ a}.

Theorem 3.7. [4, Theorem 2.1] Fix a, α ∈ (0,∞). Then, there is a θ > 0 such that for
any d′ ∈ (d,∞) there exists a positive integer N0 such that

sup
ν∈Pa,α

P
(
W1(ν̂N , ν) > ε

)
≤ e− θ

2 N ε2 .

for all ε > 0 and N ≥ N0 max(ε−(d′+2), 1), where ν̂N
.
= 1

N

∑N
i=1 δZi and (Zi)i∈N are iid

random variables with law ν.

We shall apply this theorem to ν = µs. In order to do so, we need µs to have a finite
squared-exponential moment. We will show in Section 4.3.2 that if µ0 satisfies (3.2), then
for every T > 0 there is a θT ∈ (0, θ0) such that

sup
s∈[0,T ]

∫
Rd
eθT |x|

2

dµs(x) <∞. (3.4)

This will allow us to apply Theorem 3.7 in completing step (ii) in the proof of Theorem 3.6.
We next show in Theorem 3.8 below that when the convexity property in Assump-

tion 2.4 is satisfied then a uniform in time concentration bound holds. The key step (see
Section 4.3.2) is to argue (see Proposition 4.3) that under this assumption, for some
θ∞ > 0, (3.4) holds with [0, T ] and θT replaced with [0,∞) and θ∞ respectively. This
together with another uniform bound established in Section 4.3.1 (Proposition 4.1) will
imply the uniform in time concentration bound given in the theorem below.

Theorem 3.8. Suppose that µ0 satisfies (3.2) for some θ0 > 0. Suppose further that
Assumption 2.4 is satisfied. Then there exists K ∈ (0,∞) such that for any d′ ∈ (d,∞),
there exist C ∈ (0,∞) and N0 ∈ (0,∞) such that

sup
t≥0

P (W1(µNt , µt) > ε) ≤ C(1 + ε−2) exp
(
−KN ε2

)
for all N ≥ N0 max(ε−(d′+2), 1) and ε > 0.

We note that C and N0 may depend on d′ but not on ε.
Proofs of Theorems 3.6 and 3.8 will be given in Section 4.3.

3.3 Uniform convergence of Euler scheme

In this section we will introduce an Euler approximation for the collection of SDE
in (1.3) which can be used for approximate simulation of the system. We show that
the approximation error converges to 0 as the time discretization size ε converges to
0, uniformly in time. As a consequence it will follow that the empirical measure of the
particle states in the approximate system converges to the law of the nonlinear process,
uniformly in time, as N →∞ and ε→ 0 (Corollary 3.11).
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Note that Qt has transition density q(t, x, y) = e−αtp(t, x, y) with respect to Lebesgue
measure, where p(t, x, y) is the standard Gaussian kernel. Using (2.5), the system of
equations governing the particle system X(N) = (Xi,N )Ni=1 in (1.3) can be written as

dXi,N
t = dBit +

(∫ t

0

Gt−s(X
(N)
s , Xi,N

t ) ds−∇Vt(Xi,N
t )

)
dt (3.5)

for 1 ≤ i ≤ N , where

Vt = V − χQth0 (3.6)

and for ~x = (x1, . . . , xN ) ∈ RdN and y ∈ Rd,

Gθ(~x, y) =
χβ

N

N∑
i=1

∫
Rd
∇yq(θ, y, z)g(xi − z) dz. (3.7)

We now define an explicit Euler scheme for (3.5) with step size ε ∈ (0, 1). Let Y (N),ε
0 =

X
(N)
0 . Having defined Y (N),ε

n = (Y i,N,εn )Ni=1 for some n ≥ 0, we define Y (N),ε
n+1 naturally as

Y i,N,εn+1
.
= Y i,N,εn + ∆nB

i + ε
(∫ nε

0

Gnε−s(Ỹ
(N),ε
s , Y i,N,εn ) ds−∇Vnε(Y i,N,εn )

)
(3.8)

for 1 ≤ i ≤ N , where ∆nB
i .= Bi(n+1)ε −B

i
nε and

Ỹ (N),ε
s

.
= Y

(N),ε
k for s ∈ [kε, (k + 1)ε).

Note that the integral on the right hand side of (3.8) can be written as∫ nε

0

Gnε−s(Ỹ
(N),ε
s , Y i,N,εn ) ds =

n−1∑
k=0

∫ (k+1)ε

kε

Gnε−s(Y
(N),ε
k , Y i,N,εn ) ds.

Thus in order to evaluate a typical Euler step, one needs to compute terms of the form∫
[kε,(k+1)ε]

Gθ(~x, y)dθ which can be done using numerical integration.
Our goal is to provide uniform in time estimates on the mean square error of the

scheme, namely to estimate the quantity

E
∣∣Y i,N,εn −Xi,N

nε

∣∣2.
For that we begin by establishing moment bounds for the Euler scheme which are
uniform in N , step size ε and time instant n. Recall v∗ introduced in (2.7). Also recall
that µ0 ∈ P2(Rd).

Lemma 3.9. Suppose v∗ > 0. Then there exists ε0 ∈ (0, 1) such that

sup
ε∈(0, ε0)

sup
N∈N0

sup
1≤i≤N

sup
n≥0

E|Y i,N,εn |2 <∞.

We now present our main result on the uniform convergence of the Euler scheme.
For this result we will make the stronger convexity assumption in Assumption 2.4.

Theorem 3.10. Suppose Assumption 2.4 holds. Then there exists ε0 ∈ (0, 1) and C ∈
(0,∞) such that

sup
N≥1

sup
1≤i≤N

sup
n∈N0

E
∣∣Y i,N,εn −Xi,N

nε

∣∣2 ≤ C ε (3.9)

for all ε ∈ (0, ε0).
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It is important that the estimate in (3.9) is uniform not only in time instant n but
also in the size of the system N . As a consequence one has the desired property that
in order to control the mean square error for larger systems one does not need smaller
time discretization steps. This in particular implies that the Euler scheme provides a
good numerical approximation to the nonlinear process, uniformly in time. Namely we
have the following result.

Corollary 3.11. Suppose Assumption 2.4 holds. There exists ε0 ∈ (0, 1) and C ∈ (0,∞)

such that for any positive integer k,

sup
n≥0
W2

(
L(Y 1,N,ε

n , Y 2,N,ε
n , · · · , Y k,N,εn ), L(X̄nε)

⊗ k
)
≤ C
√
k
(√

ε+
1√
N

)
for all ε ∈ (0, ε0). Furthermore if µ0 ∈ Pq(Rd) for some q ∈ (2,∞). Then we have

lim sup
N→∞

sup
n≥1

E[W2
2 (µN,εn , µnε)] ≤ 2Cε (3.10)

for all ε ∈ (0, ε0), where µN,εn
.
= 1

N

∑N
i=1 δY i,N,εn

.

Proofs of Lemma 3.9, Theorem 3.10 and Corollary 3.11 will be given in Section 4.4.

4 Proofs

We will denote by κ, κ1, κ2, · · · the constants that appear in various estimates within
a proof. These constants only depend on the model parameters or problem data, namely,
α, β, χ, g, V, h0, d and µ0. For estimates on a finite time horizon [0, T ], these constants
may also depend on T and in that case we use κT , κ1,T , κ2,T , · · · to denote such constants.
The value of such constants may change from one proof to another.

4.1 Wellposedness

Proof of Lemma 2.1. From the definition of hm in (2.6) and of the semigroup {Qt}, we
have for all x, x1, x2 ∈ Rd and t ≥ 0, uniform bounds

|hm(t, x)| ≤ e−αt|Pth0(x)|+ β(1− e−αt)‖g‖∞
α

≤ e−αt‖h0‖∞ +
β ‖g‖∞
α

,

|∇hm(t, x)| ≤ e−αt‖∇h0‖∞ +
β ‖∇g‖∞

α
,

|∇hm(t, x1)−∇hm(t, x2)| ≤ |x1 − x2| d
(
e−αt‖Hessh0‖∞ +

β ‖Hess g‖∞
α

)
.

The result is immediate from the above inequalities.

Proof of Proposition 2.2. For notational simplicity, we suppress the index N and write
XN,i as Xi.

Uniqueness. Suppose (X, h) and (X̃, h̃) are two solutions to (1.3) with h(0, ·) =

h̃(0, ·) = h0, and X(0) = X̃(0), where X = (X1, · · · , XN ) and X̃ = (X̃1, · · · , X̃N ). Letting
Yi

.
= Xi − X̃i and H

.
= h− h̃, we have

Yi(t) =

∫ t

0

(
−∇V (Xi(s)) +∇V (X̃i(s)) + χ∇h(s,Xi(s))− χ∇h̃(s, X̃i(s))

)
ds, (4.1)

H(t, x) =
β

N

N∑
i=1

∫ t

0

(
Qt−s

(
g(Xi(s)− ·)− g(X̃i(s)− ·)

)
(x)
)
ds. (4.2)
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From (4.1) we have for all t ≥ 0

sup
0≤s≤t

|Yi(s)| ≤ d
∫ t

0

(
‖HessV ‖∞

∣∣Yi(s)∣∣+
∣∣∇H(s, X̃i(s))

∣∣
+ χ

∣∣∇h(s,Xi(s))−∇h(s, X̃i(s))
∣∣) ds

≤ κ1

∫ t

0

(∣∣Yi(s)∣∣+ ‖∇H(s)‖∞
)
ds, (4.3)

where ‖∇H(s)‖∞
.
= supx |∇H(s, x)| and the last inequality follows from Lemma 2.1 on

noting that h equals hµ
N

, where µN
.
= 1

N

∑N
i=1 δXi is the path empirical measure (see

(2.5)). From (4.2), the fact that ∇xp(t, x, y) = −∇yp(t, x, y) and integration by parts, we
obtain

∇H(t, x) =
β

N

N∑
i=1

∫ t

0

e−α(t−s)
∫
Rd
p((t− s), x, y)∇y

(
g(Xi(s)− y)− g(X̃i(s)− y)

)
dy ds.

