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Abstract

This work deals with a class of one-dimensional measure-valued kinetic equations,
which constitute extensions of the Kac caricature. It is known that if the initial da-
tum belongs to the domain of normal attraction of an α-stable law, the solution of the
equation converges weakly to a suitable scale mixture of centered α-stable laws. In
this paper we present explicit exponential rates for the convergence to equilibrium
in Kantorovich-Wasserstein distances of order p > α, under the natural assumption
that the distance between the initial datum and the limit distribution is finite. For
α = 2 this assumption reduces to the finiteness of the absolute moment of order p of
the initial datum. On the contrary, when α < 2, the situation is more problematic due
to the fact that both the limit distribution and the initial datum have infinite absolute
moment of any order p > α. For this case, we provide sufficient conditions for the
finiteness of the Kantorovich-Wasserstein distance.
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1 Introduction

This paper is concerned with the study of the speed of convergence to equilibrium −
with respect to Wasserstein distances − of the solution of the one–dimensional kinetic
equation {

∂tµt + µt = Q+(µt, µt)

µ0 = µ̄0.
(1.1)

The solution µt = µt(·) is a time-dependent probability measure on B(R), the Borel σ-
field of R. Following [3, 10] we assume that Q+ is a suitable smoothing transformation.
More precisely, the probability measure Q+(µ, µ) is characterized by∫

R

g(v)Q+(µ, µ)(dv) = E
[ ∫

R

∫
R

g
(
v1L+ v2R

)
µ(dv1)µ(dv2)

]
, (1.2)
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Speed of convergence in Wasserstein metrics

for all bounded and continuous test functions g ∈ Cb(R), where (L,R) is a random
vector of R2 defined on a probability space (Ω,F ,P) and E denotes the expectation
with respect to P.

For suitable choices of (L,R), equation (1.1)-(1.2) reduces to well-known simplified
models for a spatially homogeneous gas, in which particles move only in one spatial
direction. The basic assumption is that particles change their velocities only because of
binary collisions. When two particles collide, then their velocities change from v and w,
respectively, to

v′ = L1v +R1w w′ = R2v + L2w

where (L1, R1) and (L2, R2) are two identically distributed random vectors with the
same law of (L,R). A fundamental hypothesis on (L,R) in this kind of equation is that
there exists an α in (0, 2] such that

E
[
|L|α + |R|α

]
= 1. (1.3)

The first model of type (1.1)-(1.2) has been introduced by Kac [22], with collisional
parameters L = sin θ̃ and R = cos θ̃ for a random angle θ̃ uniformly distributed on [0, 2π).

The inelastic Kac equation, introduced in [29] to describe gases with inelastically col-
liding molecules, corresponds to (1.1)-(1.2) with L = | sin θ̃|d sin θ̃ and R = | cos θ̃|d cos θ̃,
where d > 0 is the parameter of inelasticity. In this case, (1.3) holds with α = 2/(d+ 1).

A less standard application of equations of type (1.1)-(1.2) is concerned with the
construction of kinetic models for conservative economies. These models consider the
evolution of wealth distribution in a market of agents which interact through binary
trades, see for example [5, 7, 24, 27].

Finally, we mention that, using results in [9], it can be shown that the isotropic
solutions of the multidimensional inelastic homogeneous Boltzmann equation [8] are
functions of one-dimensional µt that are solutions of equation (1.1)-(1.2) for a suitable
choice of (L,R) and µ̄0.

Recently, the generalized Kac-equation (1.1)-(1.2) has been extensively studied in
many aspects. In particular, the asymptotic behavior of the solutions of (1.1)-(1.2) has
been satisfactory treated in [2, 3, 10], while the problem of propagation of smoothness
has been addressed in [24, 25] when α = 1 or α = 2.

In [3] it is proved that, if L and R are positive random variables such that (1.3) holds
true for α ∈ (0, 1) ∪ (1, 2], E[Lp + Rp] < 1 for some p > α and µ̄0 belongs to the domain
of normal attraction of an α-stable law (µ̄0 being centered if α > 1), then the solution µt
converges weakly to a probability measure µ∞, that is a mixture of centered α-stable
distributions. Some extra conditions are needed for the case α = 1, but the result is
essentially of the same type. For a precise statement of these results, see Theorems
2.2 and 2.3 in Section 2.4. As for the limit distribution, it is easy to see that µ∞ is a
steady state, that is a fixed point of the smoothing transformation Q+. Moreover, it
has been proved that also the mixing distribution is a fixed point of another smoothing
transformation. For more information on fixed points of smoothing transformations see
[16]. See also the very recent paper [1] and the references therein.

In addition to the problem of finding sufficient (and eventually necessary, see e.g.
[20]) conditions for the relaxation to the steady state, an important problem is to deter-
mine explicit rates of convergence to the equilibrium with respect to suitable probability
metrics.

In the case of the Kac equation, that has the Gaussian distribution as steady state,
rates of convergence with respect to Kolmogorov’s uniform metric, weighted χ-metrics
of order p ≥ 2, Wasserstein metrics of order 1 and 2 and total variation distance have
been proved. See [14, 15, 19]. As for the inelastic Kac equation, in [4] rates of con-
vergence to equilibrium with respect to Kolmogorov’s uniform metric and χ-weighted
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metrics have been derived. For the solutions of the general model (1.1)-(1.2) less is
known. Some results for the Wasserstein distances, of order p ≤ 2 have been proved in
[2, 3].

The aim of this article is to prove new exponential bounds for the speed of approach
to equilibrium for the solution of (1.1)-(1.2) with respect to Wasserstein metrics of any
order.

Our main results from Theorems 3.4, 3.5 and 3.14 can be summarized as follows:
Assume that L and R are positive random variables such that P{L > 0} + P{R >

0} > 1, (1.3) holds with α ∈ (0, 1)∪(1, 2] and E[Lp+Rp] < 1 for some p > α. If µ̄0 belongs
to the domain of normal attraction of an α-stable law (µ̄0 being centered if α > 1) and
the Wasserstein distance dp(µ̄0, µ∞) is finite, then

dp(µt, µ∞) ≤ Cµ̄0,pe
−Kα,pt

for suitable positive constants Cµ̄0,p and Kα,p.
A similar result holds for α = 1, see Theorem 3.5. The constant Kα,p, that will be

explicitly computed for α ≤ 2, depends only on the law of (L,R), while Cµ̄0,p depends
also on µ̄0 and is finite if dp(µ̄0, µ∞) < +∞. It is worth noticing that, if α < 2, the
assumption dp(µ̄0, µ∞) < +∞ is a non-trivial requirement, since, with the exception of
some degenerate case, one has that

∫
R
|x|pµ̄0(dx) = +∞ and

∫
R
|x|pµ∞(dx) = +∞ for

every p > α. For this reason, sufficient conditions for the finiteness of dp(µ̄0, µ∞) will be
presented.

The rest of the paper is organized as follows: Section 2 contains a brief summary of
some known results on the relaxation to equilibrium for the solution of equation (1.1)-
(1.2). Section 3 contains the main results of the paper. More specifically, Subsection
3.1 presents the exponential bound for the Wasserstein distance dp(µt, µ∞) in the case
α < 2. Subsection 3.2 contains some sufficient condition for dp(µ̄0, µ∞) < +∞ when
α < 2. Finally, Subsection 3.3 treats the case α = 2. The proofs are collected in
Sections 4-7.

2 Preliminary results

The following assumption will be needed throughout the paper.

Assumption (H0): L and R are non-negative random variables such that

P{L > 0}+ P{R > 0} > 1, (2.1)

moreover there exist α in (0, 2] and p > 0 satisfying

E
[
Lα +Rα

]
= 1 (2.2)

and
E
[
Lp +Rp

]
< 1. (2.3)

For later reference, introduce the convex function S : [0,∞)→ [−1,∞] by

S(s) = E[Ls +Rs]− 1,

with the convention that 00 = 0. Clearly, under (H0), S(α) = 0 and S(p) < 0. In addition,
one has that

P{(L,R) ∈ {0, 1}2} < 1 and S(0) > 0. (2.4)
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2.1 Probabilistic representation of the solution

In this paper we shall use the Fourier formulation of (1.1). We say that µt is a
(weak) solution of (1.1), with initial condition µ̄0, if its Fourier-Stieltjes transform µ̂t(ξ) =∫
R
eiξvµt(dv) obeys to the equation

∂tµ̂t(ξ) + µ̂t(ξ) = Q̂+[µ̂t, µ̂t](ξ) (t > 0, ξ ∈ R)

µ̂0(ξ) :=

∫
R

eiξvµ̄0(dv)
(2.5)

where

Q̂+[f, g](ξ) := E[f(Lξ)g(Rξ)] (2.6)

for any couple of characteristic functions (f, g).
As in the case of the Kac equation, it is easy to see that (2.5) admits a unique solution

µ̂t (in the class of the Fourier-Stieltjes transforms) which can be written as a Wild series
[33]

µ̂t(ξ) =
∑
n≥0

e−t(1− e−t)nqn(ξ), (2.7)

where q0(ξ) := µ̂0(ξ) and, for n ≥ 1,

qn(ξ) :=
1

n

n−1∑
j=0

Q̂+(qj , qn−1−j)(ξ). (2.8)

In [3] it has been shown that the solution of (1.1) is related to a suitable stochastic
process. More precisely, the unique solution µt of (1.1) with initial datum µ̄0 is the law
of the weighted random sum

Vt :=

Nt∑
j=1

βj,NtXj ,

with the following elements defined on a sufficiently large probability space (Ω,F ,P):

• a sequence (Xj)j≥1 of i.i.d. random variables with distribution µ̄0;

• a stochastic process (Nt)t≥0 which takes values in N and with

P{Nt = n} = e−t(1− e−t)n−1

for every n ≥ 1 and t ≥ 0;

• a random array of weights (βj,n : j = 1, . . . , n)n≥1 recursively defined by:
β1,1 := 1

(β1,2, β2,2) := (L1, R1)

(β1,n+1, . . . , βn+1,n+1)

:= (β1,n, . . . , βIn−1,n, LnβIn,n, RnβIn,n, βIn+1,n, . . . , βn,n).

where (Ln, Rn)n≥1 is a sequence of independent and identically distributed (i.i.d.,
for short) random vectors with the same distribution of (L,R), and (In)n≥1 is a
sequence of independent random variables such that In is uniformly distributed
on {1, . . . , n} for every n ≥ 1;

• (Xj)j≥1, (Nt)t≥0, (Ln, Rn)n≥1, (In)n≥1 are stochastically independent.
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As a matter of fact, it is possible to prove that for every n ≥ 1, q̂n−1 − defined in (2.8) −
is the characteristic function of the random variable

Wn :=

n∑
j=1

βj,nXj . (2.9)

See the proof of Proposition 1 in [3]. Since Vt = WNt , from (2.7) it follows that µt is the
law of Vt.

2.2 Martingale of weights and fixed point equations for distributions

It is easy to prove that, under (H0),
∑n
j=1 β

α
j,n is a (positive) martingale and hence it

converges a.s. (as n → +∞) to a random variable M (α)
∞ . Moreover, M (α)

∞ satisfies the
fixed point equation for distributions

M (α)
∞

d
= LαM

(α)
∞,1 +RαM

(α)
∞,2. (2.10)

In (2.10), M (α)
∞,1, M (α)

∞,2 and (L,R) are stochastically independent, M (α)
∞,1 and M

(α)
∞,2 have

the same law of M (α)
∞ , and Z1

d
= Z2 means that the random variables Z1 and Z2 have

the same distribution. For a proof of these facts see Proposition 2 in [3].
Note that equation (2.10) can be written in terms of the characteristic function

ν̂α(ξ) = E[exp{iξM (α)
∞ }] as

ν̂α(ξ) = E[ν̂α(Lαξ)ν̂α(Rαξ)] (ξ ∈ R). (2.11)

In the next proposition we collect some useful properties of the solution of equations
(2.10)-(2.11).

Proposition 2.1 ([1, 16, 23]). Let (H0) be in force with α < p. Then, there is a unique
probability distribution να on B(R+) with

∫
R+ vνα(dv) = 1 and Fourier-Stieltjes trans-

form ν̂α(ξ) =
∫
R
eiξvνα(dv) satisfying equation (2.11). Moreover,

(i) If Lα +Rα = 1 almost surely, then να(·) = δ1(·);
(ii) If P{Lα+Rα = 1} < 1, then να is non-degenerate and, for any q > α,

∫
R+ v

q
α να(dv)

< +∞ if and only if S(q) < 0.

2.3 Stable laws

Recall that a probability distribution gα is said to be a centered stable law of expo-
nent α (with 0 < α ≤ 2) and real parameters (λ, β), λ > 0 and |β| ≤ 1, if its Fourier-
Stieltjes transform ĝα(ξ) =

∫
R
eiξvgα(dv) has the form

ĝα(ξ) =


exp{−λ|ξ|α(1− iβ tan(πα/2) sign ξ)} if α ∈ (0, 1) ∪ (1, 2)

exp{−λ|ξ|(1 + 2iβ/π log |ξ| sign ξ)} if α = 1

exp{−λ|ξ|2} if α = 2.
(2.12)

By definition, a probability measure µ̄0 belongs to the domain of normal attraction
of a stable law of exponent α if for any sequence of i.i.d. real-valued random variables
(Xn)n≥1 with common distribution µ̄0, there exists a sequence of real numbers (cn)n≥1

such that the law of n−1/α
∑n
i=1Xi− cn converges weakly to a stable law of exponent α.

