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Abstract

We present a genealogy for super-processes with a non-homogeneous quadratic
branching mechanism, relying on a weighted version of the super-process introduced
by Engländer and Pinsky and a Girsanov theorem. We then decompose this geneal-
ogy with respect to the last individual alive (Williams’ decomposition). Letting the
extinction time tend to infinity, we get the Q-process by looking at the super-process
from the root, and define another process by looking from the top. Examples includ-
ing the multitype Feller diffusion (investigated by Champagnat and Roelly) and the
super-diffusion are provided.
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1 Introduction

Even if super-processes with very general branching mechanisms are known, most
of the works devoted to the study of their genealogy are concerned with homogeneous
branching mechanisms modeling populations with identical individuals. Four distinct
approaches have been proposed for describing these genealogies. When there is no
spatial motion, super-processes are reduced to continuous state branching processes,
whose genealogy can be understood by a flow of subordinators, see Bertoin and Le Gall
[5], or by growing discrete trees, see Duquesne and Winkel [12]. With a spatial motion,
the description of the genealogy can be done using the lookdown process of Donnelly
and Kurtz [10] or the snake process of Le Gall [20]. Works that are concerned with a
generalization of both constructions to non-homogeneous branching mechanisms are
the following: Kurtz and Rodriguez [19] recently extended the lookdown process in this
direction whereas Dhersin and Serlet proposed in [9] modifications of the snake.

Let X be a non-homogeneous super-process. It models the evolution of a large
population, where the location of the individuals is allowed to affect their reproduction
law. We assume the extinction time Hmax of this population is finite. We are interested
in the two following conditionings on the genealogical structure of X:
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1. The distribution X(h0) of X conditioned on Hmax = h0: we derive it using a spinal
decomposition involving the ancestral lineage of the last individual alive (Williams’
decomposition).

2. The convergence of the distribution of X(h0) as h0 goes to ∞. This convergence
is studied from two viewpoints. On the one hand, we obtain a convergence re-
sult for (X

(h0)
s , s ∈ [0, t]) towards the Q-process. On the other hand, we find

a convergence result for the backward process from its extinction time, namely
(X

(h0)
h0+s, s ∈ [−t, 0]). We reduce both convergences to the convergence of the an-

cestral lineage of the last individual alive thanks to Williams’ decomposition.

Concerning the first conditioning, we stress on the following difference between
super-processes with homogeneous and non-homogeneous branching mechanisms, which
explains our interest in the latter model. For homogeneous branching mechanisms, the
spatial motion is independent of the genealogical structure. As a consequence, the
law of the ancestral lineage of the last individual alive does not distinguish from the
original motion. Therefore, in this setting, the description of X(h0) may be deduced
from Abraham and Delmas [2] where no spatial motion is taken into account. For non-
homogeneous branching mechanisms on the contrary, the law of the ancestral lineage
of the last individual alive should depend on the distance to the extinction time h0. This
fact will be precised by the second conditioning.

A few lines about the terminology “Williams’ decompositions” are in order: Williams
[28] decomposed the Brownian excursion with respect to its maximum. After Aldous
recognized in [3] the genealogy of a branching process in this excursion, this name also
refers to decompositions of branching processes with respect to their height.

Our second conditioning exemplifies the interest of Williams’ decomposition for in-
vestigating the process conditioned on extinction in remote time. The convergence of
the super-process conditioned on extinction in remote time essentially reduces to the
convergence of the ancestral lineage of the last individual alive thanks to Williams’ de-
composition. Also, we may consider the limit either on the fixed time interval [0, t] to
get the corresponding Q-process, either on the moving time interval [h0 − t, h0]. For
non-homogeneous branching mechanisms, we expect a different behavior on these two
time intervals for the ancestral lineage of the last individual: far away from the extinc-
tion time, it should favor the fittest types; near the extinction time, it should select the
weakest ones. It is well-known how to perform such a conditioning in the homogeneous
branching mechanisms: it goes back to Serlet [27] for quadratic branching mechanism;
for more general branching mechanisms, it reduces to the corresponding decomposi-
tion for continuous state branching process, see Chen and Delmas [7] and the refer-
ences therein. For non-homogeneous branching, a first construction of the Q-process
(without genealogy) has been given in Champagnat and Roelly [6] in the particular case
of a multitype Feller diffusion.

A rigorous analysis of the ancestral lineage of the last individual alive requires the
introduction of a genealogy for the super-process, since the ancestral lineages are not
immediately identifiable in the context of measure-valued processes. We found out that
the previous genealogies defined for non-homogeneous branching mechanisms, see [19]
and [9], were not suited to our need. In particular, the description in Dhersin and Serlet
[9] preserves neither the extinction time nor the last individual alive, and thus does not
allow to disintegrate the law of the super-process with respect to its extinction time.
We thus provide a new description of the genealogy through another, more effective
modification of the Brownian snake (at least regarding our purposes). More precisely,
starting with non-homogeneous branching mechanism, we go back to an homogeneous
one via two transformations:
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• The first transformation relies on the non-linear h transform, or reweighting of
super-processes, introduced in Engländer and Pinsky [16].

• The second transformation is based on a Girsanov change of measure on the law
of super-processes, as described in Chapter IV of Perkins [23].

Reversing the procedure, we define the genealogy associated to a non-homogeneous
branching mechanism from the one associated to an homogeneous one, see Proposition
3.12. We then obtain our two conditionings by “transfer”, using the previous knowledge
for homogeneous branching mechanisms. The drawback of this approach is that we
have to restrict ourselves to quadratic branching mechanisms with bounded and smooth
parameters.

The rest of the introduction is devoted to a presentation of a selection of our results.
Let (Xt, t ≥ 0) be an (L, β, α) super-process over a Polish space S. The underlying
spatial motion (Yt, t ≥ 0) is a Markov process with infinitesimal generator L started at
x under Px. The non-homogeneous branching mechanism ψ(x, λ) satisfies

ψ(x, λ) = β(x)λ+ α(x)λ2,

and we further assume that the functions β and α satisfy conditions (H2) and (H3),
see Section 2. Notice in particular that smooth functions α and β, with α positive,
satisfy these conditions. Branching mechanisms with constant functions α and β are
called homogeneous. Let Pν be the distribution of X started from the finite measure
ν on S, and Nx be the corresponding canonical measure of X with initial state x. The
process X under Pν is distributed as

∑
i∈I X

i, where
∑
i∈I δXi(dX) is a Poisson Point

measure with intensity ν(dx)Nx(dX). We define Hmax = inf{t > 0, Xt = 0} as the
extinction time of X, and we will assume that X satisfies almost sure extinction, that
is Nx [Hmax =∞] = 0 (this assumption is denoted by (H1) in Section 2). We also define
the function vh(x) = Nx [Xh 6= 0], and we introduce a family of probability measures by
setting:

∀ 0 ≤ t < h,
dP

(h)
x |Dt

dPx |Dt
=
∂hvh−t(Yt)

∂hvh(x)
e−
∫ t
0
ds ∂λψ(Ys,vh−s(Ys)),

where Dt = σ(Ys, 0 ≤ s ≤ t) is the natural filtration of Y , see Lemma 4.10.
The following Theorem solves the conditioning problem (1) raised above. It gives a

Williams decomposition of X with respect to its extinction time Hmax: sub-trees given
below by (Xj , j ∈ J) are grafted on a spine given by Y under P

(h0)
x .