Hence since g ∈ C2
b (Rd),

‖∇H(t)‖∞ ≤ κ2

∫ t

0

e−α(t−s) max
1≤i≤N

∣∣Yi(s)∣∣ds. (4.4)

Combining (4.3) and (4.4), and letting Y (t)
.
= max1≤i≤N

∣∣Yi(t)∣∣, we obtain

sup
0≤s≤t

Y (s) ≤ κ3

∫ t

0

(
Y (s) +

(∫ s

0

e−α(s−r)Y (r) dr
))

ds

≤ κ4,t

∫ t

0

sup
0≤r≤s

Y (r)ds. (4.5)

This implies Y (t) = 0 for all t ≥ 0. Finally, from (4.2) we have H(t, x) = 0 for all t ≥ 0 and
x ∈ Rd. This completes the proof of pathwise uniqueness.

Existence. This is argued by a minor modification of the standard Picard ap-
proximation method as follows. Define a sequence {(X(k), h(k))}k≥1, where X(k) =

(X
(k)
1 , · · · , X(k)

N ), of C([0,∞) : RNd)×C∗([0,∞)×Rd) valued random variables as follows.
Let X(1)(t) = (ξ1,N

0 , · · · , ξN,N0 ) and h(1)(t, x) = h0(x) for all t. We then define, for k ≥ 2,

X
(k+1)
i (t)

.
= ξi,N0 +

∫ t

0

(
−∇V (X

(k)
i (s)) +∇h(k)(s,X

(k)
i (s))

)
ds+Bit, i = 1, . . . , N,

h(k+1)(t, x)
.
= Qt h0 (x) +

β

N

N∑
i=1

∫ t

0

Qt−s
(
g(X

(k+1)
i (s)− ·)

)
(x) ds,

Let Y (k)(t)
.
= max1≤i≤N

∣∣X(k+1)
i (t)−X(k)

i (t)
∣∣. By similar estimates as that were used to

obtain (4.5), we have

sup
0≤s≤t

Y (k)(s) ≤ κ5

∫ t

0

(
Y (k−1)(s) +

(∫ s

0

e−α(s−r)Y (k−1)(r) dr
))

ds.

Hence, for fixed T > 0 and t ∈ [0, T ],

(
sup

0≤s≤t
Y (k)(s)

)2

≤ κ6,T

∫ t

0

(Y (k−1)(s))2 ds.
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A standard iteration argument then yields

E
[(

sup
0≤s≤t

Y (k+1)(s)
)2]
≤ CT

(κ7,T )k

k!
; 0 ≤ t ≤ T, k ≥ 1,

where CT = max1≤i≤N sup0≤t≤T E[|X(2)
i (t)−X(1)

i (t)|2] is finite from the uniform bound-
edness of ∇hN proved in Lemma 2.1 and the Lipschitz property of ∇V . From this we
conclude that {X(k)(t)}0≤t≤T converges a.s in C([0, T ] : RNd) to a continuous process
{X(t)}0≤t≤T . On other hand, using estimates similar to those used in obtaining (4.4) we
have

‖h(k+1)(t)− h(k)(t)‖∞ + ‖∇h(k+1)(t)−∇h(k)(t)‖∞ ≤ κ8

∫ t

0

e−α(t−s) sup
0≤r≤s

Y (k)(r) ds.

From this it follows that for every t ∈ [0, T ], h(k)(t, ·) converges uniformly to a con-
tinuously differentiable function h(t, ·) and ∇h(k)(t, ·) converges uniformly to ∇h(t, ·).
Furthermore the convergence is uniform in t ∈ [0, T ], namely

sup
0≤t≤T

(
‖h(k)(t)− h(t)‖∞ + ‖∇h(k)(t)−∇h(t)‖∞

)
→ 0

as k →∞. It is easy to verify that h ∈ C∗([0,∞)×Rd) and

Xi(t) = ξi,N0 +

∫ t

0

(−∇V (Xi(s)) +∇h(s,Xi(s))) ds+Bit, i = 1, . . . , N,

h(t, x) = Qt h0 (x) +
β

N

N∑
i=1

∫ t

0

Qt−s
(
g(Xi(s)− ·)

)
(x) ds.

This establishes the desired existence of solutions.

Proof of Proposition 2.3. The proof uses classical arguments from [23]. It suffices to
show that for each T > 0, equation (1.2) has a unique solution over the time horizon
[0, T ] which belongs to C([0, T ] : Rd)×C∗([0, T ]×Rd). Let T > 0 be arbitrary. We note that
a probability measure m ∈ P(CT ) can be mapped naturally to a m̂ ∈ P(C([0,∞) : Rd)) as
m̂

.
= m◦[πT ]−1 where πT : C([0, T ] : Rd)→ C([0,∞) : Rd) is defined as (πTw)(s)

.
= w(s∧T )

for s ≥ 0, w ∈ C([0, T ] : Rd). Abusing notation we denote for t ∈ [0, T ] Θm̂
t as Θm

t where
Θm
t is defined in (2.3).

Define Φ : P(CT ) → P(CT ) which maps m to the law L(Z), where Z = (Zt)t∈[0,T ] is
the solution of

Zt = ξ0 +Bt +

∫ t

0

[−∇V (Zs) + χ∇hm(s, Zs)] ds, t ∈ [0, T ], (4.6)

and hm is as in (2.6). From Lemma 2.1 ∇hm is a Lipschitz map and by assumption ∇V is
Lipschitz as well, thus the equation in (4.6) has a unique solution and consequently the
function Φ is well-defined. Observe that (X, h) is a solution of (1.2) over [0, T ] if and only
if L(X) ∈ P(CT ) is a fixed point of Φ and h is given by the right hand side of (2.1) with µt
being the law of Xt. We will show that for all m1, m2 ∈ P(CT ), we have

Dt(Φ(m1),Φ(m2)) ≤ κT
∫ t

0

Ds(m
1,m2) ds, t ∈ [0, T ], (4.7)

for some κT ∈ (0,∞) where Dt is the Wasserstein-1 distance on P(Ct), namely, for
m1,m2 ∈ P(Ct), Dt(m

1,m2) is given by the right side of (1.11) with p = 1 and S = Ct.
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Uniform in time particle approximations for PKS

Suppose for i = 1, 2, Zi solves (4.6) with m replaced by mi on the right side where
mi ∈ P(CT ). Then, Zi has law Φ(mi) and

sup
s≤t
|Z1
s − Z2

s | ≤
∫ t

0

[
|∇V (Z2

s )−∇V (Z1
s )|+ χ |∇Qsh0(Z1

s )−∇Qsh0(Z2
s )|

+β χ |∇Θm1

s (Z1
s )−∇Θm2

s (Z2
s )|
]
ds (4.8)

From properties of the heat semigroup |∇Qsh0(x)−∇Qsh0(y)| ≤ e−αs|x−y|d‖Hessh0‖∞
and

|∇Θm1

t (x)−∇Θm2

t (y)|

≤
∣∣∣ ∫ t

0

∫
Rd
q(t− s, x, z)〈∇zg(· − z),m1

s − q(t− s, y, z)〈∇zg(· − z),m2
s dz ds

∣∣∣
≤
∣∣∣ ∫ t

0

∫
Rd
q(t− s, x, z)〈∇zg(· − z),m1

s − q(t− s, y, z)〈∇zg(· − z),m1
s dz ds

∣∣∣
+

∫ t

0

∫
Rd
q(t− s, y, z)

∣∣〈∇zg(· − z), m1
s −m2

s

∣∣ dz ds
≤ d‖Hess g‖∞|x− y|

∫ t

0

e−α(t−s) ds

+

∫ t

0

∫
Rd
q(t− s, y, z)

∣∣〈∇zg(· − z), m1
s −m2

s

∣∣ dz ds
≤ κ

(
|x− y|+

∫ t

0

e−α(t−s)
∫
Rd×Rd

|w1(s)− w2(s)| dM(w1, w2) ds

)
,

for any M ∈ P(Ct × Ct) with marginals m1 and m2, where the last step uses the fact that
y 7→ ∇zg(y − z) is Lipschitz. Combining the above estimates with (4.8) and using the
Lipschitz property of ∇V , we obtain

sup
s≤t
|Z1
s − Z2

s | ≤ κ1

∫ t

0

[
|Z1
s − Z2

s |+
∫
Rd×Rd

sup
r≤s
|w1(r)− w2(r)| dM(w1, w2)

]
ds

for any M as above. Hence

sup
s≤t
|Z1
s − Z2

s | ≤ κ2

∫ t

0

[
|Z1
s − Z2

s |+Ds(m
1,m2)

]
ds.

By Gronwall’s Lemma, it now follows that

sup
s≤t
|Z1
s − Z2

s | ≤ κ3,T

∫ t

0

Ds(m
1,m2)ds, t ≤ T,

Taking expectations we obtain (4.7). Now by a standard fixed point argument, there
exists a unique m∗ ∈ P(CT ) such that m∗ = Φ(m∗). Let Z∗ be the unique solution to (4.6)
with m replaced by m∗. Then (1.2) has a unique pathwise solution (Z∗, h∗) where h∗ is
given by the right hand side of (2.1) with µt(dy) being the law of Z∗t .

4.2 Propagation of chaos

The proofs of Theorems 3.1 and 3.4 are based on breaking the pathwise deviation

∆i
s
.
= Xi,N

s − X̄i
s

into several manageable terms. For any N and i, integration by parts yields

d|∆i
t|2 = 2 ∆i

t ·
[
−∇V (Xi,N

t ) +∇V (X̄i
t) + χ

(
∇hµ

N

(t,Xi,N
t )−∇hµ(t, X̄i

t)
) ]

dt
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Uniform in time particle approximations for PKS

Note that, with v∗ as in (2.7)

∆i
t ·
[
−∇V (Xi,N

t ) +∇V (X̄i
t)
]
≤ −v∗|∆i

t|2.