It is well-known that, provided α 6= 2, a probability measure µ̄0 belongs to the
domain of normal attraction of an α-stable law if and only if its distribution function

F0(x) := µ̄0

(
(−∞, x]

)
satisfies

lim
x→+∞

xα(1− F0(x)) = c+0 < +∞, lim
x→−∞

|x|αF0(x) = c−0 < +∞. (2.13)
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Typically, one also requires that c+0 + c−0 > 0 in order to exclude convergence to the
probability measure concentrated in 0, but here we shall include the situation c+0 =

c−0 = 0 as a special case. The parameters λ and β of the associated stable law in (2.12)
are related to c+0 and c−0 by

λ =
(c+0 + c−0 )π

2Γ(α) sin(πα/2)
, β =

c+0 − c
−
0

c+0 + c−0
, (2.14)

with the convention that β = 0 if c+0 + c−0 = 0. In contrast, if α = 2, F0 belongs to the
domain of normal attraction of a Gaussian law if and only if it has finite variance σ2.
The parameter λ of the associated Gaussian law in (2.12) is given by λ = σ2

2 . See for
example Chapter 17 of [18] and Chapter 2 of [21].

2.4 Convergence to Steady states

We are ready to state the results concerning the convergence of µt to a steady state,
that is a probability measure µ∞ such that

µ∞ = Q+(µ∞, µ∞).

Theorem 2.2 ([3]). Assume that (H0) holds true with α 6= 1 and that F0 satisfies (2.13).
In addition, assume that

∫
R
vµ̄0(dv) = 0 if α > 1. If p < α, then µt converges weakly to

the degenerate probability measure δ0, while, if p > α, then µt converges weakly to a
steady state µ∞ with Fourier-Stieltjes transform∫

R

eiξvµ∞(dv) =

∫
[0,+∞)

e−λm|ξ|
α[1−iβ tan(απ2 ) sign ξ]να(dm) (ξ ∈ R), (2.15)

where να is the same as in Proposition 2.1 and the parameters λ and β are defined in
(2.14) for α < 2 and (λ, β) = (σ2/2, 0) for α = 2.

We conclude this section by considering the case in which α = 1. We state a slight
variant of Theorem 4 in [3].

Theorem 2.3. Assume that (H0) holds with α = 1. Suppose that F0 satisfies

lim
x→−∞

|x|F0(x) = lim
x→+∞

x
[
1− F0(x)

]
= c0 ∈ [0,+∞) (2.16)

and suppose, in addition, that

lim
R→+∞

∫
(−R,R)

xdF0(x) = γ0 (2.17)

with −∞ < γ0 < +∞. If p < 1, then µt converges weakly to the degenerate probability
measure δ0, while, if p > 1, then µt converges weakly, as t → +∞, to a steady state µ∞
with Fourier-Stieltjes transform∫

R

eiξvµ∞(dv) =

∫
R+

em(iγ0ξ−c0π|ξ|)ν1(dm) (2.18)

where ν1 is the same as in Proposition 2.1.

This theorem can be proved in a very similar way of Theorem 1 of [3], for the sake
of completeness a sketch of the proof is given in Appendix B.

Remark 2.4. It is worth noticing that the steady states µ∞ described in Theorems
2.2-2.3 are the unique possible fixed points of Q+. See Theorems 2.1 and 2.2 in [1].
Necessary conditions for the convergence of µt to a steady state µ∞ are investigated in
[28].
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3 Rates of convergence in Wasserstein distances

The minimal Lp-metric − or Kantorovich-Wasserstein distance of order p − (p > 0)
between two probability measures µ1 and µ2 on B(R) is defined by

dp(µ1, µ2) := inf
m∈M(µ1,µ2)

(∫
R2

|x− y|pm(dxdy)
)1∧1/p

, (3.1)

whereM(µ1, µ2) is the class of all the probability measures on B(R2) with marginals µ1

and µ2, that is the probability measures m such that m(· × R) = µ1(·) and m(R × ·) =

µ2(·). In general, the infimum in (3.1) may be infinite; a sufficient (but not necessary)
condition for having finite distance between µ1 and µ2 is that both

∫
R
|v|pµ1(dv) < +∞

and
∫
R
|v|pµ2(dv) < +∞. An important property of the Kantorovich-Wasserstein distance

is its close connection with weak convergence of probability measures; namely, if (νt)t≥0

is a family of probability measures such that
∫
R
|v|pνt(dv) < +∞ for every t ≥ 0 and ν∞

is a probability measure such that
∫
R
|v|pν∞(dv) < +∞, then dp(νt, ν∞)→ 0, as t→ +∞,

if and only if νt converges weakly to ν∞ and∫
R

|x|pνt(dx)→
∫
R

|x|pν∞(dx) for t→∞.

See, e.g., Lemma 8.4.35 in [30]. Recall also that dp(νt, ν∞) → 0, as t → +∞, yields the
weak convergence of νt to ν∞, even if

∫
R
|v|pνt(dv) = +∞ for every t ≥ 0.

In the rest of the section we deal with the problem of providing an upper bound
for dp(µt, µ∞) when µt is the solution of (1.1) with initial condition µ̄0 and µ∞ is the
corresponding steady state.

When α 6= 1, 2, taking advantage of a probabilistic representation of the solution re-
called in Section 2.1, it is relatively easy to get an upper bound for dp(µt, µ∞) whenever
p ≤ 2. The reason of the restriction to p ≤ 2 is that in proving such kind of estimates a
key point is the employment of the von Bahr - Esseen inequality for sums of independent
random variables – see (4.5) –, which holds only if p ≤ 2. In order to enunciate these
rates of convergence we recall that the so-called spectral function, introduced in [10],
is the function ϕ : (0,+∞)→ R := R ∪ {−∞,+∞} defined by

ϕ(q) :=
S(q)

q
. (3.2)

Theorem 3.1 ([3]). Let the same assumptions of Theorem 2.2 be in force for some p
with 1 < α < p ≤ 2 or α < p ≤ 1. If dp(µ̄0, µ∞) < +∞, then

dp(µt, µ∞) ≤ A
1
p∧1dp(µ̄0, µ∞)e−t|ϕ(p)|(p∧1),

with A = 1 if p ≤ 1, or A = 2 otherwise.

Remark 3.2. It is worth noticing that, if α < 2 and c+0 + c−0 > 0, the assumption
dp(µ̄0, µ∞) < +∞ is a non-trivial requirement, since

∫
R
|x|pµ̄0(dx) = +∞ and∫

R
|x|pµ∞(dx) = +∞ for every p > α. In Section 3.2 we will give sufficient conditions

for the finiteness of dp(µ̄0, µ∞).

Theorem 3.1 does not cover the cases α = 1 and α = 2 and the cases α ∈ (0, 1) and
p > 1 or α ∈ (1, 2) and p > 2. In the next sections we will plug this gap.

3.1 Statement of the main results for α < 2

In this section we will enunciate two results which provide (exponential) rates of
convergence to equilibrium for the solution of (1.1) with respect to the Wasserstein dis-
tances of any order. The proofs of these statements will be established by using the
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probabilistic representation of the solution of (1.1) and employing an inductive argu-
ment inspired by a technique developed in [17]. This inductive argument makes use
of rates of convergence to equilibrium with respect to Wasserstein distances of order
p ≤ 2; thus, it is crucial to have estimates for dp(µt, µ∞) when p ≤ 2. Theorem 3.1
fulfills our need if α 6= 1, while, when α = 1, we have to prove an estimate that will
make us able to proceed with the next inductive argument. This key step is provided by
the following theorem.

Theorem 3.3. Assume that (H0) holds true with α = 1 and 1 < p ≤ 2, and that µ̄0

satisfies the assumptions of Theorem 2.3. If dp(µ̄0, µ∞) < +∞, then

dp(µt, µ∞) ≤ Cpe−t|ϕ(p)|, (3.3)

for a suitable constant Cp = Cp(µ̄0) < +∞.

Note that if
∫
R
|v|µ̄0(dv) < +∞, then c0 = 0, γ0 =

∫
R
vµ̄0(dv) and µ∞(·) = ν1(·/γ0).

By Proposition 2.1 (ii), since S(p) < 0, we know that
∫
R+ v

pν1(dv) < +∞ and hence∫
R
|v|pµ∞(dv) < +∞. Thus, dp(µ̄0, µ∞) < +∞ if and only if

∫
R
|v|pµ̄0(dv) < +∞ and

Theorem 3.3 reduces to Theorem 5 of [3]. Analogously, if µ̄0 is symmetric and satisfies
(2.16), then the previous theorem reduces to Theorem 2.4 in [2].

In order to introduce the generalizations of Theorems 3.1 and 3.3 to Kantorovich-
Wasserstein metrics of higher order, we define, for i = 1, 2 and every q ≥ i,

Ki(q) := max{ϕ(i), ϕ(q)}.

We are now in the position to enunciate the aforementioned exponential rates of con-
vergence, which are divided into two different theorems according to the value of α.

Theorem 3.4 (0 < α < 1). Assume that (H0) holds true with 0 < α < 1 and p > 1.
Assume also that µ̄0 satisfies the hypotheses of Theorem 2.2 and that dp(µ̄0, µ∞) < +∞.
Then there exists a constant Cp = Cp(µ̄0) < +∞ such that

dp(µt, µ∞) ≤
{
Cpe

−t|K1(p)| if ϕ(p) 6= ϕ(1)

Cpte
−t|K1(p)| if ϕ(p) = ϕ(1)

(3.4)

for every t ≥ 0.

Theorem 3.5 (1 ≤ α < 2). Assume that (H0) holds true with 1 ≤ α < 2 and p > 2. If
α = 1 suppose that µ̄0 satisfies the hypotheses of Theorem 2.3, while if 1 < α < 2 assume
that µ̄0 satisfies the hypotheses of Theorem 2.2. Assume also that dp(µ̄0, µ∞) < +∞.
Then there exists a constant Cp = Cp(µ̄0) < +∞ such that

dp(µt, µ∞) ≤
{
Cpe

−t|K2(p)| if ϕ(p) 6= ϕ(2)

Cpte
−t|K2(p)| if ϕ(p) = ϕ(2)

(3.5)

for every t ≥ 0.

We conclude this subsection with a couple of examples.

Example 3.6. Let us consider the case in which L = 1 − R = U where U is a random
variable uniformly distibuted on (0, 1). In this special case S(s) = 1−s

1+s and ϕ(s) = 1−s
s(1+s) .

Since 0 = S(1) > S(p) for every p > 1, Theorem 2.3 can be applied. In particular, using
also Proposition 2.1 (i), we have that ν1 = δ1 and µ∞ is a Cauchy distribution of scale
parameter πc0 and position parameter γ0. Noticing that ϕ(2) = ϕ(3) = −1/6, Lemma
5.2 in Section 5 entails that Theorem 3.5 holds with

K2(p) =

{
−1/6 if 2 ≤ p ≤ 3

(1− p)/(p+ p2) if p > 3.

EJP 18 (2013), paper 6.
Page 8/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2054
http://ejp.ejpecp.org/


Speed of convergence in Wasserstein metrics

Example 3.7. Another interesting example is the case of the inelastic Kac equation
[29]. The inelastic Kac equation can be reduced to a special case of equation (1.1)-
(1.2) with L = | cos(θ̃)|1+d and R = | sin(θ̃)|1+d, θ̃ being a random variable uniformly
distributed on (0, 2π) and d > 0. In this case

S(s) =
1

2π

∫
(0,2π)

(| sin(θ)|(1+d)s + | cos(θ)|(1+d)s)dθ − 1

=
1

π

∫
(0,2π)

| sin(θ)|(1+d)sdθ − 1 =
2√
π

Γ(d+1
2 s+ 1

2 )

Γ(d+1
2 s+ 1)

− 1

where Γ(x) =
∫ +∞

0
tx−1e−tdt. Clearly S(α) = 0 for α = 2/(d + 1), moreover S(p) < 0

for every p > α, so that Theorems 2.2-2.3 can be applied. As before, να = δ1 and
µ∞ is an α-stable distribution. Since lims→+∞ S(s) = −1, then lims→+∞ ϕ(s) = 0 and,

invoking Lemma 5.2, one proves that ϕ(s) has a unique minimum point in p
(d)
0 . Clearly

p
(d)
0 = p

(1)
0 2/(d+ 1) where p(1)

0 is the unique minimum point of

s→ 1

s

( 2√
π

Γ(s+ 1
2 )

Γ(s+ 1)
− 1
)
.

Numerically one sees that p(1)
0 ≈ 2.413. On the one hand, it is easy to check that if d ≤ 1,

i.e. α ≥ 1, one has p(d)
0 > 2. Hence, in this case, there exists a point p∗d > 2 such that

K2(p) = ϕ(2) if 2 < p < p∗d and K2(p) = ϕ(p) if p ≥ p∗d. On the other hand, if d > 1,

i.e. α < 1, one has two different situations: (i) p(d)
0 ≤ 1 whenever d ≥ 2p

(1)
0 − 1 ≈ 3.826,

thus K1(p) = ϕ(p) for every p ≥ 1; (ii) p(d)
0 > 1 whenever d < 2p

(1)
0 − 1 ≈ 3.826, thus

K1(p) = ϕ(1) if 1 < p < p∗d and K1(p) = ϕ(p) if p ≥ p∗d for a suitable p∗d > 1.

