Translator Disclaimer
2015 Large deviation principles for the Ewens-Pitman sampling model
Stefano Favaro, Shui Feng
Author Affiliations +
Electron. J. Probab. 20: 1-26 (2015). DOI: 10.1214/EJP.v20-3668

Abstract

Let $M_{l,n}$ be the number of blocks with frequency $l$ in the exchangeable random partition induced by a sample of size $n$ from the Ewens-Pitman sampling model. In this paper we show that, as $n$ tends to infinity, $n^{-1}M_{l,n}$ satisfies a large deviation principle and we characterize the corresponding rate function. A conditional counterpart of this large deviation principle is also presented. Specifically, given an initial observed sample of size $n$ from the Ewens-Pitman sampling model, we consider an additional unobserved sample of size $m$ thus giving rise to an enlarged sample of size $n+m$. Then, for any fixed $n$ and as $m$ tends to infinity, we establish a large deviation principle for the conditional number of blocks with frequency $l$ in the enlarged sample, given the initial sample. Interestingly this conditional large deviation principle coincides with the large deviation principle for $M_{l,n}$, namely there is no long lasting impact of the given initial sample to the large deviations. Potential applications of our conditional large deviation principle are thoroughly discussed in the context of Bayesian nonparametric inference for species sampling problems.

Citation

Download Citation

Stefano Favaro. Shui Feng. "Large deviation principles for the Ewens-Pitman sampling model." Electron. J. Probab. 20 1 - 26, 2015. https://doi.org/10.1214/EJP.v20-3668

Information

Accepted: 8 April 2015; Published: 2015
First available in Project Euclid: 4 June 2016

zbMATH: 1321.60047
MathSciNet: MR3335831
Digital Object Identifier: 10.1214/EJP.v20-3668

Subjects:
Primary: 60F10
Secondary: 92D10

JOURNAL ARTICLE
26 PAGES


SHARE
Vol.20 • 2015
Back to Top