Next, from (2.6)

∇hµ
N

(t,Xi,N
t )−∇hµ(t, X̄i

t)

=
(
∇Qth0(Xi,N

t )−∇Qth0(X̄i
t)
)

+ β

∫ t

0

[
∇Qt−s

(∫
g(y − · )µNs (dy)

)
(Xi,N

t )−∇Qt−s
(∫

g(y − · )µs(dy)

)
(X̄i

t)

]
ds.

(4.9)

Since h0 ∈ C2
b (Rd), for the first term on the right side of (4.9) we have

∆i
t ·
(
∇Qth0(Xi,N

t )−∇Qth0(X̄i
t)
)
≤ e−αtd‖Hessh0‖∞|∆i

t|2.

Next note that for any m ∈ P(Rd),

∇Qt−s
(∫

g(y − · )m(dy)
)

(x) = e−α(t−s)
∫
∇Pt−sg(y − x)m(dy).

For the second term on the right side in (4.9) we will use the decomposition∫
∇Pt−sg(y −Xi,N

t )µNs (dy)−
∫
∇Pt−sg(y − X̄i

t)µs(dy)

=

∫
∇Pt−sg(y −Xi,N

t )µNs (dy)−
∫
∇Pt−sg(y − X̄i

t) ν
N
s (dy)

+

∫
∇Pt−sg(y − X̄i

t) ν
N
s (dy)−

∫
∇Pt−sg(y − X̄i

t)µs(dy),

where νN is the empirical measure of {X̄i}Ni=1, i.e. νN = 1
N

∑N
i=1 δX̄i , and νNt is the

marginal at time instant t.
From the above observations we have

d|∆i
t|2 ≤ 2

[
− v∗ + χ e−α td ‖Hess(h0)‖∞

]
|∆i

t|2 dt

+ 2χβ

∫ t

0

(
e−α(t−s)∆i

t ·
(∫

∇Pt−sg(y −Xi,N
t )µNs (dy)

−
∫
∇Pt−sg(y − X̄i

t) ν
N
s (dy)

))
ds dt

+ 2χβ

∫ t

0

e−α(t−s)∆i
t ·
(∫
∇Pt−sg(y − X̄i

t) (νNs − µs)(dy)
)
ds dt, (4.10)

where the above inequality is interpreted in the integral sense. That is, dφt ≤ ψt dt is
interpreted as φb − φa ≤

∫ b
a
ψs ds for all 0 ≤ a ≤ b. In second term on the right of (4.10),

the integrand has absolute value

2χβ
e−α(t−s)

N

∣∣∣∑
j

∆i
t ·
[
∇Pt−sg(Xj,N

s −Xi,N
t )−∇Pt−sg(X̄j

s − X̄i
t)
] ∣∣∣

≤ 2χβ
e−α(t−s) d‖Hess g‖∞

N

∑
j

|∆i
t|(|∆i

t|+ |∆j
s|). (4.11)
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For the third term on the right of (4.10), we let

ai,j(s, t)
.
=
(
∇Pt−sg(X̄j

s − X̄i
t)−

∫
∇Pt−sg(y − X̄i

t)µs(dy)
)
.

Then E[ai,j(s, t) ai,k(s, t)] = 0 for all 0 ≤ s ≤ t whenever j 6= k and hence

E
[∣∣∣ ∫ ∇Pt−sg(y − X̄i

t) (νNs − µs)(dy)
∣∣∣2] =

1

N2
E
[∣∣∣∑

j

ai,j(s, t)
∣∣∣2]

=
1

N2
E
[∑
j,k

ai,j(s, t) · ai,k(s, t)
]

=
1

N2
E
[∑

j

|ai,j(s, t)|2
]
≤ 2 ‖∇g‖2∞

N
. (4.12)

The proofs of Theorems 3.1 and 3.4 will make use of the above calculations.

Proof of Theorem 3.1. Fix T ∈ (0,∞). Letting f i(t)
.
= sups∈[0,t] |∆i

t|2, we have from (4.10)
on noting that |v∗| ≤ L∇V , for all T1 ∈ [0, T ],

f i(T1) ≤ 2(χd‖Hessh0‖∞ + L∇V )

∫ T1

0

f i(t)dt

+
2χβd‖Hess g‖∞

N

∑
j

∫ T1

0

√
f i(t)

∫ t

0

(
√
f i(t) +

√
f j(s))ds dt

+
2χβ

N

∫ T1

0

√
f i(t)

∫ t

0

|
∑
j

ai,j(s, t)|ds dt

≤ κ
∫ T1

0

[
f i(t) + t

(
f i(t) +

√
f i(t)

∑
j

√
f j(t)

N

)
+
√
f i(t)

∫ t

0

|
∑
j a

i,j(s, t)|
N

ds

]
dt.

Taking expectation, using Cauchy-Schwarz inequality, (4.12) and the fact that

ϑ(t)
.
=

∑
iEf

i(t)

N
≥
( 1

N

∑
i

√
Ef i(t)

)2

,

we obtain

ϑ(T1) ≤ κ1

∫ T1

0

[
(1 + 2t)ϑ(t) +

t
√
ϑ(t)√
N

]
dt

and hence

ϑ(T1) ≤ κ2,T

∫ T1

0

[
ϑ(t) +

√
ϑ(t)√
N

]
dt

for all T1 ∈ [0, T ]. Note that Φ(z)
.
= z +

√
z√
N

, z ∈ R+, is an increasing function. From
Bihari’s generalization of Gronwall’s lemma (see Section 3 of [3])

ϑ(t) ≤ A−1 (A(0) + κ2,T t) , for all t ∈ [0, T ],

where

A(u) =

∫ u

0

ds

Φ(s)
, u ≥ 0.
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Observing that

A(u) = 2 log

(
N−1/2 + u1/2

N−1/2

)
and A−1(v) =

(
(N−1/2)(ev/2 − 1)

)2

,

we see that for all t ∈ [0, T ],

ϑ(t) ≤
(

(eκ2,T t/2 − 1)√
N

)2

≤ κ3,T

N
for t ∈ [0, T ].

The proof is complete.

Proof of Theorem 3.4. For i, j = 1, · · ·N and 0 ≤ s ≤ t

E[ |∆i
t|(|∆i

t|+ |∆j
s|) ] ≤ E|∆i

t|2 +

√
E|∆i

t|2E|∆
j
s|2. (4.13)

Combining (4.10), (4.11), (4.12) and (4.13), we see that f(t)
.
= E|∆i

t|2 satisfies

df(t) ≤ 2
(
− v∗ + χd ‖Hessh0‖∞

)
f(t) dt

+ 2χβ

∫ t

0

e−α(t−s)d‖Hess g‖∞
(
f(t) +

√
f(t) f(s)

)
ds dt

+
2χβ

N

∫ t

0

e−α(t−s)
√
f(t) 2 ‖∇g‖2∞N ds dt

≤ 2
(
− v∗ + χC1

)
f(t) dt

+ 2C2 χβ

∫ t

0

e−α(t−s)(f(t) +
√
f(t) f(s)

)
ds dt

+
4C3 χβ√

N

√
f(t)

∫ t

0

e−α(t−s) ds dt, (4.14)

where C1 = d‖Hessh0‖∞, C2 = d‖Hess g‖∞ and C3 = ‖∇g‖∞. Thus

df(t) ≤

(
−2 λ̃ f(t) + 2 C̃2

√
f(t)

∫ t

0

e−α(t−s)
√
f(s) ds+

2 C̃3√
N

√
f(t)

)
dt, (4.15)

where −λ̃ .
= −v∗ + χC1 + C2χβ/α, C̃2

.
= C2 χβ and C̃3

.
= 2C3 χβ/α. Under Assump-

tion 2.4 λ̃ ≥ C̃2/α. Note that f(0) = 0 since Xi,N
0 = X̄i

0. Multiplying both sides of (4.15)

by e2 λ̃ t and letting ϑ(t)
.
= e2 λ̃ t f(t), we obtain

dϑ(t) ≤ 2
√
ϑ(t)

(∫ t

0

C̃2 e
(λ̃−α) (t−s)

√
ϑ(s) ds+

C̃3e
λ̃ t

√
N

)
. (4.16)

In rest of the proof we estimate ϑ(t) using the above inequality. For this, heuristically,
one can set ζ =

√
ϑ to obtain a simplification

ζ ′(t) ≤ C̃2

∫ t

0

e(λ̃−α) (t−s)ζ(s) ds+
C̃3e

λ̃ t

√
N

on {ζ 6= 0}.

Since we do not have any control for ζ ′(t) on {ζ = 0}, we instead consider ζε(t) =√
ϑ(t) + ε2 where ε > 0. Then ϑ′ = 2ζεζ

′
ε and

√
ϑ =

√
ζ2
ε − ε2 ≤ ζε. Hence (4.16) implies

that

d(ζε(t))
2 ≤ 2ζε(t)

(∫ t

0

C̃2 e
(λ̃−α) (t−s)ζε(s) ds+

C̃3e
λ̃ t

√
N

)
.
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Thus for a.e. t ≥ 0,

ζ ′ε(t) ≤
∫ t

0

C̃2 e
(λ̃−α) (t−s)ζε(s) ds+

C̃3e
λ̃ t

√
N

. (4.17)

We will now use a comparison result for ordinary differential equations (ODE). Let kε be
the solution of the ODE

k′′ε (t) = (λ̃− α) k′ε(t) + C̃2 kε(t) +
α C̃3√
N

eλ̃ t, kε(0) = ε, k′ε(0) =
C̃3√
N
. (4.18)

Note that the solution kε solves the integral equation

k′ε(t) =

∫ t

0

C̃2 e
(λ̃−α) (t−s)kε(s) ds+

C̃3e
λ̃ t

√
N

, kε(0) = ε. (4.19)

It is straightforward to verify that the unique solution of (4.18) converges to

k(t)
.
=

C̃3

(r1 − r2)
√
N

[
er1t − er2t + α

(eλ̃t − er1t
λ̃− r1

− eλ̃t − er2t

λ̃− r2

)]
(4.20)

uniformly on compacts when ε→ 0, where r2 < 0 < r1 are the zeros of the characteristic
polynomial

θ(r) = r2 − (λ̃− α) r − C̃2. (4.21)

In particular,
sup
t≤T

sup
ε∈(0,1)

|kε(t)| <∞ for any T ≥ 0. (4.22)

Subtracting (4.19) from (4.17), we see that φε = ζε − kε satisfies

φε(t) ≤ C̃2

∫ t

0

∫ t1

0

e(λ̃−α) (t1−t2)φε(t2) dt2 dt1, t ≥ 0.