3.2 Asymptotic expansion for the tails of µ∞ and sufficient conditions for the
finiteness of dp(µ̄0, µ∞) when α < 2

In the theorems of the previous subsection the constants Cp – which could be explic-
itly computed in the proofs of Theorems 3.4 and 3.5 – depend on dp(µ̄0, µ∞) and hence
the assumption dp(µ̄0, µ∞) < +∞ is a fundamental requirement for (3.4) and (3.5) to be
meaningful. In some particular cases this assumption reduces to a simpler hypothesis
on the finiteness of the absolute p-th moment of the initial datum µ̄0. More precisely, as
already noted after Theorem 3.3, if α = 1 and

∫
R
|v|µ̄0(dv) < +∞, then dp(µ̄0, µ∞) < +∞

if and only if
∫
R
|v|pµ̄0(dv) < +∞. Furthermore, if α ∈ (0, 1) ∪ (1, 2) and c+0 + c−0 = 0,

then µ∞ = δ0, and therefore dp(µt, µ∞) − in Theorems 3.4 and 3.5 − reduces to the
absolute moment of order p of µt. In particular, dp(µ̄0, µ∞) < +∞ holds true if and only
if
∫
R
|x|pµ̄0(dx) < +∞. All the other cases are more problematic. Indeed, as already

recalled, if α < 2 and c+0 + c−0 > 0, then
∫
R
|x|pµ̄0(dx) = +∞ as well

∫
R
|x|pµ∞(dx) = +∞

for every p > α.

Here we give a criterion that provides the finiteness of dp(µ̄0, µ∞) when p > α. The
main result of this section is contained in Theorem 3.10 which extends Lemma 1 of [3].
Let us start by noticing that (2.15) can be immediately rewritten in terms of random
variables as follows: under the hypotheses of Proposition 2.1 and Theorem 2.2, let
M

(α)
∞ be the unique solution of equation (2.10), consider an α-stable random variable

Sα of parameters (λ, β) given by (2.14) and assume that M (α)
∞ and Sα are stochastically

independent. Finally, let V∞ be a random variable whose probability distribution is µ∞.
Then, (2.15) becomes

V∞
d
= Sα

(
M (α)
∞

) 1
α

. (3.6)
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Note that, in the same way, (2.18) becomes

V∞
d
= (S1 + γ0)M (1)

∞ = Cλ,γ0M
(1)
∞ , (3.7)

where Cλ,γ0 is a Cauchy random variable of scale parameter λ = πc0 and position pa-
rameter γ0, and S1 = Cλ,0. In other words, for every α ∈ (0, 2], V∞ is an α-stable random

variable randomly rescaled by
(
M

(α)
∞

) 1
α

.

It is useful to observe that, in order to obtain sufficient conditions for the finiteness
of dp(µ̄0, µ∞), when α = 1 we can suppose, without loss of generality, that γ0 = 0. This
fact is justified by the next lemma.

Lemma 3.8. Let (H0) hold true with α = 1 and p > 1. Assume that µ̄0 satisfies (2.16)
and (2.17), define µ̄∗0(·) := µ̄0(· + γ0) and let µ∗∞ be the corresponding steady state.
Then, limR→+∞

∫
(−R,R)

xµ̄∗0(dx) = 0 and∫
R

eiξvµ∗∞(dv) =

∫
R+

e−mc0π|ξ|ν1(dm). (3.8)

In addition, dp(µ̄0, µ∞) < +∞ if and only if dp(µ̄∗0, µ
∗
∞) < +∞.

Hence, in the rest of this section, we assume that γ0 = 0 whenever α = 1. Under
this assumption, (3.7) reduces to (3.6) and we can write

F∞(x) := µ∞

(
(−∞, x]

)
= P

{
Sα

(
M (α)
∞

) 1
α ≤ x

}
= E

[
Fα

(
x
(
M (α)
∞

)− 1
α

)
I{M(α)

∞ 6=0} + I{x≥0}I{M(α)
∞ =0}

] (3.9)

where Fα is the distribution function of Sα. At this stage we can derive a useful asymp-
totic expansion of F∞ combining (3.9) with the well-known asymptotic expansion for
the probability distribution function of a stable law.

Proposition 3.9. Let 0 < α < 2. If α 6= 1 let the same assumptions of Theorem 2.2 hold
with c+0 + c−0 > 0, while if α = 1 let the same hypotheses of Theorem 2.3 be in force with
γ0 = 0 and c0 > 0. Let F∞ be the distribution function of the steady state µ∞ described
in Theorem 2.2, Theorem 2.3 respectively. Then

(i) If α 6= 1, |β| 6= 1 and S(α(k + δ)) < 0 for some integer k ≥ 1 and some δ ∈ (0, 1],

then mi := E[(M
(α)
∞ )i] < +∞ for i = 1, . . . , k and

F∞(x) =
c̃−0
|x|α

+
c̃−1
|x|2α

+ · · ·+
c̃−k−1

|x|kα
+O

( 1

|x|(k+δ)α

)
for x→ −∞ (3.10)

1− F∞(x) =
c̃+0
xα

+
c̃+1
x2α

+ · · ·+
c̃+k−1

xkα
+O

( 1

x(k+δ)α

)
for x→ +∞ (3.11)

where c̃±i := c±i mi+1 for i = 0, . . . , k − 1, with c±0 being defined by (2.13) and
(c±i )1≤i≤k−1 suitable constants (see (A.3) in Appendix A). If α 6= 1 and β = −1

[β = 1, resp.] and S(α(k + δ)) < 0, then (3.10) holds and 1 − F∞(x) = O
(

1
xη

)
for

x → +∞ [(3.11) holds and F∞(x) = O
(

1
|x|η

)
for x → −∞, resp.] for every η > 0

such that S(η) < 0.
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(ii) If α = 1 and S(2k − 1 + δ) < 0 for some integer k ≥ 1 and δ ∈ (0, 2], then m2i+1 :=

E[(M
(1)
∞ )2i+1] < +∞ for i = 0, . . . , k − 1, F∞ is symmetric and

F∞(x) =

k−1∑
i=0

c̃−i
|x|2i+1

+O

(
1

|x|2k−1+δ

)
for x→ −∞.

with c̃−i := (−1)iλ2i+1m2i+1

π(2i−1) for i = 0, . . . , k − 1.

For the proof of this proposition the reader is deferred to Appendix A.
It is worth noticing that − with the exception of few cases, see e.g. [6] − in general

there is no analytical expression of the law of M (α)
∞ , i.e. να. Nevertheless, having an

explicit expression of the mixed moment of (L,R), it is always possible to recursively

determine the exact expression of the integer moments of να, i.e. mi := E[(M
(α)
∞ )i].

Indeed, m1 = 1 and, for i = 2, . . . , k,

mi =
1

1− E[Lαi +Rαi]

i−1∑
j=1

(
i

j

)
E[LαjRα(i−j)]mjmi−j .

This recursive formula can be easily obtained using (2.10) and Newton binomial for-
mula. The next theorem provides the announced sufficient conditions on the initial
datum µ̄0 that ensure the finiteness of dp(µ̄0, µ∞). Essentially, dp(µ̄0, µ∞) is finite when-
ever the tails of F0 are close enough to the tails of F∞.

Theorem 3.10. Let 0 < α < 2. If α 6= 1 let the same assumptions of Theorem 2.2 hold
with c+0 + c−0 > 0, while if α = 1 let the same hypotheses of Theorem 2.3 be in force with

γ0 = 0 and c0 > 0. Let p > α and set k :=
⌊
1 + p−α

pα

⌋
.

(i) Let |β| 6= 1. Assume that S(s) < 0 for some s > α+ (p− α)/p and that F0 satisfies

∣∣∣F0(x)−
k−1∑
i=0

c̃−i
|x|(i+1)α

∣∣∣ ≤ ζ(|x|)
|x|(1+ p−α

pα )α
for x→ −∞ (3.12)

∣∣∣1− F0(x)−
k−1∑
i=0

c̃+i
|x|(i+1)α

∣∣∣ ≤ ζ(x)

|x|(1+ p−α
pα )α

for x→ +∞ (3.13)

where c̃−0 , c̃
+
0 , c̃
−
1 , c̃

+
1 , . . . , c̃

−
k−1, c̃

+
k−1 are given in Proposition 3.9 and

ζ : (0,+∞)→ R+ is a continuous, monotone decreasing function on [B,+∞) such
that ∫ +∞

B

ζp(x)

x
dx < +∞ (3.14)

for some B > 0. Then
dp(µ̄0, µ∞) < +∞.

(ii) If α 6= 1, β = −1 [β = 1, resp.], suppose that (3.12) [(3.13), resp.] holds true,
that

∫ +∞
0
|x|pdF0(x) < +∞ [

∫ 0

−∞ |x|
pdF0(x) < +∞, resp.] and S(s) < 0 for some

s > max(p, α+ (p− α)/p). Then

dp(µ̄0, µ∞) < +∞.

Remark 3.11. A simple example of function ζ is ζ(x) := |x|−ε for some ε > 0, but
one can also take functions that decrease to infinity slower than a power, for instance

ζ(x) := (log x)−
1+ε
p .
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Note that if p > α ≥ 1 then 1 ≤ 1 + p−α
pα < 2. Hence, in this case k = b1 + p−α

pα c = 1.
This means that (3.12)-(3.13) are similar to the conditions that describe to so-called
strong domain of attraction of an α-stable law, i.e.

1− F0(x) =
c+0
|x|α

+O
( 1

|x|α+δ

)
, F0(x) =

c−0
|x|α

+O
( 1

|x|α+δ

)
,

for |x| → ∞ and for some δ > 0. See, for instance, [12].

3.3 Some estimates for α = 2

In this section we assume that (H0) holds true with α = 2 and we provide some
estimates for the rate of convergence to equilibrium with respect to Wasserstein dis-
tances of order p > 2. To do so, we will employ the same inductive argument on the
order p used in the proof of Theorems 3.4 and 3.5. The first obstacle in this procedure
is that, at the best of our knowledge, when α = 2, there is not a result comparable to
those of Theorems 3.1 and 3.3. The only exception is for the Kac model; in this case
rates of convergence both in d1 and in d2 are known [19]. It would be useful to prove a
result similar to Theorems 3.1 and 3.3 for α = 2 to get estimates for dp(µt, µ∞) − with
1 ≤ p ≤ 2 − and use them as the first step of the inductive argument. The main problem
is that we do not manage to give non trivial upper bounds for dp(µt, µ∞) with 1 < p ≤ 2.
Indeed, the only explicit estimate that we are able to provide is given by

dp(µt, µ∞) ≤ Γ2 (3.15)

for some positive constant Γ2, for every t ≥ 0 and for every 1 < p ≤ 2. This trivial
inequality follows since dp ≤ d2 for every 1 < p ≤ 2 and d2(µt, µ∞) → 0 as t → +∞.
The convergence to zero of d2(µt, µ∞) is a consequence of the weak convergence of µt
to µ∞ supplemented by the fact that, when µ̄0 satisfies the assumptions of Theorem 2.2
(i.e. it has zero mean and finite variance), one has

∫
R
x2µt(dx) =

∫
R
x2µ∞(dx) for every

t ≥ 0.
As for d1, we obtain a non trivial bound passing through Fourier distances. Recall that
for every s > 0 the Fourier distance χs (also known as weighted χ-metric of order s)
between two probability measures µ1 and µ2 on B(R) is defined as

χs(µ1, µ2) := sup
ξ 6=0

|µ̂1(ξ)− µ̂2(ξ)|
|ξ|s

where µ̂i(ξ) =
∫
R
eiξxµi(dx) for every ξ ∈ R and i = 1, 2. These distances are very useful

in order to easily obtain rates of convergence to equilibrium for every α ∈ (0, 2]. Indeed,
one can plainly prove the following:

Proposition 3.12. Assume that (H0) holds true with α ∈ (0, 2] and p > α. If α 6= 1

suppose that µ̄0 satisfies the hypotheses of Theorem 2.2, while if α = 1 suppose that µ̄0

satisfies the hypotheses of Theorem 2.3. If χp(µ̄0, µ∞) < +∞, one has

χp(µt, µ∞) ≤ χp(µ̄0, µ∞)etS(p).

In Section 6 we will prove that, for a suitable δ > 0, the Fourier distance of order
2 + δ can be used as an upper bound for the Wasserstein distance of order 1. Combining
this fact with Proposition 3.12 with α = 2, we will prove the following:

Theorem 3.13. Assume that (H0) holds true with α = 2 and p > 2, and that µ̄0 satisfies
the hypotheses of Theorem 2.2. Then, for every δ ∈ (0, 1) such that 2 + δ ≤ p and∫
R
|x|2+δµ̄0(dx) < +∞, there exists a constant 0 < C < +∞ such that

d1(µt, µ∞) ≤ Cχ2+δ(µ̄0, µ∞)
1

3(2+δ) et
ϕ(2+δ)

3
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for every t ≥ 0 with χ2+δ(µ̄0, µ∞) < +∞.