Theorem (Corollary 4.13). (Williams’ decomposition underNx) Assume that the (L, β, α)

super-diffusion X satisfies the almost sure extinction property. Let x ∈ S and Y[0,h0) be

distributed according to P
(h0)
x . Consider the Poisson point measure N =

∑
j∈J δ(sj ,Xj)

on [0, h0)× Ω with intensity:

2 1[0,h0)(s)ds 1{Hmax(X)<h0−s}α(Ys) NYs [dX].

Conditionally on {Hmax = h0}, the (L, β, α) super-diffusion X under Nx is distributed as

X(h0) = (X
(h0)
t , t ≥ 0) defined for all t ≥ 0 by:

X
(h0)
t =

∑
j∈J, sj<t

Xj
t−sj .

This also implies the existence of a measurable family (N
(h0)
x , h0 > 0) of probabilities

such that N(h0)
x is the distribution of X under Nx conditionally on {Hmax = h0}.
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We shall consider from now on the case where Y is a diffusion on S = RK or a
finite state space Markov process. The generator L of a diffusion is defined as fol-
lows: let aij and bi be in C1,µ(S), the usual Hölder space of order µ ∈ [0, 1), which
consists of functions whose first order derivatives are locally Hölder continuous with
exponent µ, for each i, j in {1, . . . ,K}. The functions ai,j are chosen such that the ma-
trix (aij)(i,j)∈{1...K}2 is positive definite. In that case, the following elliptic operator:

L(u) =

K∑
i=1

bi ∂xiu+
1

2

K∑
i,j=1

aij ∂xi,xju.

defines the generator of a diffusion on S. The super-processes associated with a diffu-
sion is called a super-diffusion. The generator L of a Markov process with finite state
space S = {1, . . . ,K} for K integer is given by a square matrix (qij)1≤i,j≤K of size K

with lines summing up to 0, and qij gives the transition rate from i to j for i 6= j:

L(u)(i) =
∑
j 6=i

qij [u(j)− u(i)].

This Markov process will be assumed irreducible. The super-process associated with a
finite state space Markov process is called a multitype Feller diffusion.

The generalized eigenvalue λ0 of the operator β−L is defined in Pinsky [24] for a dif-
fusion on RK and, for finite state space, it reduces to the Perron Frobenius eigenvalue,
see Seneta [26]. In both cases, we have:

λ0 = sup {` ∈ R,∃u ∈ D(L), u > 0 such that (β − L)u = ` u}·

We assume that the space of positive harmonic functions for (β − λ0)− L is one dimen-
sional, generated by a function φ0. From this assumption, we also have that the space of
positive harmonic functions of the adjoint of (β−λ0)−L is one dimensional, and we de-
note by φ̃0 a generator of this space (see [24] for diffusions). The operator (β−λ0)−L is
said product-critical when

∫
S
dxφ0(x) φ̃0(x) <∞, in which case the probability measure

Pφ0 , given by:

∀t ≥ 0,
dPφ0

x |Dt
dPx |Dt

=
φ0(Yt)

φ0(Y0)
e−
∫ t
0
ds (β(Ys)−λ0),

defines a recurrent Markov process (in the sense given by (5.10)). We precise in Propo-
sition 5.10 (multitype Feller diffusion) and Proposition 5.11 (super-diffusion) the gener-
ators associated with P(h) and Pφ0 . We shall assume also that φ0 is bounded from below
and from above by two positive constants. Together with the non-negativity of λ0, this
implies the almost sure extinction of the associated super-process, see Lemma 5.2.

The following Theorem states the weak convergence of the probability measures
(N

(h0)
x , h0 > 0), and partly solves the conditioning problem (2). Notice the limiting

object consists of sub-trees (Xj , j ∈ J) grafted on a spine given by Y under Pφ0
x .

Theorem (Corollary 5.19). (Q-process underNx) Assume that λ0 ≥ 0, that φ0 is bounded
from below and above by positive constants and that the operator (β−λ0)−L is product
critical.
Let Y be distributed according to Pφ0

x , and, conditionally on Y , let N =
∑
j∈I δ(sj ,Xj) be

a Poisson point measure with intensity:

21R+(s)ds α(Ys)NYs [dX].

Consider the process X(∞) = (X
(∞)
t , t ≥ 0), which is defined for all t ≥ 0 by:

X
(∞)
t =

∑
j∈J, sj<t

Xj
t−sj ,
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and denote by N(∞)
x its distribution. Then, the process (X

(h0)
s , s ∈ [0, t]) weakly con-

verges to (X
(∞)
s , s ∈ [0, t]) as h0 goes to infinity.

We also prove that N(∞)
x actually is the law of the Q-process, defined as the weak

limit of the probability measures N(≥h0)
x = Nx [ |Hmax ≥ h0], see Lemma 5.14.

Remark 1.1. As noticed by Gorostiza and Roelly [17] and Li [21], the multitype Dawson-
Watanabe super-process can be understood as a single non-homogeneous super-process
on an extended space. The above Theorem provides a genealogical construction of the
Q-process associated to a multitype Feller diffusion considered in [6], and this construc-
tion gives a precise meaning to “the interactive immigration” introduced in Remark 2.8
of [6].

Remark 1.2. In Engländer and Kyprianou [15], the spinal decomposition of a Doob h-
transform of the super-diffusion is provided, and it is “suggest[ed]” this process is the
law of the “the sum of two independent processes” , see the Discussion 2.2 of [15]. This
Theorem, or more precisely third item of Corollary 5.19 together with Lemma 5.14,
prove that the process they considered actually is the Q-process.

Remark 1.3. Interestingly, the law of the spine Pφ0 is quite different from that of the
backbone formed by the infinite ancestral lineages in a super-critical Dawson-Watanabe
super-process investigated in Engländer and Pinsky [16], see Remark 5.20.

We may also prove weak convergence of the probability measures (N
(h0)
x , h0 > 0)

backward from the extinction time. Let us denote by P(−h) the distribution of Y under
P(h) shifted by h:

P(−h) ((Ys, s ∈ [−h, 0]) ∈ •) = P(h) ((Yh+s, s ∈ [−h, 0]) ∈ •) .

The product criticality assumption yields the existence of a probability measure denoted
by P(−∞) such that for all x ∈ S, t ≥ 0:

P(−h)
x ((Ys, s ∈ [−t, 0]) ∈ •) −−−−−→

h→+∞
P(−∞) ((Ys, s ∈ [−t, 0]) ∈ •) .

The following result corresponds to second item of Theorem 5.25. It completes the
answer to the conditioning problem (2). Notice the limiting object below corresponds
to sub-trees (Xj , j ∈ J) grafted on a spine given by Y under P(−∞).