Upon iterating M times, one has

φε(t) ≤ (C̃2)M
∫
{0≤t2M≤t2M−1≤···≤t1≤t}

M∏
i=1

e(λ̃−α) (t2i−1−t2i)φε(t2M ) dt2M · · · dt2 dt1. (4.23)

For any T > 0, CT = supt≤T supε∈(0,1) |φε(t)| <∞ by (4.22) and Theorem 3.1. Hence the

integrand of (4.23) is at most CT e(λ̃−α)T M . Thus (4.23) implies that for every T ∈ (0,∞)

there exists C̃T ∈ (0,∞) such that for all t ∈ [0, T ],

φε(t) ≤ C̃MT Volume {0 ≤ t2M ≤ t2M−1 ≤ · · · ≤ t1 ≤ t}
≤ (C̃TT

2)M/(2M)!

Letting M → ∞, we see that supt∈[0,T ] φε(t) ≤ 0. Since T > 0 is arbitrary, we have

φε(t) ≤ 0 for all t ≥ 0. Thus ζε(t) ≤ kε(t) for all t ≥ 0. Letting ε→ 0, we obtain that
√
ϑ is

bounded by k defined by (4.20). Recalling that ϑ(t)
.
= e2 λ̃ t f(t), we have

√
f(t) ≤ C̃3

(r1 − r2)
√
N

[
e(r1−λ̃)t − e(r2−λ̃)t + α

(1− e(r1−λ̃)t

λ̃− r1

− 1− e(r2−λ̃)t

λ̃− r2

)]
. (4.24)

Observe that Assumption 2.4 implies that C̃2 < λ̃α from which it follows that√
(λ̃− α)2 + 4C̃2 < λ̃+ α.
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Recalling that r1, r2 are the positive and negative roots of (4.21) we now see that under
Assumption 2.4, λ̃ > r1 > 0 > r2. Thus the right hand side of (4.24) is at most

C̃3

(r1 − r2)
√
N

[
1 +

α

λ̃− r1

]
The proof is complete.

We can now complete the proof of Corollary 3.5.

Proof of Corollary 3.5. The first statement in the corollary is immediate from Theo-
rem 3.4 on noting that

W2

(
L(X1,N

t , X2,N
t , · · · , Xk,N

t ), L(X̄1
t )⊗ k

)
≤

(
E

k∑
i=1

|Xi,N
t − X̄i

t |2
)1/2

.

For the second statement note that since µ0 ∈ Pq(Rd), supt≥0

∫
Rd
|x|q̃µt(dx) < ∞ for

some q̃ > 2(see Remark 4.4). Hence from Theorem 1.1 of [12], we have

lim sup
N→∞

sup
t≥0

E[W2
2 (νNt , µt)] = 0.

Also, from Theorem 3.4, as N →∞

sup
t≥0

E[W2
2 (µNt , ν

N
t )] ≤ sup

t≥0
E

1

N

N∑
i=1

|Xi,N
t − X̄i

t |2 → 0.

The result now follows on combining the above two displays and using the triangle
inequality

W2(µNt , µt) ≤ W2(µNt , ν
N
t ) +W2(νNt , µt).

4.3 Concentration bounds

In this section we will first provide exponential concentration bounds that are uniform
over compact time intervals. Under the stronger property in Assumption 2.4 we will
then show that these bounds can be strengthened to be uniform over the infinite time
horizon. We begin with an upper bound for W1(µNt , µt) in terms of

(
W1(νNs , µs)

)
s∈[0,t]

where νN is as introduced in (3.3).

4.3.1 Bounds in terms of empirical measures of independent variables

The following proposition is a generalization of Proposition 5.1 in [4]. Let λ̃
.
= v∗−C1χ−

C2χβ/α be as above (4.16).

Proposition 4.1. For all t ≥ 0

W1(µNt , µt) ≤ W1(νNt , µt) +

√
C2 χβ

2

∫ t

0

(
e(r1−λ̃)(t−s) − e(r2−λ̃)(t−s)

)
W1(νNs , µs) ds,

where, as before, r2 < 0 < r1 are the solutions of r2 − (λ̃− α) r − C2 χβ = 0.

Proof. From (4.10) and (4.11) we have

d|∆i
t|2 ≤ 2

[
− v∗ + e−α t χd‖Hessh0‖∞

]
|∆i

t|2 dt

+ 2χβ

∫ t

0

e−α(t−s) d‖Hess g‖∞
N

∑
j

|∆i
t|(|∆i

t|+ |∆j
s|)

 ds dt

+ 2χβ

∫ t

0

(
e−α(t−s)∆i

t ·
(∫
∇Pt−sg(y − X̄i

t) (νNs − µs)(dy)
))

ds dt. (4.25)
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Instead of taking expectations as in Section 4.2, we now bound the third term on the
right hand side of (4.25) using the inequality∣∣∣ ∫ ∇Pt−sg(X̄i

t − y) (νNs − µs)(dy)
∣∣∣ ≤ d‖Hess g‖∞W1(νNs , µs) (4.26)

which follows from the Kantorovich-Rubenstein duality (1.12) and the fact that the
Lipschitz norm of the function x 7→ ∇jPt−sg(X̄i

t − x) is bounded by d‖Hess g‖∞ for each
j = 1, · · · , d.

Applying (4.26) to (4.25), then summing over i and using the inequality
∑
i |∆i

t| ≤√
N
∑
i |∆i

t|2, we see that with F (t)
.
=
∑N
i=1 |∆i

t|2/N

dF (t) ≤ 2
[
− v∗ + χd‖Hessh0‖∞

]
F (t) dt

+ 2χβ

∫ t

0

(
e−α(t−s) d‖Hess g‖∞ (F (t) +

√
F (t)F (s))

)
ds dt

+ 2χβ

∫ t

0

(
e−α(t−s)

√
F (t) d‖Hess g‖∞W1(νNs , µs)

)
ds dt

≤ 2
[
− v∗ + C1 χ

]
F (t) dt

+ 2χβ C2

∫ t

0

e−α(t−s) (F (t) +
√
F (t)F (s)) ds dt

+ 2χβ C2

√
F (t)

∫ t

0

e−α(t−s)W1(νNs , µs) ds dt

= 2
[
− v∗ + C1 χ +

χβ C2

α

]
F (t) dt

+ 2χβ C2

√
F (t)

∫ t

0

e−α(t−s)
(√

Fs +W1(νNs , µs)
)
ds dt

Recalling that λ̃ = v∗ − C1χ− C2χβ/α, we obtain

dF (t) ≤
(
−2 λ̃ F (t) + 2 C̃2

√
F (t)

∫ t

0

e−α(t−s)
(√

F (s) +W(s)
)
ds

)
dt, (4.27)

whereW(s)
.
=W1(νNs , µs) and C̃2 is as introduced below (4.15). Recall that F0 = 0. We

now use (4.27) to obtain an upper bound for F (t) in terms of {W(s)}s∈[0,t].

As in (4.16), G(t)
.
= e2 λ̃ t F (t) satisfies

G′(t) ≤ 2 C̃2

√
G(t)

(∫ t

0

e(λ̃−α) (t−s)
√
G(s) ds + e(λ̃−α) t

∫ t

0

eαsW(s) ds
)
.

Following the same comparison argument as was used to obtain the bound for
√
ϑ (ϑ

was introduced above (4.16)), we let Hε(t) =
√
G(t) + ε2 where ε > 0 and obtain for a.e.

t ≥ 0

H ′ε(t) ≤ C̃2

(∫ t

0

e(λ̃−α) (t−s)Hε(s) ds + e(λ̃−α) t

∫ t

0

eαsW(s) ds
)
. (4.28)

This time we need to solve the inhomogeneous second order ODE

K ′′ε (t)− (λ̃− α)K ′ε(t)− C̃2Kε(t) = C̃2 e
λ̃ tW(t)

with initial conditions Kε(0) = ε and K ′ε(0) = 0. On solving this ODE, we obtain, as in
(4.20) and (4.24), that Kε converges uniformly on compacts as ε→ 0 to K defined as

K(t)
.
=

C̃2

(r1 − r2)

(
er1 t

∫ t

0

e(λ̃−r1)sW(s) ds− er2 t
∫ t

0

e(λ̃−r2)sW(s) ds
)

(4.29)
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Similar to the argument below (4.22) we have that for all ε > 0 and t ≥ 0√
G(t) + ε2 ≤ Hε(t) ≤ Kε(t).

Sending ε→ 0,

√
F (t) ≤ e−λ̃t

√
G(t) ≤ e−λ̃tK(t) =

C̃2

(r1 − r2)

∫ t

0

(
e(r1−λ̃)(t−s)W(s)− e(r2−λ̃)(t−s)W(s)

)
ds.

(4.30)

On the other hand,

W1(µNt , ν
N
t ) ≤ W2(µNt , ν

N
t ) ≤

( N∑
i=1

|∆i
t|2/N

)1/2

=
√
F (t). (4.31)

The desired equality now follows from the triangle inequalityW1(µNt , µt) ≤ W1(νNt , µt) +

W1(µNt , ν
N
t ) and the observation that r1 − r2 ≥ 2

√
C̃2.