The next theorem provides some estimates for the rate of convergence to equilib-
rium with respect to Wasserstein distances of order higher than 2.

Theorem 3.14 (α = 2). Assume that (H0) holds true with α = 2 and p > 2, and that
µ̄0 satisfies the hypotheses of Theorem 2.2. If

∫
R
|x|pµ̄0(dx) < +∞, then there exist a

constant 0 < Cp = Cp(µ̄0) < +∞ such that for every t ≥ 0

dp(µt, µ∞) ≤
{
Cpe

−tRp if S(p) 6= 1
3ϕ(2 + εp)

Cpte
−tRp if S(p) = 1

3ϕ(2 + εp)

with −Rp = max{ϕ(p),
ϕ(2+εp)

3p } and where εp ∈ (0, 1] is the fractionary part of p.

4 Proofs of Theorem 3.3 and Lemma 3.8

We start with some useful remarks related to the probabilistic representation of the
solution. Here and in the rest of the paper L(Z) denotes the law of a random variable
Z.

Combining (2.6) and (2.8), it is plain to check that

Wn+1
d
= LW ′In +RW ′′n+1−In for every n ≥ 1 (4.1)

where (W ′k)k≥1, (W ′′k )k≥1 are independent sequences of random variables such that

W ′k
d
= W ′′k

d
= Wk for every k ≥ 1

and, in addition, (In)n≥1 are independent random variables uniformly distributed on
{1, . . . , n}, (W ′k)k≥1, (W ′′k )k≥1, (In)n≥1, (L,R) are stochastically independent.

Under the assumptions of Theorem 2.2 or Theorem 2.3, let (Vj)j≥1 be a sequence of
i.i.d. random variables with common law µ∞ and independent of (βj,n : j = 1, . . . , n)n≥1.
Since µ∞ is a stationary distribution for Q+, using (2.9) with µ̄0 = µ∞ and (4.1), it
immediately follows by induction that

L
( n∑
j=1

βj,nVj

)
= µ∞ (4.2)

for every n ≥ 1.

4.1 Proof of Lemma 3.8

We begin by proving a simple lemma.

Lemma 4.1. Consider two probability measures µ1 and µ2 on B(R) such that dp(µ1, µ2) <

+∞ for some p ≥ 1. Let µ̃1 be a probability measure on B(R2) such that L(U · V ) =

µ1 when (U, V ) is distributed according to µ̃1. Then, there exists a random vector
(X11, X12, X2) such that the law of (X11, X12) is µ̃1, the law of X2 is µ2 and

dpp(µ1, µ2) = E

∣∣∣X11X12 −X2

∣∣∣p.
Proof. Let (X1, X2) be an optimal coupling for (µ1, µ2). If µ2|1 denotes the conditional
law of X2 given X1, then the Disintegration Theorem leads to

dpp(µ1, µ2) = E

∣∣∣X1 −X2

∣∣∣p =

∫
R

∫
R

|x1 − x2|pµ2|1(dx2|x1)µ1(dx1)
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and, since
∫
R
|x1 − x2|pµ2|1(dx2|x1) is finite µ1 a.s., we can write

dpp(µ1, µ2) =

∫
R2

∫
R

|x11x12 − x2|pµ2|1(dx2|x11x12)µ̃1(dx11, dx12) = E

∣∣∣X11X12 −X2

∣∣∣p
where (X11, X12, X2) is a random vector whose probability distribution is

µ(dx11, dx12, dx2) := µ2|1(dx2|x11x12)µ̃1(dx11, dx12).

Thanks to the previous lemma, we can prove Lemma 3.8.

Proof of Lemma 3.8. From the definition of γ0, it is clear that

lim
R→+∞

∫
(−R,R)

xµ̄∗0(dx) = 0

and (3.8) follows from (2.18). It remains to prove the equivalence between the finiteness
of dp(µ̄0, µ∞) and the one of dp(µ̄∗0, µ

∗
∞). Firstly, suppose that dp(µ̄0, µ∞) < +∞. Note

that µ∞ = L(M
(1)
∞ Cλ,γ0) where Cλ,γ0 is a Cauchy distribution of scale parameter λ = c0π

and position γ0, M (1)
∞ has law ν1 and, finally, Cλ,γ0 and M (1)

∞ are stochastically indepen-

dent. Hence, by Lemma 4.1 applied with µ1 = µ∞, µ2 = µ̄0 and µ̃1 = L((Cλ,γ0 ,M
(1)
∞ )), we

get the existence of a random vector (C̃λ,γ0 , M̃
(1)
∞ , X̃0) with L(X̃0) = µ̄0, L(C̃λ,γ0M̃

(1)
∞ ) =

µ∞ and

dp(µ̄0, µ∞) =
(
E

∣∣∣C̃λ,γ0M̃ (1)
∞ − X̃0

∣∣∣p) 1
p

.

Put X∗0 = X̃0 − γ0, V ∗∞ =
(
C̃λ,γ0 − γ0

)
M̃

(1)
∞ . Then, L(X∗0 ) = µ̄∗0, L(V ∗∞) = µ∗∞ and hence

dp(µ̄
∗
0, µ
∗
∞) ≤

(
E

∣∣∣X∗0 − V ∗∞∣∣∣p) 1
p

=
(
E

∣∣∣X̃0 − γ0 − C̃λ,γ0M̃ (1)
∞ + γ0M̃

(1)
∞

∣∣∣p) 1
p

≤ dp(µ̄0, µ∞) + |γ0|
(
E

∣∣∣1− M̃ (1)
∞

∣∣∣p) 1
p

and the last term is finite since dp(µ̄0, µ∞) < +∞ and S(p) < 0, which entails that

E

∣∣∣M̃ (1)
∞

∣∣∣p is finite by Proposition 2.1.

Conversely, suppose that dp(µ̄∗0, µ
∗
∞) < +∞. Note that µ∗∞ = L(M

(1)
∞ Cλ,0) and hence

let (S∗1 ,M
(1)∗
∞ , X∗0 ) be the random vector given by Lemma 4.1 applied with µ1 = µ∗∞,

µ2 = µ̄∗0 and µ̃1 = L(Cλ,0,M
(1)
∞ ). Thus, L(X∗0 ) = µ̄∗0, L(S∗1M

(1)∗
∞ ) = µ∗∞ and

dp(µ̄
∗
0, µ
∗
∞) =

(
E

∣∣∣S∗1M (1)∗
∞ −X∗0

∣∣∣p) 1
p

. (4.3)

Put X0 = X∗0 + γ0, V∞ = (S∗1 + γ0)M
(1)∗
∞ . Then, L(X0) = µ̄0, L(V∞) = µ∞ and hence

dp(µ̄0, µ∞) ≤
(
E

∣∣∣X0 − V∞
∣∣∣p) 1

p

=
(
E

∣∣∣X∗0 + γ0 −M (1)∗
∞ S∗1 − γ0M

(1)∗
∞

∣∣∣p) 1
p

≤ dp(µ̄∗0, µ∗∞) + |γ0|
(
E

∣∣∣1−M (1)∗
∞

∣∣∣p) 1
p

(4.4)

and the last term is finite since dp(µ̄
∗
0, µ
∗
∞) < +∞ and S(p) < 0. This concludes the

proof.
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4.2 Proof of Theorem 3.3

As already anticipated in the introduction of Section 3, the von Bahr-Esseen inequal-
ity has played an important role in proving rates of convergence to equilibrium with
respect to Wasserstein metrics of order p ≤ 2 in the cases in which α 6= 1 (i.e. Theo-
rem 3.1). For the reader’s convenience we recall the statement of the von Bahr-Esseen
inequality [32]: let Z1, . . . , Zn be independent (real valued) random variables such that
E[Zi] = 0 and E[|Zi|p] < +∞ for some 1 ≤ p ≤ 2, then

E
[∣∣∣ n∑
i=1

Zi

∣∣∣p] ≤ 2

n∑
i=1

E[|Zi|p]. (4.5)

In this section we establish the upper bound (3.3) employing once again the von Bahr-
Esseen inequality. To do this we will need to prove the existence of a random vector
(X0, V 0) with marginal laws, respectively, µ̄0 and µ∞ and such that X0 − V 0 has finite
p-th absolute momentum and zero mean. These properties will be proved in Lemma 4.2
which constitutes the main tool for the proof of Theorem 3.3.

Lemma 4.2. Assume that µ̄0 satisfies (2.16) and that (2.17) holds. If dp(µ̄0, µ∞) < +∞
for some p > 1 such that S(p) < 0, then there exists a random vector (X0, V 0) such that

(i) L(X0) = µ̄0, L(V 0) = µ∞;

(ii) E
∣∣∣X0 − V 0

∣∣∣p < +∞;

(iii) E(X0 − V 0) = 0.

Proof. By Lemma 3.8, since dp(µ̄0, µ∞) < +∞, then dp(µ̄
∗
0, µ
∗
∞) < +∞ and (4.3) holds

with S∗1 and M (1)∗
∞ stochastically independent. Now define

X0 := X∗0 + γ0, V 0 := M (1)∗
∞

(
S∗1 + γ0

)
.

Then (i) is trivially satisfied. As for (ii), it follows by (4.4). It remains to prove (iii). If

c0 = 0 then, by Theorem 2.3, V 0
d
= γ0M

(1)
∞ and hence by Proposition 2.1 it has finite

p-th moment. Thus, hypothesis dp(µ̄0, µ∞) < +∞ entails that
∫
R
|x|pµ̄0(dx) < +∞ and∫

R
|x|µ̄0(dx) < +∞. Combining this fact with (2.17) one has E(X0) = γ0 and (iii) follows

since one also has E(V 0) = γ0. Now, let us consider the case c0 > 0. Thanks to

(ii), X0 − V 0 has finite absolute momentum. Recalling that E
(
M

(1)∗
∞

)
= 1, from the

definition of (X0, V 0) one immediately gets

E
(
X0 − V 0

)
= E

(
X∗0 −M (1)∗

∞ S∗1

)
.

Denote by F ∗0 and F ∗∞ the probability distribution functions of µ̄∗0 and µ∗∞, respectively.

Let (F ∗0 )−1 and (F ∗∞)−1 be the corresponding quantile functions. Since (X∗0 ,M
(1)∗
∞ S∗1 )

is an optimal coupling for (µ̄∗0, µ
∗
∞), it follows that (X∗0 ,M

(1)∗
∞ S∗1 ) has the same law of

((F ∗0 )−1(U), (F ∗∞)−1(U)) where U is a random variable with uniform distribution on
(0, 1). Combining all these facts it easily follows that

E
(
X0 − V 0

)
= lim
n→+∞

∫ 1−εn

εn

[
(F ∗0 )−1(u)− (F ∗∞)−1(u)

]
du

for any sequence (εn)n≥1 such that εn ↓ 0 as n→ +∞. Recalling that F ∗∞ is a symmetric
distribution function, one gets ∫ 1−εn

εn

(F ∗∞)−1(u)du = 0
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for every n ≥ 1, which means that

E
(
X0 − V 0

)
= lim
n→+∞

∫ 1−εn

εn

(F ∗0 )−1(u)du.

For the sake of notational simplicity, from now on, write F∗ in place of F ∗0 . In order to
choose an appropriate sequence (εn)n≥1, consider a real sequence (an)n≥1 such that for

every n ≥ 1 F−1
∗

(
F∗(an)

)
= an and limn→+∞ an = −∞. Defining εn := F∗(an) for every

n ≥ 1, it is easy to prove that∫ 1−εn

εn

F−1
∗ (u)du =

∫
(F−1
∗ (εn),F−1

∗ (1−εn))

xdF∗(dx)

+ F−1
∗ (1− εn)

{
1− εn − F∗

[
(F−1
∗ (1− εn)−

)]}
:= A(n) +B(n)

where F∗(x
−) := limy→x− F∗(y). To show (iii) we have to prove that

(
A(n)

)
n≥1

and(
B(n)

)
n≥1

are infinitesimal as n→ +∞. For this purpose, we have to study the asymp-

totic behaviors of F∗(x) as |x| → +∞ and of F−1
∗ (u) as u → 0+ or u → 1−. From (2.16),

we deduce that for every fixed δ ∈ (0, c0) there exists x̄ = x̄(δ) such that

−c0 − δ
x
≤ F∗(x) ≤ −c0 + δ

x
for every x ≤ −x̄

1− c0 + δ

x
≤ F∗(x) ≤ 1− c0 − δ

x
for every x ≥ x̄.

Put A1 = A1(δ) := c0 + δ and A2 = A2(δ) := c0 − δ and define two functions G1, G2 by

Gi(x) :=


−Aix if x ≤ −x̄
Ai
x̄ if −x̄ < x < x̄

1− Ai
x if x ≥ x̄

for i = 1, 2. Then
G2(x) ≤ F∗(x) ≤ G1(x) for every x ≤ −x̄,
G1(x) ≤ F∗(x) ≤ G2(x) for every x ≥ x̄.

Hence, for every u ∈ (0, G2(−x̄)),

−A1

u
= G−1

1 (u) ≤ F−1
∗ (u) ≤ G−1

2 (u) = −A2

u

and, for every u ∈ (G2(x̄), 1),

A2

1− u
= G−1

2 (u) ≤ F−1
∗ (u) ≤ G−1

1 (u) =
A1

1− u
.