Theorem (Theorem 5.25). Assume that λ0 > 0, that φ0 is bounded from below and
above by positive constants and that the operator (β − λ0)− L is product critical.
Let Y be distributed according to P(−∞), and, conditionally on Y , let

∑
j∈J δ(sj ,Xj) be a

Poisson point measure with intensity:

2 1{s<0}α(Ys) ds 1{Hmax(X)<−s} NYs [dX].

Consider the process (X
(−∞)
s , s ≤ 0), which is defined for all s ≤ 0 by:

X(−∞)
s =

∑
j∈J, sj<s

Xj
s−sj .

Then the process (X
(h0)
h0+s, s ∈ [−t, 0]) weakly converges to (X

(−∞)
s , s ∈ [−t, 0]) as h0 goes

to infinity.

Remark 1.4. Considering a super-process with homogeneous branching mechanism,
the Q-process may be easily defined from the well known Q-process associated with the
continuous state branching process, see [7] for instance. Thus the recurrence condition
imposed on the spatial motion is not necessary for the Corollary 5.19 to hold. This
condition seems more natural in the setting of Theorem 5.25.
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Remark 1.5. It is possible to obtain Corollary 5.19 for more general processes (without
using the generalized eigenvalue nor the product criticality assumption), as soon as the
key Lemmas 5.6 and 5.9 may be established. In this framework, the distribution Pφ0

is defined as a limit from Lemma 5.9. The same remark holds for Theorem 5.25, with
Lemma 5.23 in the rôle of the key Lemma.

Finally, we comment on the effect of conditioning by the event {Hmax = h} on the
spatial motion of the ancestral lineages. For h finite, the ancestral lineage at time t of
the most persistent lineage follows the path of an inhomogeneous h-transform of the
original motion, as seen from the definition of P(h). This means that this ancestral lin-
eage is attracted towards the region where the branching process has high probability
of dying h− t times later. What happens when h− t→∞? We shall prove in Lemma 5.7
that there is a constant C such that:

lim
h→∞

−∂hvh(x) eλ0h = Cφ0(x).

This implies that, viewed from the root, the ancestral lineage of the most persistent par-
ticle of the super-process conditioned on extinction in remote time, that is conditioned
on {Hmax = h} and h → ∞, follows an h-transform for h(x) = φ0(x), see the definition
of Pφ0 . This h-transform is an homogeneous spatial motion, and the resulting measure
valued Q-process inherits from it the homogeneous Markov property. On the contrary,
when h→∞ with h− t fixed, the most persistent ancestral lineage viewed from the top
always follows the same inhomogeneous h-transform driven by −∂hvh−t(x). Finally, an
ancestral lineage chosen at random among those present at time t follows the path of
a penalized motion, with the penalization given by exp (−

∫ t
0
ds β(Ys)), as seen from the

definition (4.11) of P(B,t). We say penalization, and not h-transform, since the distribu-
tions of P(B,t) do not consistently define a process as t varies. As t→∞, we shall see in
Lemma 5.12 that P(B,t) weakly converges to Pφ0 on Fs, s ≥ 0.

Outline. We give some background on super-processes with a non-homogeneous
branching mechanism in Section 2. Section 3 begins with the definition of the h-
transform in the sense of Engländer and Pinsky, Definition 3.4, goes on with a Girsanov
Theorem, Proposition 3.7, and ends up with the definition of the genealogy, Proposition
3.12, by combining both tools. Section 4 is mainly devoted to the proof of Williams’
decomposition, Theorem 4.12. We also take the opportunity to give a decomposition
with respect to a randomly chosen individual, also known as a Bismut decomposition,
in Proposition 4.2. Section 5 gives some applications of Williams’ decomposition in two
particular cases, the super-diffusion and the finite state space super-process. We first
prove the convergence of the spine seen from the root, in the Williams setting first, in
the Bismut setting then, see Sections 5.3 and 5.4. We then deduce the convergence of
the super-process conditioned to extinct at a remote time, see Section 5.5. The same
limit is shown to prevail also for the super-process conditioned to extinct to extinct after
a remote time, also known as the Q-process. We then look at the convergence of the
spine from the top in Section 5.6. The convergence of the super-process seen from the
top follows, see Section 5.7.

2 Notations and definitions

This section, based on the lecture notes of Perkins [23], provides us with basic mate-
rial about super-processes, relying on their characterization via the Log Laplace equa-
tion.

We first introduce some definitions:

• (S, δ) is a Polish space, B its Borel sigma-field.

EJP 18 (2013), paper 37.
Page 6/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1801
http://ejp.ejpecp.org/


A Williams decomposition for spatially dependent super-processes.

• S is the set of real valued measurable functions and bS ⊂ S the subset of bounded
functions.

• C(S,R), or simply C, is the set of continuous real valued functions on S, Cb ⊂ C the
subset of continuous bounded functions.

• D(R+, S), or simply D, is the set of càdlàg paths of S equipped with the Skorokhod
topology, D is the Borel sigma field on D, and Dt the canonical right continuous
filtration on D.

• For each set of functions, the superscript .+ will denote the subset of the non-
negative functions: For instance, bS+ stands for the subset of non-negative func-
tions of bS.

• Mf (S) is the space of finite measures on S. The standard inner product nota-
tion will be used: for g ∈ S integrable with respect to M ∈ Mf (S), M(g) =∫
S
M(dx)g(x).

We now introduce the two main ingredients which enter in the definition of a super-
process, the spatial motion and the branching mechanism:

• Assume Y = (D,D,Dt, Yt,Px) is a Borel strong Markov process. “Borel” means
that x → Px(A) is B measurable for all A ∈ B. Let Ex denote the expectation
operator, and (Pt, t ≥ 0) the semi-group defined by: Pt(f)(x) = Ex[f(Yt)]. We
impose the additional assumption that Pt : Cb → Cb. In particular the process Y
has no fixed discontinuities. The generator associated to the semi-group will be
denoted L. Remember f belongs to the domain D(L) of L if f ∈ Cb and for some
g ∈ Cb,

f(Yt)− f(x)−
∫ t

0

ds g(Ys) is a Px martingale for all x in S, (2.1)

in which case g = L(f).

• The functions α and β being elements of Cb, with α bounded from below by a
positive constant, the non-homogeneous quadratic branching mechanism ψβ,α is
defined by:

ψβ,α(x, λ) = β(x)λ+ α(x)λ2, (2.2)

for all x ∈ S and λ ∈ R. We will just write ψ for ψβ,α when there is no possible
confusion. If α and β are constant functions, we will call the branching mechanism
(and by extension, the corresponding super-process) homogeneous.

The mild form of the log-Laplace equation is given by the integral equation, for
φ, f ∈ bS+, t ≥ 0, x ∈ S:

ut(x) + Ex

[∫ t

0

ds ψ(Ys, ut−s(Ys))

]
= Ex

[
f(Yt) +

∫ t

0

ds φ(Ys)

]
· (2.3)

Theorem 2.1. ([23], Theorem II.5.11) Let φ, f ∈ bS+. There is a unique jointly (in t

and x) Borel measurable solution uf,φt (x) of equation (2.3) such that uf,φt is bounded on
[0, T ]× S for all T > 0. Moreover, uf,φt ≥ 0 for all t ≥ 0.