The following corollary is an immediate consequence of the above proposition.

Corollary 4.2. For every T ∈ (0,∞), there exists CT ∈ (0,∞) such that

W1(µNt , µt) ≤ W1(νNt , µt) + CT

∫ t

0

W1(νNs , µs) ds for t ∈ [0, T ].

Also, for all t ≥ 0

W1(µNt , µt) ≤ W1(νNt , µt) +

√
C2 χβ

2

∫ t

0

e(r1−λ̃)(t−s)W1(νNs , µs) ds.

Recall from Section 4.2 that under Assumption 2.4 (r1 − λ̃) < 0. This will be key in
obtaining a uniform in time bound from the last inequality in the corollary above.

4.3.2 Moment bounds

Let (X̄t)t≥0 be the nonlinear process solving (1.2) and µt be its law at t. In Proposition 4.3
below we will give bounds on the square exponential moments of X̄t under appropriate
conditions. The first part of the proposition holds under our standing assumptions along
with a suitable integrability condition. For the second part we will make in addition an
assumption that is weaker than Assumption 2.4, namely v∗ > 0, where v∗ was defined in
(2.7). Let, for t, θ ≥ 0,

Sθ(t)
.
=

∫
Rd
eθ |x|

2

dµt(x) = E
[
eθ |X̄t|

2]
.

Proposition 4.3. Suppose µ0 is as in Theorem 3.8, namely for some θ0 > 0, Sθ0(0) <∞.
Then

(i) For any T ∈ (0,∞), there exists θT > 0 such that supt∈[0,T ] SθT (t) <∞.

(ii) Suppose that v∗ > 0. Then for any θ ∈ (0, θ0/4 ∧ v∗/8), we have supt≥0 Sθ(t) <∞.

Proof. (i) Note that for all t ∈ [0, T ]

|X̄t| ≤ |X̄0|+ χCT + sup
0≤t≤T

|Bt|+ L∇V

∫ t

0

|X̄s| ds, t ≥ 0,
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where C is as in Lemma 2.1. By Gronwall’s lemma

sup
0≤t≤T

|X̄t| ≤ a(T )eL∇V T

where
a(T ) = |X̄0|+ χCT + sup

0≤t≤T
|Bt|.

Thus for θ > 0

E
[

sup
0≤t≤T

eθ|X̄t|
2
]
≤ κ1,TE

[
e2θ|X̄0|2e2θ(χCT+sup0≤t≤T |Bt|)

2
]

≤ κ1,T

(
E
[
e4θ|X̄0|2

])1/2 (
E
[
e4θ(χCT+sup0≤t≤T |Bt|)

2
])1/2

.

Choose θ ≤ θ0
4 such that E

[
e8θ|BT |2)

]
<∞. Then for all such θ, sup0≤t≤T Sθ(t) <∞.

(ii) Fix θ > 0. We apply Itô’s formula to φ(x) = eθ |x|
2

. Note that ∇φ(x) = 2θeθ |x|
2

x

and ∆φ(x) = 2θeθ |x|
2(
d+ 2θ|x|2

)
. Thus for t ≥ 0

dφ(X̄t) = eθ |X̄t|
2
(

2θX̄t · (dBt −∇V (X̄t) dt+ χ∇h(t, X̄t) dt) + θ
(
d+ 2θ|X̄t|2

)
dt
)
. (4.32)

We claim that with σ
.
= θ0/4 ∧ v∗/8, for all θ ∈ (0, σ),

Mθ(t)
.
=

∫ t

0

eθ |X̄s|
2

X̄s · dBs

is a square integrable martingale. Suppose for now that the claim is true. Then
E[Mθ(t)] = 0 for all t ≥ 0 and θ ∈ (0, σ). By our assumption −x · ∇V (x) ≤ −v∗|x|2 for all

x ∈ Rd. Also, for any η > 0, |x| ≤ η+ |x|
2

4η . Combining these observations with Lemma 2.1,
we obtain that

dSθ(t) ≤ E
[
eθ |X̄t|

2(
A+B |X̄t|2

)]
dt, (4.33)

for all η > 0, where

A = θ
(
2χ ‖∇h‖∞η + d

)
,

B = 2 θ2 − 2b θ and b = v∗ −
χ

4η
‖∇h‖∞.

Since v∗ > 0, we can find η ∈ (0,∞) so that b = v∗/2 and consequently, since σ < v∗/2,
with this choice of η, B < 0 for all θ ∈ (0, σ). Therefore for such θ

dSθ(t) ≤ κ
∫
Rd

(R2 − |x|2) eθ |x|
2

dµt(x), (4.34)

for some R, κ ∈ (0,∞) depending only on A and B. Decomposing the integrand on the
right of (4.34) according to the size of |x|, one obtains

dSθ(t) ≤
(
κ1 − κ2 Sθ(t)

)
dt

where κ1, κ2 ∈ (0,∞). Since θ < σ ≤ θ0, Sθ(0) <∞. A standard estimate now shows that
supt≥0 Sθ(t) <∞ for all θ ∈ (0, σ).

Finally we verify the claim. Using the estimates −x·∇V (x) ≤ −v∗|x|2 and |x| ≤ η+ |x|
2

4η

once again, and choosing η such that b = v∗/2 as before, we have by an application of
Itô’s formula

|X̄t|2 ≤ |X̄0|2 +

∫ t

0

2X̄s · dBs −
∫ t

0

v∗|X̄s|2 ds+ κ3 t (4.35)

EJP 22 (2017), paper 8.
Page 24/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP25
http://www.imstat.org/ejp/


Uniform in time particle approximations for PKS

where κ3 = 2χ‖∇h‖∞η + d. Provided that σ1 ≤ v∗/4 ∧ θ0/2, we can bound Sσ1
(t) above

by

eσ1 κ3 t E
[

exp
(
σ1|X̄0|2

)
· exp

(∫ t

0

2σ1X̄s · dBs −
∫ t

0

v∗σ1|X̄s|2 ds
)]

≤ eσ1 κ3 t E
[

exp
(
σ1|X̄0|2

)
· exp

(∫ t

0

2σ1X̄s · dBs −
∫ t

0

4σ2
1 |X̄s|2 ds

)]
≤ eσ1 κ3 t

√
E
[

exp
(

2σ1|X̄0|2
)]
· E
[

exp
(∫ t

0

4σ1X̄s · dBs −
∫ t

0

8σ2
1 |X̄s|2 ds

)]
≤ eσ1 κ3 t

√
E
[

exp
(

2σ1|X̄0|2
)]

≤ κ4e
σ1 κ3 t , (4.36)

where the next to last inequality follows on noting that

exp
(∫ t

0

4σ1X̄s · dBs − 8σ2
1

∫ t

0

|X̄s|2 ds
)

is a supermartingale and in the last inequality we have used the fact that since σ1 ≤ θ0/2,
E exp(2σ1|X̄0|2) <∞. Finally for θ < σ1/2 and t <∞∫ t

0

E
[
e2θ|Xs|2 |Xs|2

]
ds ≤ 1

σ1 − 2θ

∫ t

0

Eeσ1|Xs|2

≤ κ4

σ1 − 2θ

∫ t

0

eσ1 κ3 s ds

<∞.

This completes the proof of the claim and the result follows.

Remark 4.4. (i) In a similar manner it can be shown that if µ0 admits a finite square
exponential moment of order θ0 > 0, then for every T > 0 there is a θT > 0 such that

sup
N,i

sup
0≤t≤T

E
[
eθT |X

N,i
t |2] <∞.

Furthermore if v∗ > 0, we have for all θ as in part (ii) of the above proposition

sup
N,i

sup
t≥0

E
[
eθ |X

N,i
t |2] <∞.

(ii) Suppose that instead of assuming that µ0 has a finite squared exponential moment,
we assume that µ0 ∈ Pq0(Rd) for some q0 ≥ 2. Then it follows easily that for any fixed
T <∞

sup
0≤t≤T

E|X̄t|q0 <∞.

Furthermore, by applying Itô formula to |x|q instead of eθ|x|
2

one can check that, if in
addition v∗ > 0, with q = q0

2 + 1,

sup
0≤t<∞

E|X̄t|q <∞.

Also, analogous statements as in (i) hold with the squared exponential moment replaced
by the q-th moment.
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4.3.3 Time-regularity

In this section we give some estimates on the moments of the increments of the nonlinear
process X̄. These estimates are needed to appeal to results in [4] for proofs of our
concentration bounds.

We start with moment estimates for |X̄t − X̄s|. By Lemma 2.1 and our assumption on
∇V we have

|X̄t − X̄s| ≤ |Bt −Bt|+ L∇V

∫ t

s

|X̄r| dr + C (t− s), 0 ≤ s ≤ t <∞,

where C is as in Lemma 2.1.
Throughout this section we will assume that Sθ0(0) < ∞ for some θ0 > 0. Taking

powers and using Proposition 4.3, we obtain the following result.

Lemma 4.5. For all p ≥ 1 and T > 0, there exists CT,p ∈ (0,∞) such that

E[|X̄t − X̄s|p] ≤ CT,p |t− s|p/2 for s, t ∈ [0, T ]. (4.37)

Moreover, if Assumption 2.4 is satisfied, then for some Cp ∈ (0,∞)

E[|X̄t − X̄s|p] ≤ Cp(|t− s|p + |t− s|p/2) for s, t ≥ 0.

Lemma 4.5 immediately implies

Wp(µt, µs) ≤ C̃T,p |t− s|1/2 for s, t ∈ [0, T ] (4.38)

and under Assumption 2.4, for some C̃p > 0

Wp(µt, µs) ≤ C̃p(|t− s|+ |t− s|1/2) for s, t ≥ 0.

Next we give an estimate on the exponential moments of the increments.

Lemma 4.6. For all T > 0, there exist θT , CT ∈ (0,∞) such that

E
[

sup
a≤s,t≤a+b

exp(θT |X̄t − X̄s|2)
]
≤ 1 + CT b

for all a, b ∈ [0, T ].