Finally, observe that given δ and x̄, there exists n̄ = n̄(δ, x̄) such that for every n ≥ n̄

1− εn ∈ (G2(x̄), 1), εn ∈ (0, G2(−x̄)),
Ai
εn
≥ x̄.

Thus, for n ≥ n̄ one has

F−1
∗ (1− εn) ≥ x̄ and F−1

∗ (εn) ≤ −x̄.

With this information on F∗ and F−1
∗ we are ready to prove that limn→+∞A(n) = 0

and limn→+∞B(n) = 0. Firstly, consider B(n): for every n ≥ n̄ we know that A2

εn
≤

F−1
∗ (1− εn) ≤ A1

εn
and hence, by monotonicity of F∗,

1− εn − F∗
(
F−1
∗ (1− εn)−

)
≤ 1− εn − F∗

((A2

εn

)−)
≤ 1− εn −G1

(A2

εn

)
= εn

(A1

A2
− 1
)
.

EJP 18 (2013), paper 6.
Page 16/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2054
http://ejp.ejpecp.org/


Speed of convergence in Wasserstein metrics

On the other hand,

1− εn − F∗
(
F−1
∗ (1− εn)−

)
≥ 1− εn − F∗

(A1

εn

)
≥ 1− εn −G2

(A2

εn

)
= εn

(A2

A1
− 1
)
.

Since F−1
∗ (1− εn) ≥ x̄ > 0, we get

εn

(A2

A1
− 1
)
F−1
∗ (1− εn) ≤ B(n) ≤ εn

(A1

A2
− 1
)
F−1
∗ (1− εn).

Note that A1 ≥ A2, which entails that A1

A2
≥ 1 and hence B(n) ≤ εn

(
A1

A2
− 1
)
G−1

1 (1− εn)

and B(n) ≥ εn
(
A2

A1
− 1
)
G−1

1 (1− εn). This implies that

A1

(A2

A1
− 1
)
≤ B(n) ≤ A1

(A1

A2
− 1
)

for every n ≥ n̄, that is, by definition of Ai,

−2δ ≤ B(n) ≤ c0 + δ

c0 − δ
2δ

for every δ > 0 and for every n ≥ n̄(δ, x̄). Hence, limn→+∞B(n) = 0.
Finally, consider A(n). Recall that, from Lemma 3.8,

lim
R→+∞

∫
(−R,R)

xdF∗(x) = 0. (4.6)

We will take advantage of this property by splitting the integral A(n) into two integrals,
one of them over a symmetric interval about the origin. Fix n ≥ n̄. If −F−1

∗ (εn) ≤
F−1
∗ (1− εn), then∫

(F−1
∗ (εn),F−1

∗ (1−εn))

xdF∗(dx) =

∫
(F−1
∗ (εn),−F−1

∗ (εn))

xdF∗(x)

+

∫
[−F−1
∗ (εn),F−1

∗ (1−εn))

xdF∗(dx).

(4.7)

On the other hand, if −F−1
∗ (εn) ≥ F−1

∗ (1− εn), then∫
(F−1
∗ (εn),F−1

∗ (1−εn))

xdF∗(dx) =

∫
(F−1
∗ (εn),−F−1

∗ (εn))

xdF∗(x)

−
∫

[F−1
∗ (1−εn),−F−1

∗ (εn))

xdF∗(dx).

(4.8)

Thanks to (4.6), the first integrals on the right hand side of both (4.7) and (4.8) converge
to zero when n → +∞. As concerns the second integrals, recall that for every n ≥ n̄

one has
A2

εn
≤ −F−1

∗ (εn) ≤ A1

εn
and

A2

εn
≤ F−1

∗ (1− εn) ≤ A1

εn

and hence

0 ≤
∫

[−F−1
∗ (εn),F−1

∗ (1−εn))

xdF∗(x) ≤
∫

[
A2
εn
,
A1
εn

)

xdF∗(x),

0 ≤
∫

[F−1
∗ (1−εn),−F−1

∗ (εn))

xdF∗(x) ≤
∫

[
A2
εn
,
A1
εn

)

xdF∗(x).

The positiveness can be obtained by further increasing n̄, if needed. Thus, in order to
prove that the second integrals in (4.7) and (4.8) converge to zero as n→ +∞ we have
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to show that
∫

[
A2
εn
,
A1
εn

)
xdF∗(x) converge to zero as n → +∞. By partial integration and

using the estimates of F∗ with G1 and G2 we get∫
[
A2
εn
,
A1
εn

)

xdF∗(x) ≤ F∗

[(A1

εn

)−]A1

εn
− F∗

[(A2

εn

)−]A2

εn
−
∫

(
A2
εn
,
A1
εn

]

F∗(x)dx

≤ G2

(A1

εn

)A1

εn
−G1

(A2

εn

)A2

εn

∫
(
A2
εn
,
A1
εn

]

[
1− A1

x

]
dx

=
(

1− A2

A1
εn

)A1

εn
−
(

1− A1

A2
εn

)A2

εn
−
(A1

εn
− A2

εn

)
+ A1 log

A1

A2

= 2δ + (c0 + δ) log
(

1 +
2δ

c0 − δ

)
.

Thanks to the arbitrariness of δ > 0, this entails that the second integrals in (4.7) and
(4.8) converge to zero as n → +∞ and hence limn→+∞A(n) = 0. This implies (iii) and
concludes the proof.

Proof of Theorem 3.3. Let (X0, V 0) be the random vector given by Lemma 4.2. Consider
a sequence (Xj , Vj)j≥1 of i.i.d. random vectors with the same distribution of (X0, V 0)

and such that (Xj , Vj)j≥1 is stochastically independent of B = σ{(βj,n : j = 1, . . . , n)n≥1}.
By (4.2) we already know that

∑Nt
j=1 βj,NtVj has probability distribution µ∞. Now, for

every n ≥ 0, denote by µn the law of the random variable Wn+1, defined in (2.9). Hence,
by convexity

dpp(µt, µ∞) ≤
∑
n≥1

e−t(1− e−t)n−1dpp(µn−1, µ∞)

≤
∑
n≥1

e−t(1− e−t)n−1E

∣∣∣ n∑
j=1

βj,n(Xj − Vj)
∣∣∣p.

Since E|Xj − Vj |p < +∞ and E(Xj − Vj) = 0, we can make use of the von Bahr-Esseen
inequality (4.5) − conditionally to B − and get

E

∣∣∣ n∑
j=1

βj,n(Xj − Vj)
∣∣∣p = E

[
E

∣∣∣ n∑
j=1

βj,n(Xj − Vj)
∣∣∣p∣∣∣B]

≤ 2E
( n∑
j=1

βpj,nE
[
|Xj − Vj |p

∣∣∣B]) = 2E|X0 − V 0|pE
( n∑
j=1

βpj,n

)
.

From Lemma 2 in [3], one has

E
( n∑
j=1

βpj,n

)
=

Γ(n+ S(p))

Γ(n)Γ(S(p) + 1)
(4.9)

and hence, recalling that for every γ > −1 and 0 < u < 1

+∞∑
n=1

Γ(γ + n)

Γ(n)Γ(γ + 1)
(1− u)n−1 = u−(γ+1), (4.10)

one gets

dp(µt, µ∞) ≤ Cpet
S(p)
p

with Cp :=
(
2E|X0 − V 0|p

) 1
p .
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5 Proof of Theorems 3.4 and 3.5

In this section we will prove the exponential rates of convergence to equilibrium
which have been presented in Section 3.1. We will develop in details only the proof of
Theorem 3.4 since Theorem 3.5 can be proved in a very similar way with slight adap-
tations. As already anticipated, both Theorems 3.4 and 3.5 descend from an inductive
argument − applied to the order of the Wasserstein distance − supplemented by the
probabilistic representation of the solution of (1.1) briefly recalled in Section 2.1. Re-
call that for every n ≥ 0, µn is the law of the random variable Wn+1 introduced in
(2.9).

We start by proving two simple lemmata:

Lemma 5.1. Assume that (H0) holds true for some p > α such that dp(µ̄0, µ∞) < +∞.
Then the function

t 7→ σt(p) :=
∑
n≥1

e−t(1− e−t)n−1dmax(p,1)
p (µn−1, µ∞) (5.1)

is continuous and bounded on every interval [0, T ].

Proof. For every fixed t ∈ [0, T ], we have to show that the series in (5.1) converges. In
view of the hypothesis dp(µ̄0, µ∞) < +∞, there exists a random vector (X0, V∞) such

that L(X0) = µ̄0, L(V∞) = µ∞ and dp(µ̄0, µ∞) = (E|X0 − V∞|p)
1

max(p,1) . Consider a
sequence (Xj , Vj)j≥1 of i.i.d. random vectors distributed as (X0, V∞) and independent

of (βj,n : j = 1, . . . , n)n≥1. By (4.2), we have that
∑n
j=1 βj,nVj

d
= V∞; hence

∑
n≥1

e−t(1− e−t)n−1dmax(p,1)
p (µn−1, µ∞) ≤

∑
n≥1

e−t(1− e−t)n−1E

∣∣∣ n∑
j=1

βj,n(Xj − Vj)
∣∣∣p

≤
∑
n≥1

e−t(1− e−t)n−1nmax(p,1)−1E
( n∑
j=1

βpj,n

)
dmax(p,1)
p (µ̄0, µ∞).

By (4.9), we conclude that the series in (5.1) converges. Thus, the function defined in
(5.1) is bounded and continuous at every t ∈ [0, T ].

Lemma 5.2. Let ϕ be the function defined in (3.2). Assume that (H0) holds true for
some p > α and define p̄ := sup{q > α : ϕ(q) < 0}. If p̄ < +∞ and ϕ(p̄) ≤ 0 then the
function ϕ is continuous on [α, p̄], otherwise it is continuous on [α, p̄). Moreover one of
the following is true:

(i) the function ϕ is strictly decreasing on (α, p̄);

(ii) there exists a point p0 < p̄ such that the function ϕ is strictly decreasing on (α, p0)

and strictly increasing on (p0, p̄);

Proof. First of all, by the dominated convergence theorem, one proves that q 7→ S(q) is
continuous on its domain, i.e. where it is finite. Moreover, one can easily show that for
every q belonging to the interior of the domain of S

d

dq
S(q) = E

[ d
dq

(
Lq +Rq

)]
= E

(
Lq logL+Rq logR

)
, (5.2)

and
d2

dq2
S(q) = E

[
Lq(logL)2 +Rq(logR)2

]
. (5.3)
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Now consider ϕ on the interval (0, p̄); this interval is obviously included in the interior
of the domain of S and, therefore, ϕ is differentiable on (0, p̄) and

ϕ′(q) =
S ′(q)q − S(q)

q2
.

Now we claim that there is at most one point p0 ∈ (0, p̄) such that ϕ′(p0) = 0, i.e.
S ′(p0)p0 − S(p0) = 0. Computing the derivative one gets

d

dq

(
S ′(q)q − S(q)

)
= qS ′′(q)

which, from (5.3), is strictly positive since P{(L,R) ∈ {0, 1}2} < 1 (see (2.4)). Thus,
q 7→ S ′(q)q − S(q) is a strictly increasing function and the claim follows if we show that

lim sup
q→0+

(
S ′(q)q − S(q)

)
< 0. (5.4)

To this end, fix q ∈ (0, α] and note that

LqI{L>0} ≤ 1I{0<L≤1} + LαI{L>1}

and that the right hand side is integrable; an analogous fact obviously holds for R.
Then, by dominated convergence theorem,

lim
q→0+

S(q) = lim
q→0+

E
[
LqI{L>0} +RqI{R>0}

]
− 1

= P{L > 0}+ P{R > 0} − 1

which, by hypothesis (2.1), is strictly positive and hence − limq→0+ S(q) < 0.
On the other hand, since S is convex and (H0) holds, then qS ′(q) < 0 for every q ∈ (0, α];
therefore

lim sup
q→0+

qS ′(q) ≤ 0

and hence (5.4) holds. Thus, we obtain that there is at most one point p0 such that
ϕ′(p0) = 0. The thesis follows since 0 = S(α) > S(p) and hence 0 = ϕ(α) > ϕ(p) for
α < p < p̄.

Here we prove a proposition that will give the fundamental tools for the inductive
argument that we will use in the proofs of Theorems 3.4-3.5-3.14.

Proposition 5.3. Assume that the assumptions of Lemma 5.1 are in force. Consider
the function σt defined in (5.1) and a real number q such that 1 < q ≤ p. Then there is
a suitable constant Bq such that

• if 1 < q < 2 then

σt(q) ≤ dqq(µ̄0, µ∞)etS(q) + etS(q)Bq

∫ t

0

e−τS(q)σqτ (1)dτ ; (5.5)

• if p ≥ 2 and q ≥ 2 then

σt(q) ≤ dqq(µ̄0, µ∞)etS(q) + etS(q)Bq

∫ t

0

e−τS(q)στ (1)στ (q − 1)dτ. (5.6)
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Moreover, for every s ≥ 1 one has

dss(µt, µ∞) ≤ σt(s). (5.7)

Proof. Statement (5.7) is trivial since, by Jensen’s inequality, one has

dss(µt, µ∞) ≤
∑
n≥0

e−t(1− e−t)ndss(µn, µ∞) = σt(s).