We shall write uf for uf,0 when φ is null.

We introduce the canonical space of continuous applications from [0,∞) to Mf (S),
denoted by Ω := C(R+,Mf (S)), endowed with its Borel sigma field F , and the canonical
right continuous filtration Ft. Notice that F = F∞.
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Theorem 2.2. ([23], Theorem II.5.11) Let uf,φt (x) denote the unique jointly Borel mea-
surable solution of equation (2.3) such that uf,φt is bounded on [0, T ] × S for all T > 0.

There exists a unique Markov process X = (Ω,F ,Ft, Xt, (P
(L,β,α)
ν , ν ∈ Mf (S))) such

that:
∀φ, f ∈ bS+, E(L,β,α)

ν

[
e−Xt(f)−

∫ t
0
ds Xs(φ)

]
= e−ν(uf,φt ) . (2.4)

The process X in the previous theorem is called the (L, β, α)-super-process. We now
state the existence theorem of the canonical measures.

Theorem 2.3. ([23], Theorem II.7.3) There exists a measurable family of σ-finite mea-
sures (N

(L,β,α)
x , x ∈ S) on (Ω,F) which satisfies the following properties: If

∑
j∈J δ(xj ,Xj)

is a Poisson point measure on S × Ω with intensity ν(dx) N
(L,β,α)
x , then

∑
j∈J X

j is an
(L, β, α)-super-process started at ν.

We will often abuse notation by denoting Pν (resp. Nx) instead of P(L,β,α)
ν (resp.

N
(L,β,α)
x ), and Px instead of Pδx when starting from δx the Dirac mass at point x.

Let X be a (L, β, α)-super-process. The exponential formula for Poisson point mea-
sures yields the following equality:

∀f ∈ bS+, Nx0

[
1− e−Xt(f)

]
= − logEx0

[
e−Xt(f)

]
= uft (x0), (2.5)

where uft is (uniquely) defined by equation (2.4).
Denote Hmax the extinction time of X:

Hmax = inf{t > 0; Xt = 0}. (2.6)

Definition 2.4 (Global extinction). The super-process X satisfies global extinction if
Pν(Hmax <∞) = 1 for all ν ∈Mf (S).

We will need the the following assumption:

(H1) The (L, β, α)-super-process satisfies the global extinction property.

We shall be interested in the function

vt(x) = Nx[Hmax > t]. (2.7)

We set v∞(x) = limt→∞ ↓ vt(x). The global extinction property is easily stated using v∞.

Lemma 2.5. The global extinction property holds if and only if v∞ = 0.

See also Lemma 4.9 for other properties of the function v.

Proof. The exponential formula for Poisson point measures yields:

Pν(Hmax ≤ t) = e−ν(vt) .

To conclude, let t go to infinity in the previous equality to get:

Pν(Hmax <∞) = e−ν(v∞) .

For homogeneous super-processes (α and β constant), the function v is easy to com-
pute and the global extinction holds if and only β is non-negative. Then, using a stochas-
tic domination argument, one gets that a (L, β, α)-super-process, with β non-negative,
exhibits global extinction (see [15] p.80 for details).
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3 A genealogy for the non-homogeneous super-processes

We first recall (Section 3.1) the h-transform for super-process introduced in [16]
and then (Section 3.2) a Girsanov theorem previously introduced in [23] for interac-
tive super-processes. Those two transformations allow us to give the Radon-Nikodym
derivative of the distribution of a super-process with non-homogeneous branching mech-
anism with respect to the distribution of a super-process with an homogeneous branch-
ing mechanism. The genealogy of the super-process with an homogeneous branching
mechanism can be described using a Brownian snake, see [11]. Then, in Section 3.3,
we use the Radon-Nikodym derivative to transport this genealogy and get a genealogy
for the super-process with non-homogeneous branching mechanism.

3.1 The h-transform for super-processes

We first introduce a new probability measure on (D,D) using the next Lemma.

Lemma 3.1. Let g be a positive function of D(L) such that g is bounded from below
by a positive constant. Then, the process

( g(Yt)
g(x) e−

∫ t
0
ds (Lg/g)(Ys), t ≥ 0

)
is a positive

martingale under Px.

We set Dg(L) = {v ∈ Cb, gv ∈ D(L)}.

Proof. Let g be as in Lemma 3.1 and f ∈ Dg(L). The process:(
(fg)(Yt)− (fg)(x)−

∫ t

0

ds L(fg)(Ys), t ≥ 0

)
is a Px martingale by definition of the generator L. Thus, the process:(

(fg)(Yt)

g(x)
− f(x)−

∫ t

0

ds
L(fg)(Ys)

g(x)
, t ≥ 0

)
is a Px martingale. We set:

Mf,g
t = e−

∫ t
0
ds (Lg/g)(Ys) (fg)(Yt)

g(x)
− f(x)

−
∫ t

0

ds e−
∫ s
0
dr (Lg/g)(Yr)

[
L(fg)(Ys)

g(x)
− L(g)(Ys)

g(Ys)

(fg)(Ys)

g(x)

]
. (3.1)

Itô’s lemma then yields that the process (Mf,g
t , t ≥ 0) is another Px martingale. Notice

this is a true martingale since it is bounded on bounded time intervals from our assump-
tions on f and g. Remark also that the constant function equal to 1 is in Dg(L). This
choice of f yields the result.

Let Pgx denote the probability measure on (D,D) defined by:

∀t ≥ 0,
dPgx |Dt
dPx |Dt

=
g(Yt)

g(x)
e−
∫ t
0
ds (Lg/g)(Ys) . (3.2)

Note that in the case where g is harmonic for the linear operator L (that is Lg = 0), the
probability distribution Pg is the usual Doob h-transform of P for h = g.

We also introduce the generator Lg of the canonical process Y under Pg and the
expectation operator Eg associated to Pg.

Lemma 3.2. Let g be a positive function of D(L) such that g is bounded from below by
a positive constant. Then, we have Dg(L) ⊂ D(Lg) and

∀u ∈ Dg(L), Lg(u) =
L(gu)− L(g)u

g
·

EJP 18 (2013), paper 37.
Page 9/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1801
http://ejp.ejpecp.org/


A Williams decomposition for spatially dependent super-processes.

Proof. As, for f ∈ Dg(L), the process (Mf,g
t , t ≥ 0) defined by (3.1) is a martingale under

Px, we get that the process:

f(Yt)− f(x)−
∫ t

0

ds

(
L(fg)(Ys)− L(g)(Ys)f(Ys)

g(Ys)

)
, t ≥ 0

is a Pgx martingale. This gives the result.

Remark 3.3. Let ((t, x)→ g(t, x)) be a function bounded from below by a positive con-
stant, differentiable in t, such that g(t, .) ∈ D(L) for each t and ((t, x)→ ∂tg(t, x)) is
bounded from above. By considering the process (t, Yt) instead of Yt, we have the im-
mediate counterpart of Lemma 3.1 for time dependent function g(t, .). In particular,
we may define the following probability measure on (D,D) (still denoted Pgx by a small
abuse of notations):

∀t ≥ 0,
dPgx |Dt
dPx |Dt

=
g(t, Yt)

g(0, x)
e−
∫ t
0
ds
Lg+∂tg

g (s,Ys), (3.3)

where L acts on g as a function of x.