Proof. By an application of Cauchy-Schwarz inequality we see that it suffices to show
that for some θT , CT ∈ (0,∞)

E
[

sup
a≤t≤a+b

exp(θT |X̄t − X̄a|2)
]
≤ 1 + CT b (4.39)

for all a, b ∈ [0, T ]. Let C be as in Lemma 2.1 and HC be the class of all functions
v : [0, T ]×Rd → Rd such that

sup
t≥0
|v(t, x)− v(t, y)| ≤ C|x− y|, sup

t≥0
|v(t, x)| ≤ C for all x, y ∈ Rd.

Note that from Lemma 2.1, for every m ∈ P
(
C([0,∞) : Rd)

)
, ∇hm ∈ HC .

Given v ∈ HC and z ∈ Rd, let Y v,z be the solution of the stochastic differential
equation

dY v,zt = dBt −∇V (Y v,zt ) + χv(t, Y v,zt )dt, Y v,z0 = z.

By a standard conditioning argument it suffices to argue that for some θT , CT ∈ (0,∞)

sup
z∈Rd,v∈HC

E

[
sup

0≤t≤b
exp(θT |Y v,zt − z|2)

]
≤ 1 + CT b. (4.40)
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Fix (z, v) ∈ Rd×HC and suppress it in the notation (i.e. write Y v,z as Y ). Let θ : [0, T ]→ R

be a non-negative continuously differentiable function and write for t ∈ [0, b]

Zt
.
= eθ(t) |Yt−z|

2

.

Using Itô’s formula we obtain,

dZt = Zt

[
2θ(t)(Yt − z) · (dBt −∇V (Yt) dt+ χv(t, Yt) dt)

+ θ(t)
(
d+ 2θ(t)|Yt − z|2

)
dt+ θ′(t)|Yt − z|2 dt

]
. (4.41)

Integrating, we obtain

Zt − 1 =Mt +

∫ t

0

Zr

[
2θ(r)(Yr − z) ·

(
−∇V (Yr) + χv(r, Yr)

)
+ θ(r)

(
d+ 2θ(r)|Yr − z|2

)
+ θ′(r)|Yr − z|2

]
dr, (4.42)

where Mt
.
= 2

∫ t
0
Zrθ(r)(Yr − z) · dBr. From a similar argument as for the proof of

Proposition 4.3(i), there is a ς > 0 such that

sup
(z,v)∈Rd×HC

sup
0≤s≤T

Eeς|Y
z,v
s −z|2 <∞. (4.43)

One of the properties of {θ(t)}0≤t≤T chosen below will be that sup0≤t≤T θ(t) < ς/2. With
such a choice of {θ(t)}, {Mt} is a martingale and consequently E(Mt) = 0 for all t ≥ 0.

Applying Young’s inequality we see that for every η > 0

2(Yr − z) ·
(
−∇V (Yr) + χv(r, Yr)

)
≤ η|Yr − z|2 +

| − ∇V (Yr) + χv(r, Yr)|2

η
,

and thus

Zt ≤ 1 +Mt +

∫ t

0

Zr
(
Ar +Br |Yr − z|2

)
dr, (4.44)

where

Ar = θ(r)
(
d+

L∇V |Yr|+ χC

η

)
Br = η θ(r) + 2θ2(r) + θ′(r).

Rest of the argument is similar to [4, Section 5.1] and so we only give a sketch. Choose
θ(r) to be the solution of the ODE

η θ(r) + 2θ2(r) + θ′(r) = 0

with θ(0) to be a strictly positive and smaller than ς/2. It is easy to see that the solution
is decreasing and strictly positive. Thus Br is identically zero and 0 < θ(T ) ≤ θ(t) ≤ ς/2
for every t ∈ [0, T ]. As a consequence

E sup
0≤t≤b

Zt ≤ 1 + E sup
0≤t≤b

Mt +

∫ b

0

EZrArdr.

Using the bound in (4.43) it is now checked exactly as in [4] that

sup
(z,v)∈Rd×HC

sup
0≤s≤T

EZrAr <∞ and sup
(z,v)∈Rd×HC

E sup
0≤s≤b

Ms ≤ C̃T b,

for some C̃T <∞. This proves (4.40) and thus the result follows.
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With Lemma 4.6, standard estimates for Brownian motion and the Chebyshev’s
exponential inequality then yields the following time-regularity of the empirical measures
νN . The proof is contained in [4, Section 5.2, page 577–578] and is omitted here.

Proposition 4.7. For any T > 0, there exist C1, C2 ∈ (0,∞) such that

P
(

sup
a≤s,t≤a+b

W1(νNs , ν
N
t ) > ε

)
≤ exp

(
−N(C1 ε

2 − C2 b)
)

for all a, b ∈ [0, T ] and ε > 0.

Remark 4.8. Using Lemma 2.1, it is immediate that Lemma 4.6 and Proposition 4.7
remain valid with the same constants if we replace X̄t by XN,i

t and νN by µN respectively.

4.3.4 Proofs for the concentration bounds

Equipped with the results Sections 4.3.1, 4.3.2 and 4.3.3 in the previous subsections,
the proofs of Theorem 3.6 and Theorem 3.8 can be completed as in [4, Section 7.1] and
[4, Section 7.2] respectively. We only provide a sketch.

For Theorem 3.6, note that first bound in Corollary 4.2 implies

sup
t∈[0,T ]

W1(µNt , µt) ≤ κT sup
t∈[0,T ]

W1(νNt , µt).

This in turn implies

P
(

sup
t∈[0,T ]

W1(µNt , µt) > ε
)
≤ P

(
sup
t∈[0,T ]

W1(νNt , µt) > ε̃
)
,

where ε̃ = ε/κT . which is analogous to equation (75) in [4]. Part (i) of Proposition 4.3
guarantees that we can apply Theorem 3.7 to assert that for any d′ ∈ (d,∞) and θ′ ∈ (0, θ),
there exists a positive integer N0 such that

sup
t∈[0,T ]

P
(
W1(νNt , µt) > ε̃

)
≤ exp

(
− κ2,T θ

′N ε2
)

for all ε > 0 and N ≥ N0 max(ε−(d′+2), 1).
To complete the proof of Theorem 3.6, it remains to improve this estimate by in-

terchanging supt∈[0,T ] and P. This “exchange” can be achieved using the continuity

estimates on νNt and µt in Subsection 4.3.3. Details can be verified as in [4, Section 7.1].
Specifically, Corollary 4.2, Proposition 4.3 and Proposition 5.1 in [4] are replaced by,
respectively, part (i) of Proposition 4.3, (4.38) with p = 1, and Proposition 4.7.

For Theorem 3.8, we start from the second bound in Corollary 4.2 and argue as in [4,
Section 7.2]. The key ingredient is Proposition 4.1 in [4]. This result is replaced by part
(ii) of Proposition 4.3 which gives uniform in time estimate for the square exponential
moment for µt. We omit the details.

4.4 Uniform convergence of Euler scheme

In the proofs of Lemma 3.9 and Theorem 3.10, we need to solve difference inequalities
which are harder to handle than similar differential inequalities that appeared in the
proofs of Theorem 3.4 and Proposition 4.1.

Proof of Lemma 3.9. From integration by parts in (3.7) we see that

Gθ(~x, y) =
−χβe−αθ

N

N∑
j=1

∫
Rd
p(θ, y, z)∇g(xj − z) dz
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and thus

sup
N≥1

sup
~x∈RdN

sup
y∈Rd

|Gθ(~x, y)| ≤ χβ e−αθ‖∇g‖∞. (4.45)

Also recalling that Vt = V − χQth0,

sup
t≥0
|∇Vt(x)| ≤ |∇V (x)|+ χ sup

t≥0
|∇Qth0(x)| ≤ κ1 (|x|+ 1). (4.46)

Recall from (3.8) that

Y in+1 = Y in + ∆nB
i + ε

(∫ nε

0

Gnε−s(Ỹ
(N),ε
s , Y in) ds−∇Vnε(Y in)

)
(4.47)

for 1 ≤ i ≤ N , where we have suppressed N, ε in the notation. Also note that
|∇(Qth0)(y)| ≤ ‖∇h0‖∞ for every y ∈ Rd. Hence by (4.45) and (4.46),

|Y in+1|2 ≤ − 2εY in · ∇Vnε(Y in) + |Y in|2 + |∆nB
i|2

+ κ2 ε
2(|Y in|2 + 1) + ξin ·∆nB

i + κ3 ε|Y in|

where κ4 = κ3 + 2χ‖∇h0‖∞ and ξin is measurable with respect to FBinε
.
= σ{Bis : 0 ≤ s ≤

nε}. Note that E[ξn∆nB
i] = 0 for every n, i. Our assumption on V then gives

E|Y in+1|2 ≤− 2εv∗E|Y in|2 + E|Y in|2 + ε+ κ2ε
2E|Y in|2 + κ2ε

2 + κ4εE|Y in|.

Let an = E|Y in|2. Then for ε small enough, we have the nonlinear difference inequality

an+1 ≤ (1− εv∗)an + κ ε
√
an + 2ε (4.48)

Note that by our assumption v∗ > 0. By Young’s inequlity κ
√
an ≤ η an + κ2/(4η) for all

η > 0. Taking η = v∗/2 we obtain

an+1 − δ an ≤ A (4.49)

where δ = 1 − v∗ε
2 and A = ε

(
κ2

2v∗
+ 2
)

. Note that δ ∈ (0, 1) for ε > 0 small enough.

Multiplying both sides of (4.49) by δ−n, we obtain

bn+1 − bn ≤ Aδ−n (4.50)

where bn = an δ
−(n−1). Summing over n then gives

bn+1 − b1 ≤ A
n∑
i=1

δ−i.