Now we prove (5.5) and (5.6). Consider two stochastically independent sequences

(W ′k, V
′
k)k≥1, (W ′′k , V

′′
k )k≥1, such that V ′k

d
= V ′′k

d
= V∞; additionally, suppose that (W ′k, V

′
k)k≥1,

(W ′′k , V
′′
k )k≥1, are stochastically independent of ((Ln, Rn))n≥1, (In)n≥1, (Nt)t≥0 and, for

every k ≥ 1, (W ′k, V
′
k) and (W ′′k , V

′′
k ) are optimal couplings for ds(µk−1, µ∞) for every

s ≥ 1. Let us specify that we can always find such random variables since, having
defined for every x ∈ R

Fk(x) := µk((−∞, x])

F∞(x) := µ∞((−∞, x]),

it suffices to choose W ′k = F−1
k−1(U ′k), W ′′k = F−1

k−1(U ′′k ),V ′k = F−1
∞ (U ′k), V ′′k = F−1

∞ (U ′′k ) with
(U ′k)k≥1, (U ′′k )k≥1, i.i.d. random variables uniformly distributed on (0, 1). Recall also the
following fact: if a, b ∈ R+ and q > 1, then

(a+ b)q ≤ aq + bq + cq(a
q−1b+ abq−1) (5.8)

with cq := q if q ∈ [2, 3] and cq := q2q−3 otherwise; see, e.g., Lemma 3.1 in [24]. Now
put ∆n+1(s) := dss(µn, µ∞) for every n ≥ 0 and s ≥ 1. Thanks to the independence of
(W ′k, V

′
k) and (W ′′k , V

′′
k ), (4.1) and (5.8) lead to

ρt(q) : = etσt(q) ≤ ∆1(q) +
∑
n≥1

(1− e−t)nE
∣∣∣L(W ′In − V

′
In) +R(W ′′n+1−In − V

′′
n+1−In)

∣∣∣q
≤ ∆1(q) +

∑
n≥1

(1− e−t)n
[
E
(
Lq|W ′In − V

′
In |

q +Rq|W ′′n+1−In − V
′′
n+1−In |

q
)

+ cqE
(
Lq−1R|W ′In − V

′
In |

q−1|W ′′n+1−In − V
′′
n+1−In |

+ LRq−1|W ′In − V
′
In ||W

′′
n+1−In − V

′′
n+1−In |

q−1
)]

= ∆1(q) +
∑
n≥1

(1− e−t)n

n

n∑
k=1

[(
E(Lq)E

∣∣∣W ′k − V ′k∣∣∣q + E(Rq)E
∣∣∣W ′′n+1−k − V ′′n+1−k

∣∣∣q
+ cq

(
E(Lq−1R)E

∣∣∣W ′k − V ′k∣∣∣q−1

E

∣∣∣W ′′n+1−k − V ′′n+1−k

∣∣∣
+ E(LRq−1)E

∣∣∣W ′k − V ′k∣∣∣E∣∣∣W ′′n+1−k − V ′′n+1−k

∣∣∣q−1)]
= ∆1(q) +

∑
n≥1

(1− e−t)n

n

n∑
k=1

(
E(Lq +Rq)E

∣∣∣W ′k − V ′k∣∣∣q
+ cqE(Lq−1R+ LRq−1)E

∣∣∣W ′k − V ′k∣∣∣q−1

E

∣∣∣W ′′n+1−k − V ′′n+1−k

∣∣∣).
Recalling that (W ′k, V

′
k) and (W ′′k , V

′′
k ) have been defined as optimal couplings for

ds(µk−1, µ∞) for every s ≥ 1 and putting λq := E(Lq+Rq) = S(q)+1, Bq := cqE(Lq−1R+

LRq−1), one has

ρt(q) ≤ ∆1(q) +
∑
n≥1

(1− e−t)n

n

n∑
k=1

(
λq∆k(q) +BqE

∣∣∣W ′k − V ′k∣∣∣q−1

∆n+1−k(1)
)
. (5.9)
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At this stage, we have to distinguish two different situations, i.e. 1 < q < 2 or q ≥ 2

(which is possible if p ≥ 2). The reason for this distinction lies in the fact that if q ≥ 2

then q − 1 ≥ 1 and hence (by definition of (W ′k, V
′
k)k≥1) E|W ′k − V ′k|q−1 = dq−1

q−1(µk−1, µ∞)

while, if q < 2 then q−1 < 1 and E|W ′k−V ′k|q−1 is not equal to dq−1(µk−1, µ∞). We begin
to consider the case q ≥ 2: as already noticed, E|W ′k − V ′k|q−1 = ∆k(q − 1) and hence,
from (5.9), one has

ρt(q) ≤ ∆1(q) +
∑
n≥1

(1− e−t)n

n

n∑
k=1

(
λq∆k(q) +Bq∆k(q − 1)∆n+1−k(1)

)
= ∆1(q) +

∑
k≥1

∑
j≥0

(1− e−t)j+k

j + k

(
λq∆k(q) +Bq∆k(q − 1)∆j+1(1)

)
= ∆1(q) +

∑
k≥1

∑
j≥0

∫ t

0

(1− e−τ )j+k−1e−τdτ
(
λq∆k(q) +Bq∆k(q − 1)∆j+1(1)

)

= ∆1(q) +

∫ t

0

[∑
k≥1

(∑
j≥0

e−τ (1− e−τ )j
)

(1− e−τ )k−1λq∆k(q)

+
∑
k≥1

(∑
j≥0

(1− e−τ )je−τ∆j+1(1)
)
Bq(1− e−τ )k−1∆k(q − 1)

]
dτ

= ∆1(q) +

∫ t

0

(
λqρτ (q) +Bqστ (1)ρτ (q − 1)

)
dτ,

which means that

ρt(q) ≤ ∆1(q) + λq

∫ t

0

ρτ (q)dτ +Bq

∫ t

0

eτστ (1)στ (q − 1)dτ.

Thanks to Gronwall Lemma (whose applicability is guaranteed by Lemma 5.1), it follows
that

ρt(q) ≤ ∆1(q)eλqt +Bq

∫ t

0

eλq(t−τ)eτστ (1)στ (q − 1)dτ.

Hence, for any q ≥ 2,

σt(q) ≤ ∆1(q)e−t(1−λq) + e−t(1−λq)Bq

∫ t

0

eτ(1−λq)στ (1)στ (q − 1)dτ (5.10)

which gives (5.6). On the other hand, if 1 < q < 2 then, by Jensen’s inequality, E|W ′k −

V ′k|q−1 ≤
(
E|W ′k − V ′k|

)q−1

= ∆q−1
k (1) and, with the same technique used to get (5.10)

from (5.9), one can easily obtain

σt(q) ≤ ∆1(q)e−t(1−λq) + e−t(1−λq)Bq

∫ t

0

eτ(1−λq)σqτ (1)dτ

which gives (5.5).

We are now ready to prove Theorem 3.4 and Theorem 3.5.

Proof of Theorem 3.4. From the hypotheses one knows that S(α) = 0, S(p) < 0 and
p > 1; hence, thanks to the convexity of S, it is clear that S(1) < 0. Thus, from the proof
of Theorem 5 in [3] we have that

σt(1) ≤ d1(µ̄0, µ∞)etS(1). (5.11)
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Define the integer kp ≥ 1 and the real number εp ∈ (0, 1] such that p = kp + εp, i.e. kp
and εp are, respectively, the integer and the fractionary part of p.

Step 1. Let us assume that

ϕ(i+ εp) 6= ϕ(1) for every i = 1, . . . , kp. (5.12)

Under this assumption we show by mathematical induction that

σt(i+ εp) ≤ Ci+εpe−tK(i+εp) for every i = 1, . . . , kp (5.13)

for suitable constants 0 < Ci+εp < +∞ with

−K(i+ εp) := max{S(i+ εp),S(1)(i+ εp)}. (5.14)

Note that (5.13)-(5.14) for i = kp, supplemented by (5.7), gives (3.4). In order to prove
(5.13)-(5.14) for i = 1, it suffices to combine (5.5) and (5.11) to get

σt(1 + εp) ≤∆1(1 + εp)e
tS(1+εp)

+ etS(1+εp)B1+εp

∫ t

0

C1e
τ [−S(1+εp)+S(1)(1+εp)]dτ

(5.15)

with C1 := d1(µ̄0, µ∞)1+εp . By hypothesis (5.12) it follows that −S(1+εp)+S(1)(1+εp) 6=
0 and hence, solving the integral, one obtains that

σt(1 + εp) ≤ C1+εpe
−tK(1+εp)

for a suitable constant 0 < C1+εp < +∞. This proves (5.13)-(5.14) for i = 1. If kp = 1,
there is nothing else to be proved. If kp ≥ 2 we proceed by induction. Assuming that
(5.13)-(5.14) hold true for every i = 1, . . . , j − 1 (2 ≤ j ≤ kp), we show that they hold for
i = j. By (5.6) and (5.11) we have that

σt(j + εp) ≤ ∆1(j + εp)e
tS(j+εp)

+Bj+εpC1Cj−1+εpe
tS(j+εp)

∫ t

0

eτ [−S(j+εp)+S(1)−K(j−1+εp)]dτ.
(5.16)

Let us now show that the exponent in the integral above is non-zero, i.e. −S(j + εp) +

S(1) −K(j − 1 + εp) 6= 0 whatever is the value of ϕ(j − 1 + εp). If ϕ(j − 1 + εp) > ϕ(1)

then, by Lemma 5.2, ϕ(j + εp) ≥ ϕ(j − 1 + εp) and hence

−S(j + εp) + S(1)−K(j − 1 + εp) < −S(j + εp) + ϕ(j − 1 + εp)

+ ϕ(j − 1 + εp)(j − 1 + εp) = −S(j + εp) + ϕ(j − 1 + εp)(j + εp)

≤ −S(j + εp) + ϕ(j + εp)(j + εp) = 0.

On the other hand, if ϕ(j − 1 + εp) < ϕ(1), then

−S(j + εp) + S(1)−K(j − 1 + εp) = −S(j + εp) + S(1)

+ (j − 1 + εp)S(1) = −S(j + εp) + S(1)(j + εp) 6= 0

by assumption (5.12). Having proved that the exponent in the integral in (5.16) is non-
zero, an explicit integration gives (5.13)-(5.14) provided that the equality

max{S(j + εp),S(1)−K(j − 1 + εp)} = −K(j + εp) (5.17)
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holds. Thus, let us prove this equality. If ϕ(j + εp) < ϕ(1) then, by Lemma 5.2, ϕ(j − 1 +

εp) < ϕ(1) and by the inductive step −K(j − 1 + εp) = (j − 1 + εp)S(1). Hence,

max{S(j + εp),S(1)−K(j − 1 + εp)} = max{S(j + εp), (j + εp)S(1)}

which is (5.17). On the other hand, let us assume that ϕ(j + εp) > ϕ(1). We need to
treat separately two cases. If ϕ(j− 1 + εp) < ϕ(1) then −K(j− 1 + εp) = (j− 1 + εp)S(1)

and hence (5.17) holds. If ϕ(j − 1 + εp) > ϕ(1) then

max{S(j + εp),S(1)−K(j − 1 + εp)} = max{S(j + εp),S(1) + S(j − 1 + εp)}

and, by Lemma 5.2, ϕ(j + εp) ≥ ϕ(j − 1 + εp) > ϕ(1). Hence

S(1) + S(j − 1 + εp) < ϕ(j − 1 + εp)(j + εp) ≤ S(j + εp).

This shows that

max{S(j + εp),S(1)−K(j − 1 + εp)} = S(j + εp) = max{S(j + εp),S(1)(j + εp)}

which is (5.17). This concludes the proof when (5.12) holds.

Step 2. Let us now assume that ϕ(p) = ϕ(1). By Lemma 5.2 it follows that ϕ(j + εp) <

ϕ(1) for every j = 1, . . . , kp − 1. Hence, the proof can be developed by induction as in
Step 1 for j = 1, . . . , kp − 1 and in particular −K(kp − 1 + εp) = −K(p− 1) = (p− 1)S(1).
Using this equality in (5.16), one gets

σt(p) ≤ ∆1(p)etS(p) +BpC1Cp−1e
tS(p)

∫ t

0

e−pτ [ϕ(p)−ϕ(1)]dτ

= ∆1(p)etS(p) +BpC1Cp−1te
tS(p) ≤ CptetS(p)

which gives (3.4) when ϕ(p) = ϕ(1).

Step 3. It remains to consider the case in which there exists i∗ ∈ {1, . . . , kp − 1} such
that ϕ(i∗ + εp) = ϕ(1). Arguing as in Step 1, one proves that (5.13)-(5.14) hold for
i = 1, . . . , i∗ − 1. Moreover, arguing as in Step 2 one gets

σt(i
∗ + εp) ≤ Ci∗+εptetS(i∗+εp).