We now define the h-transform for super-processes, as introduced in [16] (notice
this does not correspond to the Doob h-transform for super-processes).

Definition 3.4. Let X = (Xt, t ≥ 0) be an (L, β, α) super-process. For g ∈ bS+, we
define the h-transform of X (with h = g) as Xg = (Xg

t , t ≥ 0) the measure valued
process given for all t ≥ 0 by:

Xg
t (dx) = g(x)Xt(dx). (3.4)

Note that (3.4) holds pointwise, and that the law of the h-transform of a super-
process may be singular with respect to the law of the initial super-process.

We first give an easy generalization of a result in section 2 of [16] for a general
spatial motion.

Proposition 3.5. Let g be a positive function of D(L) such that g is bounded from below

by a positive constant. Then the process Xg is a
(
Lg, (−L+β)g

g , αg
)

-super-process.

Proof. The Markov property of Xg is clear. We compute, for f ∈ bS+ :

Ex[e−X
g
t (f)] = Eδx/g(x)[e

−Xt(fg)] = e−ut(x)/g(x),

where, by Theorem 2.2, u satisfies:

ut(x) + Ex

[ ∫ t

0

dr ψ(Yr, ut−r(Yr))

]
= Ex

[
(fg)(Yt)

]
, (3.5)

which may also be written:

ut(x) + Ex

[ ∫ s

0

dr ψ(Yr, ut−r(Yr))

]
+ Ex

[ ∫ t

s

dr ψ(Yr, ut−r(Yr))

]
= Ex

[
(fg)(Yt)

]
.

But (3.5) written at time t− s gives:

ut−s(x) + Ex

[ ∫ t−s

0

dr ψ(Yr, ut−s−r(Yr))

]
= Ex

[
(fg)(Yt−s)

]
.

EJP 18 (2013), paper 37.
Page 10/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1801
http://ejp.ejpecp.org/


A Williams decomposition for spatially dependent super-processes.

By comparing the two previous equations, we get:

ut(x) + Ex

[ ∫ s

0

dr ψ(Yr, ut−r(Yr))

]
= Ex

[
ut−s(Ys)

]
,

and the Markov property now implies that the process:

ut−s(Ys)−
∫ s

0

dr ψ(Yr, ut−r(Yr))

with s ∈ [0, t] is a Px martingale. Itô’s lemma now yields that the process:

ut−s(Ys) e−
∫ s
0
dr(Lg/g)(Yr)−

∫ s

0

dr e−
∫ r
0
du (Lg/g)(Yu)

(
ψ(Yr, ut−r(Yr))−(Lg/g)(Yr) ut−r(Yr)

)
with s ∈ [0, t] is another Px martingale (the integrability comes from the assumption
Lg ∈ Cb and 1/g ∈ Cb). Taking expectations at time s = 0 and at time s = t, we have:

ut(x) + Ex

[ ∫ t

0

ds e−
∫ s
0
dr(Lg/g)(Yr)

(
ψ(Ys, ut−s(Ys))− (Lg/g)(Ys)ut−s(Ys)

)]
= Ex

[
e−
∫ t
0
dr(Lg/g)(Yr)(fg)(Yt)

]
.

We divide both sides by g(x) and expand ψ according to its definition:

(ut
g

)
(x)+Ex

[ ∫ t

0

ds
g(Ys)

g(x)
e−
∫ s
0
dr(Lg/g)(Yr)

(
(αg)(Ys)

(ut−s
g

)2
(Ys)+(β−Lg

g
)(Ys)

(ut−s
g

)
(Ys)

)]
= Ex

[
g(Yt)

g(x)
e−
∫ t
0
dr(Lg/g)(Yr) f(Yt)

]
.

By definition of Pgx from (3.2), we get that:

(ut
g

)
(x) + Egx

[ ∫ t

0

ds

(
(αg)(Ys)

(ut−s
g

)2
(Ys) + (β − Lg

g
)(Ys)

(ut−s
g

)
(Ys)

])
= Egx

[
f(Yt)

]
.

We conclude from Theorem 2.2 that Xg is a (Lg, (−L+β)g
g , αg)-super-process.

In order to perform the h-transform of interest, we shall consider the following as-
sumption.

(H2) 1/α belongs to D(L).

Notice that (H2) implies that αL(1/α) ∈ Cb. Proposition 3.5 and Lemma 3.1 then
yield the following Corollary.

Corollary 3.6. Let X be an (L, β, α)-super-process. Assume (H2). The process X1/α is
an (L̃, β̃, 1)-super-process with:

L̃ = L1/α and β̃ = β − αL(1/α). (3.6)

Moreover, for all t ≥ 0, the law P̃x of the process Y with generator L̃ is absolutely
continuous on Dt with respect to Px and its Radon-Nikodym derivative is given by:

dP̃x |Dt
dPx |Dt

=
α(x)

α(Yt)
e
∫ t
0
ds (β̃−β)(Ys) . (3.7)
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We will note P̃ for the law of X1/α on the canonical space (that is P̃ = P(L̃,β̃,1)) and Ñ
for its canonical measure. Observe that the branching mechanism of X under P̃, which
we shall write ψ̃, is given by:

ψ̃(x, λ) = β̃(x) λ+ λ2, (3.8)

and the quadratic coefficient is no more dependent on x. Notice that Pαν(X ∈ ·) =

P̃ν(αX ∈ ·). This implies the following relationship on the canonical measures (use
Theorem 2.3 to check it):

α(x)Nx[X ∈ ·] = Ñx[αX ∈ ·]. (3.9)

Recall that vt(x) = Nx[Hmax > t] = Nx[Xt 6= 0]. We set ṽt(x) = Ñx[Xt 6= 0]. As α is
positive, equality (3.9) implies in particular that, for all t > 0 and x ∈ S:

α(x)vt(x) = ṽt(x). (3.10)

3.2 A Girsanov type theorem

The following assumption will be used to perform the Girsanov change of measure.

(H3) Assumption (H2) holds and the function β̃ defined in (3.6) is in D(L̃), with
L̃ defined in (3.6).

For z ∈ R, we set z+ = max(z, 0). Under (H2) and (H3), we define:

β0 = sup
x∈S

max

(
β̃(x),

√
(β̃2(x)− 2L̃(β̃)(x))+

)
and q(x) =

β0 − β̃(x)

2
· (3.11)

Notice that q ≥ 0.
We shall consider the distribution of the homogeneous (L̃, β0, 1)-super-process, which

we will denote by P0 (P0 = P(L̃,β0,1)) and its canonical measure N0. Note that the
branching mechanism of X under P0 is homogeneous (the branching mechanism does
not depend on x). We set ψ0 for ψβ0,1. Since ψ0 does not depend anymore on x we shall
also write ψ0(λ) for ψ0(x, λ):

ψ0(λ) = β0λ+ λ2. (3.12)

Proposition 3.7 below is a Girsanov’s type theorem which allows us to finally reduce
the distribution P̃ to the homogeneous distribution P0. We introduce the process M =

(Mt, t ≥ 0) defined by:

Mt = exp

(
X0(q)−Xt(q)−

∫ t

0

ds Xs(ϕ)

)
, (3.13)

where the function ϕ is defined by:

ϕ(x) = ψ̃(x, q(x))− L̃(q)(x), x ∈ S. (3.14)

Proposition 3.7 (Girsanov’s transformation). Assume (H2) and (H3) hold. Let X be a
(L̃, β̃, 1)-super-process.