Since a0 = 0 (giving b1 ≤ A), we obtain

an+1 ≤ A
(1− δn+1

1− δ

)
=

2

v∗

(
1−

(
1− v∗ε/2

)n+1
)( κ2

2v∗
+ 2
)
.

Thus we have

sup
n≥0

an ≤
2

v∗

( κ2

2v∗
+ 2
)
. (4.51)

The proof is complete.
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Remark 4.9. By (4.45) and (4.46), we also have (suppressing N and ε in notation)

|Y in − Y in−1| ≤ |∆n−1B
i|+ ε

∣∣∣∇V(n−1)ε(Y
i
n−1)−

∫ (n−1)ε

0

G(n−1)ε−s(Ỹs, Y
i
n−1) ds

∣∣∣
≤ |∆n−1B

i|+ ε
(
κ1 (|Y in−1|+ 1) +

χβ‖∇g‖∞
α

)
≤ |∆n−1B

i|+ ε κ2 (|Y in−1|+ 1).

From this and the uniform bounds in Lemma 3.9 we have that if v∗ > 0,

sup
i,n
E|Y in − Y in−1|2 ≤ κ3 ε (4.52)

Similarly, with Xi,N
t as in (3.5), for t ∈ [(n− 1)ε, nε],

|Xi,N
t −Xi,N

nε | ≤ |Bit −Binε|+ κ2

∫ nε

t

(|Xi,N
r |+ 1) dr

and by the uniform bound for supt≥0E|X
i,N
t | (see Remark 4.4),

sup
i,N

E|Xi,N
t −Xi,N

nε |2 ≤ κ3 |t− nε| for all n ≥ 1, t ∈ [(n− 1)ε, nε]. (4.53)

Proof of Theorem 3.10. To simplify notations, we supress N and ε to write Y in for Y i,N,εn

and Xi
t for Xi,N

t . Denote Zin , Y in −Xi
nε to be the error of the scheme. From (3.8) and

(3.5) we obtain
Zin = Zin−1 + ain + bin for n ≥ 1, 1 ≤ i ≤ N, (4.54)

where

ain =

∫ nε

(n−1)ε

(∫ (n−1)ε

0

G(n−1)ε−s(Ỹs, Y
i
n−1) ds−

∫ t

0

Gt−s(Xs, X
i
t) ds

)
dt

bin =

∫ nε

(n−1)ε

[
−∇V(n−1)ε(Y

i
n−1) +∇Vt(Xi

t)
]
dt.

From (4.54) we have Zin =
∑n
k=1(aik + bik). Hence

|Zin|2 − |Zin−1|2 = (ain + bin)
(
Zin + Zin−1

)
. (4.55)

Step (i) We first estimate |bin Zin + bin Z
i
n−1|. For this, we shall use the estimates

|∇Qth0(y)−∇Qth0(x)| ≤ e−αtd‖Hessh0‖∞|x− y|. (4.56)

|∇Qth0(x)−∇Qsh0(x)| ≤
∣∣∣e−αt(∇Pth0(x)−∇Psh0(x)

)
+ (e−αt − e−αs)∇Psh0(x)

∣∣∣
≤ d ‖Hessh0‖∞e−αt

√
t− s + ‖∇h0‖∞α e−α (t∧s)|t− s|. (4.57)

By (4.56), (4.57) and our convexity assumption on V ,

bin Z
i
n =

∫ nε

(n−1)ε

[
−∇V(n−1)ε(Y

i
n−1) +∇Vnε(Y in)

+∇Vt(Xi
t)−∇Vnε(Xi

nε)−∇Vnε(Y in) +∇Vnε(Xi
nε)
]
dt · (Y in −Xi

nε)

≤ −v∗ ε |Zin|2 + |Zin|
∫ nε

(n−1)ε

(
χd ‖Hessh0‖∞ |Zin|

+ | − ∇V (Y in−1) +∇V (Y in)|+ κ1

[
e−αnε|Y in − Y in−1|+

√
ε
]
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+ |∇V (Xi
t)−∇V (Xi

nε)|+ κ1

[
e−αnε|Xi

t −Xi
nε|+

√
ε
])
dt

≤ −v∗ ε |Zin|2 + |Zin|
∫ nε

(n−1)ε

(
χd ‖Hessh0‖∞ |Zin|

+ L∇V |Y in − Y in−1|+ κ1

[
e−αnε|Y in − Y in−1|+

√
ε
]

+ L∇V |Xi
t −Xi

nε|+ κ1

[
e−αnε|Xi

t −Xi
nε|+

√
ε
])
dt

≤
(
− v∗ + χd ‖Hessh0‖∞

)
|Zin|2ε + 2κ1 ε

3/2|Zin|

+ ε
(
L∇V + κ1 e

−αnε
)
|Zin| |Y in − Y in−1|

+
(
L∇V + κ1 e

−αnε
)
|Zin|

∫ nε

(n−1)ε

|Xi
t −Xi

nε| dt. (4.58)

Taking expectations in (4.58) and using (4.52) and (4.53) we obtain

E[bin Z
i
n] ≤

(
− v∗ + χd ‖Hessh0‖∞

)
εE|Zin|2 + κ2 ε

3/2
√
E|Zin|2. (4.59)

The same argument gives

E[bin Z
i
n−1] ≤

(
− v∗ + χd ‖Hessh0‖∞

)
εE|Zin−1|2 + κ2 ε

3/2
√
E|Zin−1|2. (4.60)

Step (ii) Next we estimate |ain|. By (4.45),

|ai1| =
∣∣∣ ∫ ε

0

∫ t

0

Gt−s(Xs, X
i
t) ds dt

∣∣∣ ≤ χβ ‖∇g‖∞ ε2
2
.

For n ≥ 2, by (4.45) again,

|ain| =
∣∣∣ ∫ nε

(n−1)ε

(∫ (n−1)ε

0

(
G(n−1)ε−s(Ỹs, Y

i
n−1)−Gt−s(Xs, X

i
t)
)
ds

−
∫ t

(n−1)ε

Gt−s(Xs, X
i
t) ds

)
dt
∣∣∣

≤
∣∣∣ ∫ nε

(n−1)ε

A(1,i)
n (t) +A(2,i)

n (t) dt
∣∣∣+ χβ ‖∇g‖∞

ε2

2
, (4.61)

where

A(1,i)
n (t) =

∫ (n−1)ε

0

(
G(n−1)ε−s(Xs, X

i
t)−Gt−s(Xs, X

i
t)
)
ds

A(2,i)
n (t) =

∫ (n−1)ε

0

(
G(n−1)ε−s(Ỹs, Y

i
n−1)−G(n−1)ε−s(Xs, X

i
t)
)
ds.

For A(1,i)
n (t), using that g ∈ C2

b (Rd), we have for θ1 ≤ θ2, |θ1 − θ2| ≤ ε

|Gθ1(~x, y)−Gθ2(~x, y)|

≤ χβ e−αθ1

N

N∑
j=1

∫
Rd

(
p(θ1, y, z)− p(θ2, y, z)

)
∇g(xj − z) dz + χβ ‖∇g‖∞|e−αθ1 − e−αθ2 |

≤ κ3

√
ε e−αθ1 .

Putting θ1 = (n− 1)ε− s and θ2 = t− s, we obtain

|A(1,i)
n (t)| ≤ κ3

√
ε

∫ (n−1)ε

0

e−α((n−1)ε−s) ds ≤ κ3

α

√
ε. (4.62)
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For A(2,i)
n (t), note that for s ∈ [0, (n− 1)ε], t ∈ [(n− 1)ε, nε]

|Gθ(Ỹ js , Y in−1)−Gθ(Xs, X
i
t)|

=
χβ e−αθ

N

N∑
j=1

∫
Rd

(
p(θ, Y in−1 − z)∇g(Ỹ js − z)− p(θ,Xi

t − z)∇g(Xj
s − z)

)
dz

=
χβ e−αθ

N

N∑
j=1

∫
p(θ,Xi

t − z)
[
∇g(Ỹ js − Y in−1 +Xi

t − z)−∇g(Xj
s − z)

]
dz

≤ χβ e−αθ

N

N∑
j=1

d‖Hess g‖∞(|Ỹ js −Xj
s +Xi

t − Y in−1|)

where we have used the substitution z 7→ Y in−1 −Xi
t + w in the first integral in the first

equality. When s ∈ [(k − 1)ε, kε), we have Ỹs = Yk−1 and

|Ỹ js −Xj
s+Xi

t − Y in−1| ≤ |Z
j
k−1|+ |Z

i
n|+Rs,t(i, j),

where Rs,t(i, j)
.
= |Xj

(k−1)ε −X
j
s | + |Xi

t −Xi
nε| + |Y in − Y in−1| is an error term which, in

view of (4.52) and (4.53) satisfies,

E[Rs,t(i, j)2] ≤ κ4 ε. (4.63)

From the above calculations and recalling that C2 = d‖Hess g‖∞

|A(2,i)
n (t)| =

∣∣∣ n−1∑
k=1

∫ kε

(k−1)ε

G(n−1)ε−s(Yk−1, Y
i
n−1)−G(n−1)ε−s(Xs, X

i
t) ds

∣∣∣
≤ χβ C2

N

N∑
j=1

n−1∑
k=1

∫ kε

(k−1)ε

e−α((n−1)ε−s) (|Zjk−1|+ |Z
i
n|+Rs,t(i, j)

)
ds. (4.64)

Using (4.62) and (4.64) in (4.61),

|ain| ≤κ5 ε
3/2 +

χβ C2

N

∫ nε

(n−1)ε

( n−1∑
k=1

∫ kε

(k−1)ε

e−α((n−1)ε−s)

N∑
j=1

(
|Zjk−1|+ |Z

i
n|+Rs,t(i, j)

)
ds
)
dt. (4.65)

Step (iii) We now combine steps (i) and (ii) to obtain an inequality for

fn
.
=

1

N

N∑
i=1

E|Zin|2.