Now we prove that (5.13)-(5.14) hold for i = i∗ + 1. By (5.6) and the above inequality
one gets

σt(i
∗+1 + εp) ≤ ∆1(i∗ + 1 + εp)e

tS(i∗+1+εp)

+Bi∗+1+εpC1Ci∗+εpe
tS(i∗+1+εp)

∫ t

0

τeτ [−S(i∗+1+εp)+S(1)+S(i∗+εp)]dτ

≤ ∆1(i∗ + 1 + εp)e
tS(i∗+1+εp)

+Bi∗+1+εpC1Ci∗+εpe
tS(i∗+1+εp)

∫ t

0

eτ [−S(i∗+1+εp)+S(1)+S(i∗+εp)+η]dτ

(5.18)

for every η > 0. Moreover, one has

−S(i∗ + 1 + εp) + S(1) + S(i∗ + εp) = −S(i∗ + 1 + εp) + ϕ(i∗ + εp) + S(i∗ + εp)

[since ϕ(i∗ + εp) = ϕ(1) = S(1)]

= −S(i∗ + 1 + εp) + ϕ(i∗ + εp)(i
∗ + 1 + εp)

< −S(i∗ + 1 + εp) + ϕ(i∗ + 1 + εp)(i
∗ + 1 + εp) = 0

[since, by Lemma 5.2, ϕ(i∗ + εp) < ϕ(i∗ + 1 + εp)].
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Hence,

− S(i∗ + 1 + εp) + S(1) + S(i∗ + εp) + η < 0 (5.19)

for any η > 0 small enough. Thus, (5.18) gives

σt(i
∗ + 1 + εp) ≤ Ci∗+1+εpe

−tK

with

−K = max{S(i∗ + 1 + εp),S(1) + S(i∗ + εp) + η}.

By (5.19) we get −K = S(i∗ + 1 + εp) which entails (5.13)-(5.14) for i = i∗ + 1 since, as
already observed, ϕ(1) < ϕ(i∗ + 1 + εp). The proof can be now concluded by induction
for j = i∗ + 2, . . . , kp as in Step 1.

Proof of Theorem 3.5. The proof follows the same argument used in the proof of Theo-
rem 3.4. In particular, firstly let us assume that

ϕ(i+ εp) 6= ϕ(2) for i = 2, . . . , kp. (5.20)

Under this assumption we prove by mathematical induction that

σt(i+ εp) ≤ Ci+εpe−tK(i+εp) for every i = 2, . . . , kp (5.21)

for suitable constants 0 < Ci+εp < +∞, with

−K(i+ εp) := max{S(i+ εp), ϕ(2)(i+ εp)}. (5.22)

Since p ≥ 2, we use (5.6) as the fundamental tool for the induction. From the proofs of
Theorem 3.1 (when α 6= 1) and Theorem 3.3 (when α = 1) one has

σt(2) ≤ C2
2e
tS(2). (5.23)

By Lyapunov’s and Jensen’s inequalities one gets

σt(1) ≤ σt(2)
1
2 and σt(1 + ε) ≤ σt(2)

1+ε
2

for every 0 < ε < 1. Combining the above inequalities with (5.23) one has

σt(1) ≤
√

2d2(µ̄0, µ∞)etϕ(2) and

σt(1 + ε) ≤
√

2
1+ε

d1+ε
2 (µ̄0, µ∞)et

S(2)
2 (1+ε).

(5.24)

Using (5.24) in (5.6), it follows that

σt(2 + εp) ≤∆1(2 + εp)e
tS(2+εp)

+ etS(2+εp)B2+εp

∫ t

0

C1e
τ [−S(2+εp)+ϕ(2)(2+εp)]dτ.

(5.25)

Noticing that the first step of induction is i = 2, one can follow the same steps of
the proof of Theorem 3.4 using (5.24) in place of (5.11), (5.25) in place of (5.15) and
ϕ(2) = S(2)

2 in place of ϕ(1) = S(1). Finally, if (5.20) does not hold, one can follow the
same argument developed in Steps 2-3 of the proof of Theorem 3.4 with the appropriate
changes.

EJP 18 (2013), paper 6.
Page 25/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2054
http://ejp.ejpecp.org/


Speed of convergence in Wasserstein metrics

6 Proofs of Proposition 3.12 and Theorems 3.13, 3.14

We start by proving Proposition 3.12 which provides rates of convergence in Fourier
metrics of suitable orders for any α ∈ (0, 2].

Proof of Proposition 3.12. By convexity of the Fourier distance we know that

χα+δ(µt, µ∞) ≤
∑
n≥0

e−t(1− e−t)nχα+δ(µn, µ∞).

So we need a bound for χα+δ(µn, µ∞). By (4.2) one gets

µ̂∞(ξ) = E[

n∏
j=1

µ̂∞(βj,nξ)]. (6.1)

Now recall that for every n ≥ 1 if z1, . . . , zn, w1, . . . wn are complex numbers such that
|zi| < 1 and |wi| < 1 for every i = 1, . . . , n, then∣∣∣∣∣

n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣∣ ≤
n∑
i=1

|zi − wi| .

Using this inequality and (6.1) one obtains

χα+δ(µn, µ∞) = sup
ξ 6=0

|µ̂n(ξ)− µ̂∞(ξ)|
|ξ|α+δ

= sup
ξ 6=0

E

(
|
∏n
j=1

ˆ̄µ0(βj,nξ)−
∏n
j=1 µ̂∞(βj,nξ)|

|ξ|α+δ

)

≤ sup
ξ 6=0

E

 n∑
j=1

| ˆ̄µ0(βj,nξ)− µ̂∞(βj,nξ)|
|ξ|α+δ


≤ E

sup
ξ 6=0

n∑
j=1

| ˆ̄µ0(βj,nξ)− µ̂∞(βj,nξ)|
|βj,nξ|α+δ

|βj,n|α+δ


= sup

y 6=0

| ˆ̄µ0(y)− µ̂∞(y)|
|y|α+δ

E
( n∑
j=1

βα+δ
j,n

)
.

So, by (4.9), one can write

χα+δ(µt, µ∞) ≤
∑
n≥0

e−t(1− e−t)nχα+δ(µ̄0, µ∞)
Γ(n+ S(α+ δ))

Γ(n)Γ(S(α+ δ) + 1)

and therefore, using (4.10),

χα+δ(µt, µ∞) ≤ χα+δ(µ̄0, µ∞)etS(α+δ).

In order to prove Theorem 3.13 we need the following

Proposition 6.1. For every two probability measures µ1, µ2 on R such that∫
R
x2µ1(dx) < +∞,

∫
R
x2µ2(dx) < +∞ and χ2+δ(µ1, µ2) < +∞, then

d1(µ1, µ2) ≤ Cχ
1

3(2+δ)

2+δ (µ1, µ2)
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with

C :=
(

2
2
3 + 2

−1
3

)
M

1
3

2

1

π

(
2

3+2δ
2+δ

3 + 2δ
+

4

2
1

2+δ

)
and M2 := max{

∫
R
x2µ1(dx),

∫
R
x2µ2(dx)}.

The proof of this proposition can be done following the same argument, with slight
changes, of the proof of Theorem 2.21 of [11].

Proof of Theorem 3.13. It is worth noticing that χ2+δ(µ̄0, µ∞) is finite. Indeed, as al-
ready observed, both µ̄0 and µ∞ have equal mean (more precisely, zero mean) and
equal variance. Thus, Proposition 2.6 in [11] entails the finiteness of χ2+δ(µ̄0, µ∞) pro-
vided that

∫
R
|x|2+δµ̄0(dx) < +∞ and

∫
R
|x|2+δµ∞(dx) < +∞; the former integral is

finite by hypothesis, the latter is finite since S(2 + δ) < 0. Under the assumptions of
Theorem 3.14, one has

∫
R
x2µt(dx) =

∫
R
x2µ∞(dx) for every t ≥ 0 and hence one can

apply Proposition 6.1 to get

d1(µt, µ∞) ≤ Cχ
1

3(2+δ)

2+δ (µt, µ∞)

with C that does not depend on t. Now Proposition 3.12 gives

d1(µt, µ∞) ≤ Cχ
1

3(2+δ)

2+δ (µ̄0, µ∞)et
S(2+δ)
3(2+δ)

which proves Theorem 3.13.

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. Define the integer kp ≥ 2 and the real number εp ∈ (0, 1] such
that p = kp + εp. We prove by induction that

σt(j + εp) ≤
{
Cj+εpe

−tRj+εp if S(j + εp) 6= 1
3ϕ(2 + εp)

Cj+εpte
−tRj+εp if S(j + εp) = 1

3ϕ(2 + εp)
(6.2)

for j = 2, . . . , kp, where −Rj+εp := max{S(j + εp),
1
3ϕ(2 + εp)}. If kp = 2 then p = 2 + εp

and, in order to use (5.6) with q = 2 + εp, we have to compute σt(1) and σt(1 + εp). Since∫
R
|x|2+εp µ̄0(dx) < +∞ by hypothesis, one clearly has

∫
R
|x|2+εpµn(dx) < +∞ for every

n ≥ 1. Moreover,
∫
R
|x|2µn(dx) =

∫
R
|x|2µ∞(dx). Then, Proposition 6.1 and Jensen’s

inequality give

σt(1) ≤ C
∑
n≥0

e−t(1− e−t)nχ2+εp(µn, µ∞)
1

3(2+εp)

≤ C
(∑
n≥0

e−t(1− e−t)nχ2+εp(µn, µ∞)
) 1

3(2+εp)

and hence, arguing as in the proof of Proposition 3.12,

σt(1) ≤ C1e
t
S(2+εp)
3(2+εp) = C1e

t
3ϕ(2+εp)

where C1 := Cχ2+εp(µ̄0, µ∞)
1

3(2+εp) . Moreover, by (3.15),

σt(1 + εp) =
∑
n≥0

e−t(1− e−t)nd1+εp
1+εp

(µn, µ∞) ≤ Γ
1+εp
2 .
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Thus, using (5.6) and the above estimates for σt(1) and σt(1 + εp), one has

σt(2 + εp) ≤ ∆1(2 + εp)e
tS(2+εp)

+ C1Γ
1+εp
2 B2+εpe

tS(2+εp)

∫ t

0

e−τS(2+εp)eτ
1
3ϕ(2+εp)dτ

= σt(2 + εp) ≤ ∆1(2 + εp)e
tS(2+εp)

+ C1Γ
1+εp
2 B2+εpe

tS(2+εp)

∫ t

0

e
−τS(2+εp)

5+3εp
6+3εp dτ.

Clearly S(2 + εp)
5+3εp
6+3εp

6= 0 and hence we get

σt(2 + εp) ≤ C2+εpe
tmax{S(2+εp), 13ϕ(2+εp)}

which is the thesis since max{S(2 + εp),
ϕ(2+εp)

3 } =
ϕ(2+εp)

3 = −R2+εp . This concludes
the proof if kp = 2. On the other hand, if kp ≥ 3, assume that (6.2) holds true for
j = 2, . . . , kp − 1. Using (5.6) we get

σt(kp + εp) ≤ ∆1(kp + εp)e
tS(kp+εp)

+Bkp+εpC1Ckp−1+εpe
tS(kp+εp)

∫ t

0

eτ [−S(kp+εp)+ 1
3ϕ(2+εp)]σt(kp − 1 + εp)dτ.

By the inductive hypothesis, σt(kp−1 +εp) ≤ D for a suitable constant D > 0 and hence

σt(kp + εp) ≤ ∆1(kp + εp)e
tS(kp+εp)

+DBkp+εpC1Ckp−1+εpe
tS(kp+εp)

∫ t

0

eτ [−S(kp+εp)+ 1
3ϕ(2+εp)]dτ.

and the thesis follows.

7 Proof of Theorem 3.10

The proof of this theorem is inspired by the proof of Lemma 3.19 in [13]. See also
Lemma 3.1 in [31].

Proof of Part (i) Let δ ∈ [0, 1) such that k + δ = 1 + p−α
pα . Let c−0 , c

+
0 , c̃
−
1 , c̃

+
1 ,

. . . , c̃−k−1, c̃
+
k−1 be given in Proposition 3.9. Note that, since |β| 6= 1, c+0 > 0 and c−0 > 0.

Recall that if U is a random variable uniformly distributed on (0, 1) then (F−1
0 (U), F−1

∞ (U))

is a coupling for dp(µ̄0, µ∞) and hence

dp(µ̄0, µ∞) ≤
(
E

∣∣∣F−1
0 (U)− F−1

∞ (U)
∣∣∣p) 1

p∧1

≤
(
E

∣∣∣F−1
0 (U)−G−1(U)

∣∣∣p) 1
p∧1

+
(
E

∣∣∣G−1(U)− F−1
∞ (U)

∣∣∣p) 1
p∧1

(7.1)

where G is a real-valued function of real argument defined by

G(x) :=


∑k−1
i=0

c̃−i
|x|(i+1)α if x < −M1∑k−1

i=0
c̃−i

M
(i+1)α
1

if −M1 ≤ x < M2

1−
∑k−1
i=0

c̃+i
x(i+1)α if x ≥M2

(7.2)

with M1 > 0, M2 > 0 being such that G is a distribution function, i.e.

(1)
∑k−1
i=0

c̃−i
M

(i+1)α
1

< 1;
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(2)
∑k−1
i=0

c̃−i
M

(i+1)α
1

≤ 1−
∑k−1
i=0

c+i
M

(i+1)α
2

;

(3) G′(x) ≥ 0 for every x ∈ R \ {−M1,M2}.