(i) The process M is a bounded F -martingale under P̃ν which converges a.s. to

M∞ = eX0(q)−
∫+∞
0

ds Xs(ϕ) 1{Hmax<+∞}.

(ii) We have:
dP0

ν

dP̃ν
= M∞.
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(iii) If moreover (H1) holds, then P0
ν -a.s. we have M∞ > 0, the probability measure P̃ν

is absolutely continuous with respect to P0
ν on F :

dP̃ν
dP0

ν

=
1

M∞
, and

dÑx
dN0

x

= e
∫+∞
0

ds Xs(ϕ) .

We also have:
q(x) = N0

x

[
e
∫+∞
0

ds Xs(ϕ)−1
]
. (3.15)

The two first points are a particular case of Theorem IV.1.6 p.252 in [23] on interac-
tive drift. For the sake of completeness, we give a proof based on the mild form of the
Log Laplace equation (2.3) introduced in Section 2. Notice that:

ψ0(λ) = ψ̃(x, λ+ q(x))− ψ̃(x, q(x)). (3.16)

Thus, Proposition 3.7 appears as a non-homogeneous generalization of Corollary 4.4 in
[1]. We first give an elementary Lemma.

Lemma 3.8. Assume (H2) and (H3) hold. The function ϕ defined by (3.14) is non-
negative.

Proof. The following computation:

ϕ(x) = ψ̃(x, q(x))− L̃(q)(x) = q(x)2 + β̃q(x)− L̃(q)(x)

=

(
β0 − β̃(x)

2

)2

+ β̃(x)
β0 − β̃(x)

2
− L̃(q)(x)

=
β2

0 − β̃2(x) + 2L̃(β̃)(x)

4

and the definition (3.11) of β0 ensure that the function ϕ is non-negative.

Proof of Proposition 3.7. First observe that M is F -adapted. As the function q also is
non-negative, we deduce from Lemma 3.8 that the process M is bounded by eX0(q).

Let f ∈ bS+. On the one hand, we have:

Ẽx[Mt e−Xt(f)] = Ẽx[eq(x)−Xt(q+f)−
∫ t
0
ds Xs(ϕ)] = eq(x)−rt(x),

where, according to Theorem 2.2, rt(x) is bounded on [0, T ]×S for all T > 0 and satisfies:

rt(x) + Ẽx

[ ∫ t

0

ds ψ̃(Yt−s, rs(Yt−s))

]
= Ẽx

[ ∫ t

0

ds
(
ψ̃(Yt−s, q(Yt−s))− L̃(q)(Yt−s)

)
+ (q + f)(Yt)

]
. (3.17)

On the other hand, we have
E0
x[e−Xt(f)] = e−wt(x),

where wt(x) is bounded on [0, T ]× S for all T > 0 and satisfies:

wt(x) + Ẽx

[ ∫ t

0

ds ψ0(Yt−s, ws(Yt−s))

]
= Ẽx[f(Yt)].

Using (3.16), rewrite the previous equation under the form:

wt(x) + Ẽx

[ ∫ t

0

ds ψ̃(Yt−s, (ws + q)(Yt−s))

]
= Ẽx

[ ∫ t

0

ds ψ̃(Yt−s, q(Yt−s)) + f(Yt)

]
. (3.18)
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We now make use of the Dynkin’s formula with (H3):

q(x) = −Ẽx

[ ∫ t

0

L̃(q)(Ys)

]
+ Ẽx[q(Yt)], (3.19)

and sum the equations (3.18) and (3.19) term by term to get:

(wt + q)(x) + Ẽx

[ ∫ t

0

ds ψ̃(Yt−s, (ws + q)(Yt−s))

]
= Ẽx

[ ∫ t

0

ds
(
ψ̃(Yt−s, q(Yt−s))− L̃(q)(Yt−s)

)
+ (q + f)(Yt)

]
. (3.20)

The functions rt(x) and wt(x)+q(x) are bounded on [0, T ]×S for all T > 0 and satisfy
the same equation, see equations (3.17) and (3.20). By uniqueness, see Theorem 2.1,
we finally get that wt + q = rt. This gives:

Ẽx[Mt e−Xt(f)] = E0
x[e−Xt(f)]. (3.21)

The Poissonian decomposition of the super-processes, see Theorem 2.3, and the expo-
nential formula enable us to extend this relation to arbitrary initial measures ν:

Ẽν [Mt e−Xt(f)] = E0
ν [e−Xt(f)]. (3.22)

This equality with f = 0 and the Markov property of X proves the first part of item (i).
Now, a direct induction based on the Markov property yields that, for all positive

integer n, and f1, . . . , fn ∈ bS+, 0 ≤ s1 ≤ . . . ≤ sn ≤ t:

Ẽν [Mt e−
∑

1≤i≤nXsi (fi)] = E0
ν [e−

∑
1≤i≤nXsi (fi)]. (3.23)

And we conclude with an application of the monotone class theorem that, for all non-
negative Ft-measurable random variable Z:

Ẽν [MtZ] = E0
ν [Z].

The martingale M is bounded and thus converges a.s. to a limit M∞. We deduce that
for all non-negative Ft-measurable random variable Z:

Ẽν [M∞Z] = E0
ν [Z]. (3.24)

This also holds for any non-negative F∞-measurable random variable Z. This gives the
second item (ii).

On {Hmax < +∞}, then clearly Mt converges to eX0(q)−
∫+∞
0

ds Xs(ϕ). Notice that
P0
ν(Hmax = +∞) = 0. We deduce from (3.24) with Z = 1{Hmax=+∞} that P̃ν -a.s. on
{Hmax = +∞}, M∞ = 0. This gives the last part of item (i).

Now, we prove the third item (iii). Notice that (3.24) implies that P0
ν -a.s. M∞ > 0.

Thanks to (H1), we also have that P̃ν -a.s. M∞ > 0. Let Z be a non-negative F∞-
measurable random variable. Applying (3.24) with Z replaced by 1{M∞>0}Z/M∞, we
get:

Ẽν [Z] = Ẽν

[
M∞1{M∞>0}

Z

M∞

]
= E0

ν

[
Z

M∞
1{M∞>0}

]
= E0

ν

[
Z

M∞

]
.