This inequality is the discrete analogue of a differential inequality similar to (4.15). By
exchangeability we have

fn = E|Zin|2, i = 1, · · · , N. (4.66)

By Cauchy-Schwartz inequality, the fact 1
N

∑N
i=1

√
E|Zin|2 ≤

√
fn and the bound (4.63),

1

N2

N∑
i=1

N∑
j=1

E
[
|Zin|

(
|Zjk−1|+ |Z

i
n|+Rs,t(i, j)

)]

≤ fn +
( 1

N

N∑
i=1

√
E|Zin|2

)( 1

N

N∑
i=1

√
E|Zik−1|2

)
+

1

N

N∑
i=1

√
E|Zin|2

 1

N

N∑
j=1

E|Rs,t(i, j)|2
1/2

≤ fn +
√
fn fk−1 + κ6

√
ε
√
fn. (4.67)
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Let

σn,k
.
=

∫ kε

(k−1)ε

e−α((n−1)ε−s) ds =
e−αεn

α

(
eαε(k+1) − eαε k

)
(4.68)

Then
∑n−1
k=1 σn,k = (1− e−α(n−1)ε)/α ≤ 1/α and from (4.65) and (4.67) we have

1

N

N∑
i=1

E[|ain Zin|] ≤
χβ C2

α
ε fn + χβ C2 ε

√
fn

n−1∑
k=1

σn,k
√
fk−1 + κ7 ε

3/2
√
fn. (4.69)

Similarly,

1

N

N∑
i=1

E[|ain Zin−1|] ≤
χβ C2

α
ε fn−1 + χβ C2 ε

√
fn−1

n−1∑
k=1

σn,k
√
fk−1 + κ7 ε

3/2
√
fn−1.

(4.70)

Therefore, summing over i in (4.55) and then using (4.59), (4.60) (4.69) and (4.70),
we obtain a nonlinear “difference-summation” inequality

fn − fn−1 ≤ −λ̃ ε
(
fn + fn−1

)
+ C̃2 ε

(√
fn +

√
fn−1

) n−1∑
k=1

σn,k
√
fk−1

+ κ8 ε
3/2
(√

fn +
√
fn−1

)
, (4.71)

where σn,k is defined in (4.68), and as before, −λ̃ .
= −v∗ +χC1+C2χβ/α and C̃2

.
= C2 χβ.

We can rewrite (4.71) as

fn − fn−1

ε
≤− λ̃

(
fn + fn−1

)
+
(√

fn +
√
fn−1

) (
C̃2

n−1∑
k=1

σn,k
√
fk−1 + κ8

√
ε
)

(4.72)

which is the discrete analogue of a differential inequality similar to (4.15).
Step (iv) Finally, we use (4.71) to obtain a uniform (in N, n, ε) upper bound for fn,

under Assumption 2.4. Note that under this assumption λ̃ > 0. Let

δ
.
=

1− λ̃ ε
1 + λ̃ ε

.

Note that δ ∈ (0, 1) for ε small enough. Moving the negative term −λ̃ ε
(
fn + fn−1

)
to

the other side of the inequality in (4.72) and then multiplying both sides by δ−(n−1) and
letting gn = fn/δ

n−1 we obtain

gn − gn−1 ≤
ε

(1 + λ̃ ε) δn−1

(√
fn +

√
fn−1

) (
C̃2

n−1∑
k=1

σn,k
√
fk−1 + κ8

√
ε
)

≤ ε

(1 + λ̃ ε) δn/2

(√
gn +

√
gn−1

) (
C̃2

n−1∑
k=1

σn,k δ
(k−2)/2√gk−1 + κ8

√
ε
)

(4.73)

where the second inequality follows on noting that
√
fn+

√
fn−1 ≤ δ(n−2)/2(

√
gn+

√
gn−1)

for n ≥ 2. Similar to the proof of Theorem 3.4 we consider a small positive perturbation
of gn and let hθ(n)

.
=
√
gn + θ2 where θ > 0. The inequality in (4.73) then implies

h2
θ(n)− h2

θ(n− 1)

≤ ε

(1 + λ̃ ε) δn/2

(
hθ(n) + hθ(n− 1)

) (
C̃2

n−1∑
k=1

σn,k δ
(k−2)/2 hθ(k − 1) + κ8

√
ε
)
.
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Since hθ is strictly positive, we obtain

hθ(n)− hθ(n− 1) ≤ ε

(1 + λ̃ ε) δn/2

(
C̃2

n−1∑
k=1

σn,k δ
(k−2)/2 hθ(k − 1) + κ8

√
ε
)
. (4.74)

Consider the recursion equation obtained by replacing the inequality in (4.74) by equality,
namely

kn − kn−1 = A
( n−1∑
i=1

σn,i δ
(i−2−n)/2 ki−1

)
+

B

δn/2
, (4.75)

and k0 = hθ(0) = θ, where

A =
ε C̃2

1 + λ̃ ε
= O(ε) and B =

ε3/2κ8

1 + λ̃ ε
= O(ε3/2). (4.76)

By evaluating ∆n − e−αε

δ1/2
∆n−1 where ∆n−1

.
= kn − kn−1, we can convert the above

equation (4.75) to the following second order linear difference equation:{
kn+1 − p kn + q kn−1 = An, n ≥ 2,

k0 = θ, k1 = θ + B
δ1/2

,
(4.77)

where

p = 1 +
e−αε

δ1/2
→ 2, q =

e−αε

δ1/2
− A (1− e−αε)

α δ3/2
→ 1 as ε→ 0 and An =

B(1− e−αε)
δ(n+1)/2

.

Solution of (4.77) can be explicitly given as

kn = c
(θ)
1 rn1 + c

(θ)
2 rn2 + c3 δ

−n/2 (4.78)

where r1 > r2 > 0 are the distinct positive real roots of r2 − pr + q = 0, and

c
(θ)
2 =

r1(θ − c3)− θ − δ−1/2(B − c3)

r1 − r2
, c

(θ)
1 = θ−c3−c(θ)2 and c3 =

B(1− e−αε)
1− p δ1/2 + q δ

. (4.79)

On other hand, induction easily gives hθ(n) ≤ kn for all n ≥ 0 and θ > 0.
Thus we have for all θ > 0√

fn = δ(n−1)/2√gn = δ(n−1)/2
√
h2
θ(n)− θ2 ≤ δ(n−1)/2 kn.

Sending θ → 0 in (4.79) we obtain√
fn ≤

c1
δ1/2

(δ1/2 r1)n +
c2
δ1/2

(δ1/2 r2)n +
c3
δ1/2

where

c2 =
(δ−1/2 − r1)c3 − δ−1/2B

r1 − r2
and c1 = −c3 − c2. (4.80)

We claim that for some κ9, κ10 ∈ (0,∞)

0 < c3 < κ9

√
ε, r1 − r2 > κ9ε and 0 < 1− δ1/2 r1 < κ9ε (4.81)

for ε ∈ (0, κ10). This will imply from (4.76) that both |c3| and |c2| are of order
√
ε and

hence by (4.80), |c1| is also of order
√
ε. Also, 0 < 1 − δ1/2 r1 implies (δ1/2 r1)n → 0 as

n→∞. Therefore we obtain the desired bound

sup
n≥0

√
fn ≤ κ11

√
ε,

for ε sufficiently small. The claim (4.81) is established in the Appendix. The proof is now
complete in view of (4.66).

EJP 22 (2017), paper 8.
Page 34/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP25
http://www.imstat.org/ejp/


Uniform in time particle approximations for PKS

We now complete the proof of Corollary 3.11.

Proof of Corollary 3.11. The first statement in the corollary is immediate from Corol-
lary 3.5 and Theorem 3.10. For the second statement, we have from triangle inequality

W2(µN,εn , µnε) ≤ W2(µN,εn , µNnε) +W2(µNnε, µnε).

Also, from Theorem 3.10,

lim sup
N→∞

sup
n≥1

EW2
2 (µN,εn , µNnε) ≤ lim sup

N→∞
sup
n≥1

( 1

N

N∑
i=1

E|Y i,N,εn −Xi,N
nε |2

)
≤ Cε.

The result now follows on combining the above two displays with Corollary 3.5.

A Proof of (4.81)

To see the first inequality in the claim (4.81), note that

c3√
ε

=
δ1/2ακ8

α
(
δ1/2−δ

ε

)
(1 + λ̃ ε) − C̃2

. (A.1)

The inequality is now a consequence of the observation that δ1/2 → 1 as ε→ 0 and

lim
ε→0

α
(δ1/2 − δ

ε

)
(1 + λ̃ ε) − C̃2 = α λ̃− C̃2 > 0,

where the last inequality is from Assumption 2.4. Hence the first estimate holds.
The second inequality in the claim (4.81) follows on observing that, as ε→ 0,

(r1 − r2)2

ε2
=
p2 − 4q

ε2
=

1

ε2

(
1− e−αε

δ1/2

)2

+
4A (1− e−αε)
ε2α δ3/2

≥ 4A (1− e−αε)
ε2α δ3/2

→ 4C̃2.

For the third inequality, we need to show that 1−δ1/2 r1 is of order at most
√
ε. Clearly

1−
√
δr1 = 1− 1

2

[√
(p2 − 4q)δ + p

√
δ
]

=
1

2

[
(2− p

√
δ)−

√
(p2 − 4q)δ

]
.

Regarding p, q and δ as functions of ε, we see that

p = p(ε) = 2 + εp′(0) +O(ε2),

q = q(ε) = 1 + εq′(0) +O(ε2),
√
δ =

√
δ(ε) = 1 +

1

2
εδ′(0) +O(ε2)

Thus

(p2 − 4q) = 4ε(p′(0)− q′(0)) +O(ε2) = O(ε2)

where the last equality follows on checking that p′(0) = q′(0). This shows that√
(p2 − 4q)δ = O(ε). Also, clearly 2− p

√
δ = O(ε) and so

(2− p
√
δ)−

√
(p2 − 4q)δ = O(ε).

The desired inequality follows.
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