As for (1) and (2), it suffices to choose M1 and M2 sufficiently large. Regarding (3), note
that

G′(x) =


∑k−1
i=0

c̃−i (i+1)α

|x|(i+1)α+1 if x ∈ (−∞,−M1)

0 if x ∈ (−M1,M2)∑k−1
i=0

c̃+i (i+1)α

x(i+1)α+1 if x ∈ (M2,+∞),

which is positive for sufficiently large Mi’s. Thus, the function G is a distribution func-
tion and G−1 is its quantile. With a simple change of variables in (7.1) we can write

dp(µ̄0, µ∞) ≤
(∫

R

∣∣∣G−1(F0(y))− y
∣∣∣pdF0(y)

) 1
p∧1

+
(∫

R

∣∣∣G−1(F∞(y))− y
∣∣∣pdF∞(y)

) 1
p∧1

= C0 +
(∫

(−M,+M)c

∣∣∣G−1(F0(y))− y
∣∣∣pdF0(y)

) 1
p∧1

+ C∞

+
(∫

(−M,+M)c

∣∣∣G−1(F∞(y))− y
∣∣∣pdF∞(y)

) 1
p∧1

where M ≥ max{M1,M2}, C0 :=
( ∫

(−M,+M)

∣∣∣G−1(F0(y))− y
∣∣∣pdF0(y)

) 1
p∧1

< +∞, C∞ :=( ∫
(−M,+M)

∣∣∣G−1(F∞(y)) − y
∣∣∣pdF∞(y)

) 1
p∧1

< +∞. Hence, the finiteness of the dp dis-

tance between µ̄0 and µ∞ follows if we show that∫
(−M,+M)c

∣∣∣G−1(F0(y))− y
∣∣∣pdF0(y) < +∞,∫

(−M,+M)c

∣∣∣G−1(F∞(y))− y
∣∣∣pdF∞(y) < +∞.

Let us start studying the first integral confining ourselves to the calculus on the interval
(M,+∞) (the integral on (−∞,−M) can be treated in the same way): we introduce the
function

H(x) := F0(x)−G(x) (x ≥M).

By hypotheses (3.13) and (3.14) we deduce thatH(x) = O
(

1
|x|(k+δ)α

)
. Assuming, without

loss of generality that F0(M) > G(M2), using Taylor expansion of G−1(F0(x)) around
G(x) we have that

G−1(F0(x)) = G−1(G(x) +H(x)) = G−1(G(x)) +H(x)
d

du
G−1(u)

∣∣∣
u=G(x)

+
H2(x)

2

d2

du2
G−1(u)

∣∣∣
u=G(x)+θH(x)

for some θ ∈ (0, 1). Now, putting Rx := G−1(G(x) + θH(x)), we obtain

G−1(F0(x))− x =
H(x)

G′(x)

(
1− H(x)

2

G′′(Rx)G′(x)

(G′(Rx))3

)
. (7.3)

From the definition of G given in (7.2) we compute

G′(x) =

k−1∑
i=0

c̃+i (i+ 1)α

|x|(i+1)α+1
=

αc+0
|x|α+1

(1 + o(1)) for x→ +∞
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G′′(x) = −
k−1∑
i=0

c̃+i (i+ 1)α[(i+ 1)α+ 1]

|x|(i+1)α+2
= −α(α+ 1)c+0

|x|α+2
(1 + o(1)) for x→ +∞

and therefore (7.3) becomes∣∣∣G−1(F0(x))− x
∣∣∣ =

1

αc+0
|H(x)||x|α+1(1 + o(1))

·
∣∣∣∣1 +

α+ 1

αc+0

H(x)

2

|Rx|2α+1

|x|α+1
(1 + o(1))

∣∣∣∣ (7.4)

for x→ +∞. We now show that H(x) |Rx|
2α+1

|x|α+1 = o(1) for x→ +∞. By further increasing

M , if needed, we can say that there exist A+ > 0, A− > 0 such that for every x ≥M

G−(x) ≤ G(x) ≤ G+(x)

where G±(x) := 1− A±
|x|α . In particular

( A+

1− y

) 1
α

= G−1
+ (y) ≤ G−1(y) ≤ G−1

− (y) =
( A−

1− y

) 1
α

for every y sufficiently close to 1. Since G(x) + θH(x) −→ 1 for x→ +∞, we obtain

Rx = G−1(G(x) + θH(x)) ≤ G−1
− (G(x) + θH(x)) =

A
1
α
−(

1− [G(x) + θH(x)]
) 1
α

≤
A

1
α
−(

1−G+(x)− θH(x)
) 1
α

=
A

1
α
−(

1−
(

1− A+

|x|α

)
− θH(x)

) 1
α

=
A

1
α
− |x|(

A+ − θ|x|αH(x)
) 1
α

= |x|
((A−

A+

) 1
α

+ o(1)
)

where o(1) is for x→ +∞. Recalling that H(x) = O
(

1
|x|(k+δ)α

)
, we can conclude that

|H(x)| |Rx|
2α+1

|x|α+1
≤ |H(x)| |x|

2α+1

|x|α+1

((A−
A+

) 1
α

+ o(1)
)2α+1

= o(1)

for x→ +∞ and therefore, from (7.4),∣∣∣G−1(F0(x))− x
∣∣∣ =

1

αc+0
|H(x)||x|α+1(1 + o(1)).

Hence, for suitable positive constants C,C ′, C ′′, C ′′′, we can write∫ +∞

M

∣∣∣G−1(F0(x))− x
∣∣∣pdF0(x) ≤ C

∫ +∞

M

(
|H(x)||x|α+1

)p
dF0(x)

≤ C ′
∫ +∞

M

( ζ(|x|)
|x|(k+δ)α

|x|α+1
)p
dF0(x)

= C ′
∫ +∞

M

ζp(|x|)|x|pα(1−k−δ)+pdF0(x)

= C ′
∫ +∞

M

ζp(|x|)|x|αdF0(x)
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From Lemma 7.1 below the last term is finite by further increasing M in order to have

M > B. This argument, which proves that
∫ +∞
M

∣∣∣G−1(F0(y)) − y
∣∣∣pdF0(y) < +∞, can be

extended to the same integral with (−∞,−M) as domain of integration.

The integral
∫

(−M,+M)c

∣∣∣G−1(F∞(y)) − y
∣∣∣pdF∞(y) can be treated in the same way

noticing that, in view of Proposition 3.9, F∞ satisfies conditions similar to (3.12) and

(3.13) with ζ(x) = |x|−s+(1+ p−α
αp )α. This shows that dp(µ̄0, µ∞) < +∞.

Proof of Part (ii) Suppose that β = −1 (the case β = 1 can be done in an analogous
way). We start as in the proof of Part (i) writing(∫ 1

0

∣∣∣F−1
0 (u)− F−1

∞ (u)
∣∣∣pdu) 1

p∧1

≤

(∫ F0(0)

0

∣∣∣F−1
0 (u)− F−1

∞ (u)
∣∣∣pdu) 1

p∧1

+

(∫ 1

F0(0)

∣∣∣F−1
0 (u)

∣∣∣pdu) 1
p∧1

+

(∫ 1

F0(0)

∣∣∣F−1
∞ (u)

∣∣∣pdu) 1
p∧1

≤

(∫ F0(0)

0

∣∣∣F−1
0 (u)− F−1

∞ (u)
∣∣∣pdu) 1

p∧1

+

(∫
[F−1

0 (F0(0)),+∞)

|x|pdF0(x)

) 1
p∧1

+

(∫
[F−1
∞ (F0(0)),+∞)

|x|pdF∞(x)

) 1
p∧1

.

The first integral can be treated with the same argument of Part (i); the second integral
is finite by hypothesis; the third, by partial integration, is finite whenever

∫ +∞
0

(1 −
F∞(x))xp−1dx is finite. Now, since S(s) < 0, Proposition 3.9 gives 1 − F∞(x) = O(x−s)

and hence
∫ +∞

0
(1− F∞(x))xp−1dx ≤ C

∫ +∞
1

xp−1−sdx < +∞.

�

The proof of the following lemma is left to the reader.

Lemma 7.1. Let ζ be the function defined in Theorem 3.10 and suppose that (3.14)
holds true. Then ∫ +∞

B

ζp(x)xαdF0(x) < +∞.

A Proof of Proposition 3.9

In this appendix we prove Proposition 3.9. The main point is to recall the well-
known asymptotic expansion for the probability distribution function of an α-stable law
with α 6= 1:

Proposition A.1 ([13, 21, 34]). Let Fα be the distribution function of an α-stable law
of parameters (λ, β) with α 6= 1.
If |β| 6= 1, then for every k ≥ 1

Fα(x) =
c−0
|x|α

+
c−1
|x|2α

+ · · ·+
c−k−1

|x|kα
+O

( 1

|x|(k+1)α

)
for x→ −∞ (A.1)

1− Fα(x) =
c+0
xα

+
c+1
x2α

+ · · ·+
c+k−1

xkα
+O

( 1

x(k+1)α

)
for x→ +∞ (A.2)
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where c±0 are related to (λ, β) by (2.14) and

c±i :=
(−1)iλ̃i+1Γ(α(i+ 1)) sin(π2 (i+ 1)(α± β̃))

π(i+ 1)!
(A.3)

for i = 1, . . . , k − 1 where (λ̃, β̃) are related to (λ, β) by

β̃ :=
2

π
arctan(β tan(K(α)

π

2
)), λ̃ :=

λ

cos(β̃ π2 )

with

K(α) :=

{
α if α ≤ 1

α− 2 if α > 1.

Moreover, if β = −1 [β = 1, resp.], then (A.1) [(A.2), resp.] holds true and 1 − Fα(x) =

O
(

1
|x|η

)
[Fα(x) = O

(
1
|x|η

)
, resp.] for x→ +∞ [for x→ −∞, resp.] for every η > 0.

This proposition follows from Theorem 1.4 of [13] by a simple integration of the
density therein. See also Section 2.4 of [21] and Section 2.4 of [34].
On the other hand, if α = 1 and c+0 = c−0 , then F1 is a symmetric Cauchy distribution of
scale parameter λ = c+0 π and a straightforward asymptotic expansion gives

F1(x) =

k−1∑
i=0

(−1)iλ2i+1

π(2i+ 1)|x|2i+1
+O

(
1

|x|2k+1

)
for x→ −∞ (A.4)

for every k ≥ 1. Combining (3.9), Proposition A.1 and (A.4) we obtain Proposition 3.9.

B Proof of Theorem 2.3

Proof of Theorem 2.3. The theorem can be proved in a very similar way of Theorem 1 of
[3]. In particular it is based on the following simple result: Let (Xn)n≥1 be a sequence of
i.i.d. random variables with common distribution function F0. Assume that (ajn)j≥1,n≥1

is a sequence of positive weights such that

lim
n→+∞

n∑
j=1

ajn = a∞ and lim
n→+∞

max
1≤j≤n

ajn = 0.

If F0 satisfy (2.16) and (2.17) holds, then
∑n
j=1 ajnXj converges in law to a Cauchy

random variable of scale parameter πa∞c0 and position parameter α∞γ0. To prove this
result, according to the classical general central limit theorem for array of independent
random variables, it is enough to prove that

lim
n→+∞

ζn(x) =
a∞c0
|x|

(x 6= 0), (B.1)

lim
ε→0+

lim
n→+∞

σ2
n(ε) = 0, (B.2)

lim
n→+∞

ηn = α∞γ0 (B.3)
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are simultaneously satisfied where

ζn(x) := I{x < 0}
n∑
j=1

Qj,n(x) + I{x > 0}
n∑
j=1

(1−Qj,n(x)) (x ∈ R),

σ2
n(ε) :=

n∑
j=1

{∫
(−ε,+ε]

x2 dQj,n(x)−
(∫

(−ε,+ε]
x dQj,n(x)

)2}
(ε > 0),

ηn :=

n∑
j=1

{
1−Qj,n(1)−Qj,n(−1) +

∫
(−1,1]

x dQj,n(x)
}
,

Qj,n(x) := F0

(
a−1
j,nx

)
with the convention F0(·/0) := I[0,+∞)(·).

See, e.g., Theorem 30 and Proposition 11 in [18]. Conditions (B.1) and (B.2) can be
proved exactly as the analogous conditions of Lemma 5 in [3]. As for condition (B.3)
note that

ηn =

n∑
j=1

ajn

∫
(−1/ajn,1/ajn]

xdF0(x) +

n∑
j=1

ajn

[(
1− F0

( 1

ajn

)) 1

ajn
− F

(
− 1

ajn

) 1

ajn

]
.

Using the assumption on F0 and (ajn)jn it follows immediately that

lim
n

n∑
j=1

ajn

∫
(−1/ajn,1/ajn]

xdF0(x) = a∞γ0

and

lim
n

n∑
j=1

ajn

[(
1− F0

( 1

ajn

)) 1

ajn
− F

(
− 1

ajn

) 1

ajn

]
= a∞(c0 − c0) = 0.

This gives (B.3). Using this result one obtains the analogous of Lemma 5 in [3] for α = 1.
At this stage the proof can be completed following the proof of Theorem 1 in [3].
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