This gives the first part of item (iii).
Notice that for all positive integer n, and f1, . . . , fn ∈ bS+, 0 ≤ s1 ≤ . . . ≤ sn, we have

Ñx

[
1− e

∑
1≤i≤nXsi (fi)

]
= − log

(
Ẽx

[
e
∑

1≤i≤nXsi (fi)
])

= − log
(

E0
x

[
e
∑

1≤i≤nXsi (fi)+
∫+∞
0

ds Xs(ϕ)
])

+ q(x)

= N0
x

[
1− e

∑
1≤i≤nXsi (fi)+

∫+∞
0

ds Xs(ϕ)
]

+ q(x).
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Taking fi = 0 for all i gives (3.15). This implies:

Ñx

[
1− e

∑
1≤i≤nXsi (fi)

]
= N0

x

[
e
∫+∞
0

ds Xs(ϕ)
(

1− e
∑

1≤i≤nXsi (fi)
)]
.

The monotone class theorem gives then the second part of item (iii).

3.3 Genealogy for super-processes

We now recall the genealogy of X under P0 given by the Brownian snake from [11].
We assume (H2) and (H3) hold.

Let W denote the set of all càdlàg killed paths in S. An element w ∈ W is a càdlàg
path: w : [0, η(w)) → S, with η(w) the lifetime of the path w. By convention the trivial
path {x}, with x ∈ S, is a killed path with lifetime 0 and it belongs to W. The space W
is Polish for the distance:

d(w,w′) = δ(w(0), w(0)′) + |η(w)− η(w′)|+
∫ η(w)∧η(w′)

0

ds ds(w[0,s], w
′
[0,s]),

where ds refers to the Skorokhod metric on the space D([0, s], S), and wI is the restric-
tion of w on the interval I. DenoteWx the set of stopped paths w such that w(0) = x. We
work on the canonical space of continuous applications from [0,∞) to W, denoted by
Ω̄ := C(R+,W), endowed with the Borel sigma field Ḡ for the distance d, and the canon-
ical right continuous filtration Ḡt = σ{Ws, s ≤ t}, where (Ws, s ∈ R+) is the canonical
coordinate process. Notice Ḡ = Ḡ∞ by construction. We set Hs = η(Ws) the lifetime of
Ws.

Definition 3.9 (Proposition 4.1.1 and Theorem 4.1.2 of [11]). Fix W0 ∈ Wx. There
exists a uniqueWx-valued Markov process W = (Ω̄, Ḡ, Ḡt,Wt,P

0
W0

), called the Brownian
snake, starting at W0 and satisfying the two properties:

(i) The lifetime process H = (Hs, s ≥ 0) is a reflecting Brownian motion with non-
positive drift −β0, starting from H0 = η(W0).

(ii) Conditionally given the lifetime process H, the process (Ws, s ≥ 0) is distributed
as a non-homogeneous Markov process, with transition kernel specified by the
two following prescriptions, for 0 ≤ s ≤ s′:

– Ws′(t) = Ws(t) for all t < H[s,s′], with H[s,s′] = infs≤r≤s′ Hr.
– Conditionally on Ws(H[s,s′]−), the path

(
Ws′(H[s,s′] + t), 0 ≤ t < Hs′ −H[s,s′]

)
is independent of Ws and is distributed as Y[0,Hs′−H[s,s′])

under P̃Ws(H[s,s′]−).

This process will be called the β0-snake started at W0, and its law denoted by P0
W0

.

We will just write P0
x for the law of the snake started at the trivial path {x}. The

corresponding excursion measure N0
x of W is given as follows: the lifetime process H is

distributed according to the Itô measure of the positive excursion of a reflecting Brow-
nian motion with non-positive drift −β0, and conditionally given the lifetime process H,
the process (Ws, s ≥ 0) is distributed according to (ii) of Definition 3.9. Let

σ = inf{s > 0;Hs = 0}

denote the length of the excursion under N0
x.

Let (lrs , r ≥ 0, s ≥ 0) be the bicontinuous version of the local time process ofH; where
lrs refers to the local time at level r at time s. We also set ŵ = w(η(w)−) for the left end
position of the path w. We consider the measure valued process X(W ) = (Xt(W ), t ≥ 0)

defined under N0
x by:

Xt(W )(dx) =

∫ σ

0

dsl
t
s δŴs

(dx). (3.25)
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The β0-snake gives the genealogy of the (L̃, β0, 1) super-process in the following
sense.

Proposition 3.10 ([11], Theorem 4.2.1). We have:

• The process X(W ) is under N0
x distributed as X under N0

x.

• Let
∑
j∈J δ(xj ,W j) be a Poisson point measure on S×Ω̄ with intensity ν(dx) N0

x[dW ].

Then
∑
j∈J X(W j) is an (L̃, β0, 1)-super-process started at ν.

Notice that, under N0
x, the extinction time of X(W ) is defined by

inf{t;Xt(W ) = 0} = sup
s∈[0,σ]

Hs,

and we shall write this quantity Hmax or Hmax(W ) if we need to stress the dependence
in W . This notation is coherent with (2.6).

We now transport the genealogy of X under N0 to a genealogy of X under Ñ. In
order to simplify notations, we shall write X for X(W ) when there is no confusion.

Definition 3.11. Under (H1)-(H3), we define a measure Ñx on (Ω̄, Ḡ) by:

∀W ∈ Ω̄,
dÑx

dN0
x

(W ) =
dÑx
dN0

x

(X(W )) =
1

M∞
= e

∫+∞
0

ds Xs(ϕ) .

Notice the second equality in the previous definition is the third item of Proposition
3.7.

At this point, the genealogy defined for X under Ñx will give the genealogy of X
under N up to a weight. We set

Nx =
1

α(x)
Ñx. (3.26)

Proposition 3.12. We have:

(i) X(W ) under Ñx is distributed as X under Ñx.

(ii) The weighted process Xweight = (Xweight
t , t ≥ 0) with

Xweight
t (dx) =

∫ σ

0

dsl
t
s α(Ŵs)δŴs

(dx), t ≥ 0, (3.27)

is under Nx distributed as X under Nx.

We may write Xweight(W ) for Xweight to emphasize the dependence in the snake W .

Proof. This is a direct consequence of Definition 3.11 and (3.9).

We shall say that W under Nx provides through (3.27) a genealogy for X under Nx.

4 A Williams decomposition

In Section 4.1, we give a decomposition of the genealogy of the super-processes
(L, β, α) and (L̃, β̃, 1) with respect to a randomly chosen individual. In Section 4.2, we
give a Williams decomposition of the genealogy of the super-processes (L, β, α) and
(L̃, β̃, 1) with respect to the last individual alive.
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4.1 Bismut’s decomposition

A decomposition of the genealogy of the homogeneous super-process with respect
to a randomly chosen individual is well known in the homogeneous case, even for a
general branching mechanism (see lemmas 4.2.5 and 4.6.1 in [11]).

We now explain how to decompose the snake process under the excursion measure
(Ñx or N0

x) with respect to its value at a given time. Recall σ = inf {s > 0, Hs = 0}
denote the length of the excursion. Fix a real number t ∈ [0, σ]. We consider the

process H(g) (on the left of t) defined on [0, t] by H
(g)
s = Ht−s − Ht for all s ∈ [0, t].

The excursion intervals above 0 of the process (H
(g)
s − inf0≤s′≤sH

(g)
s′ , 0 ≤ s ≤ t) are

denoted
⋃
j∈J(g)(cj , dj). We also consider the process H(d) (on the right of t) defined on

[0, σ − t] by H(d)
s = Ht+s − Ht. The excursion intervals above 0 of the process (H

(d)
s −

inf0≤s′≤sH
(d)
s′ , 0 ≤ s ≤ σ − t) are denoted

⋃
j∈J(d)(cj , dj). We define the level of the

excursion j as sj = Ht−cj if j ∈ J (g) and sj = Ht+cj if j ∈ J (d). We also define for the
excursion j the corresponding excursion of the snake: W j = (W j

s , s ≥ 0) as

W j
s (.) = Wt−(cj+s)∧dj (.+ sj) if j ∈ J (g), and W j

s (.) = Wt+(cj+s)∧dj (.+ sj) if j ∈ J (d).

We consider the following two point measures on R+ × Ω̄: for ε ∈ {g, d},

Rεt =
∑
j∈J(ε)

δ(sj ,W j). (4.1)

Notice that under N0
x (and under Ñx if (H1) holds), the process W can be reconstructed

from the triplet (Wt, R
g
t , R

d
t ) as follows. If s ∈ [0, t], then we define, for j ∈ J (g), cj =∑

i∈J(g) σi1{si>sj} and dj = cj + σj where σi = inf{s > 0;∀t > s,W i
t = 0}. Then there

exists j ∈ J (g) such that (t− s) ∈ [cj , dj ] and we have:

Ws(u) = W j
(t−s)−cj (u− sj) if u > sj and Ws(u) = Wt(u) if u ≤ sj .

If s ∈ [t, σ], then for j ∈ J (d), cj =
∑
i∈J(d) σi1{si>sj} and dj = cj + σj . Then there exists

j ∈ J (d) such that (s− t) ∈ [cj , dj ] and we have:

Ws(u) = W j
(s−t)−cj (u− sj) if u > sj and Ws(u) = Wt(u) if u ≤ sj .

We are interested in the probabilistic structure of this triplet, when t is chosen accord-
ing to the Lebesgue measure on the excursion time interval of the snake. Under N0,
this result is as a consequence of Lemmas 4.2.4 and 4.2.5 from [11]. We recall this
result in the next Proposition.

For a point measure R =
∑
j∈J δ(sj ,xj) on a space R×X and A ⊂ R, we shall consider

the restriction of R to A×X given by RA =
∑
j∈J 1A(sj)δ(sj ,xj).

Proposition 4.1 ([11], Lemmas 4.2.4 and 4.2.5). For every measurable non-negative
function F , the following formulas hold:

N0
x

[ ∫ σ

0

ds F (Ws, R
g
s , R

d
s)

]
=

∫ ∞
0

e−β0r dr Ẽx

[
F (Y[0,r), R̂

B,g
[0,r), R̂

B,d
[0,r))

]
, (4.2)

N0
x

[ ∫ σ

0

dsl
t
s F (Ws, R

g
s , R

d
s)

]
= e−β0t Ẽx

[
F (Y[0,t), R̂

B,g
[0,t), R̂

B,d
[0,t))

]
, t > 0, (4.3)

where under Ẽx and conditionally on Y , R̂B,g and R̂B,d are two independent Poisson
point measures with intensity ν̂B(ds, dW ) = ds N0

Ys
[dW ].

The next Proposition gives a similar result in the non-homogeneous case.
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Proposition 4.2. Under (H1)-(H3), for every measurable non-negative function F , the
two formulas hold:

Ñx

[ ∫ σ

0

ds F (Ws, R
g
s , R

d
s)

]
=

∫ ∞
0

dr Ẽx

[
e−
∫ r
0
ds β̃(Ys) F (Y[0,r), R

B,g
[0,r), R

B,d
[0,r))

]
, (4.4)

where under Ẽx and conditionally on Y , RB,g[0,r) and RB,d[0,r) are two independent Poisson
point measures with intensity

νB(ds, dW ) = ds ÑYs [dW ] = ds α(Ys)NYs [dW ]; (4.5)

and

Nx

[ ∫ σ

0

ds α(Ŵs)F (Ws, R
g
s , R

d
s)

]
=

∫ ∞
0

dr Ex

[
e−
∫ r
0
ds β(Ys) F (Y[0,r), R

B,g
[0,r), R

B,d
[0,r))

]
,

(4.6)
where under Ex and conditionally on Y , RB,g[0,r) and RB,d[0,r) are two independent Poisson

point measures with intensity νB.

Observe there is a weight α(Ŵs) in (4.6) (see also (3.27) where this weight appears)
which modifies the law of the individual picked at random, changing the modified diffu-
sion P̃x in (4.4) into the original one Px.

We shall use the following elementary Lemma on Poisson point measures.

Lemma 4.3. Let R be a Poisson point measure on a Polish space with intensity ν. Let
f be a non-negative measurable function f such that ν(ef −1) < +∞. Then for any
non-negative measurable function F , we have:

E
[
F (R) eR(f)

]
= E

[
F (R̃)

]
eν(ef −1), (4.7)

where R̃ is a Poisson point measure with intensity ν̃(dx) = ef(x) ν(dx).

Proof of Proposition 4.2. We keep notations introduced in Propositions 4.1. We have:

Ñx

[ ∫ σ

0

ds F (Ws, R
g
s , R

d
s)

]
= N0

x

[
e
∫+∞
0

ds Xs(ϕ)

∫ σ

0

ds F (Ws, R
g
s , R

d
s)

]
= N0

x

[ ∫ σ

0

ds F (Ws, R
g
s , R

d
s) e(Rgs+Rds)(f)

]
=

∫ ∞
0

e−β0r dr Ẽx

[
F (Y[0,r), R̂

B,g
[0,r), R̂

B,d
[0,r)) e

(R̂B,g
[0,r)

+R̂B,d
[0,r)

)(f)

]
=

∫ ∞
0

e−β0r dr Ẽx

[
F (Y[0,r), R

B,g
[0,r), R

B,d
[0,r)) e2

∫ r
0
ds N0

Ys
[e
∫+∞
0 Xr(W )(ϕ)−1]

]
=

∫ ∞
0

e−β0r dr Ẽx

[
F (Y[0,r), R

B,g
[0,r), R

B,d
[0,r)) e2

∫ r
0
ds q(Ys)

]
=

∫ ∞
0

dr Ẽx

[
F (Y[0,r), R

B,g
[0,r), R

B,d
[0,r)) e−

∫ r
0
ds β̃(Ys)

]
,

where the first equality comes from (H1) and item (iii) of Proposition 3.7, we set
f(s,W ) =

∫ +∞
0

Xr(W )(ϕ) for the second equality, we use Proposition 4.1 for the third
equality, we use Lemma 4.3 for the fourth, we use (3.15) for the fifth, and the definition
(3.11) of q in the last. This proves (4.4).

Then replace F (Ws, R
g
s , R

d
s) by α(Ŵs)F (Ws, R

g
s , R

d
s) in (4.4) and use (3.7) as well as

(3.26) to get (4.6).
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The proof of the following Proposition is similar to the proof of Proposition 4.2 and
is not reproduced here.

Proposition 4.4. Under (H1)-(H3), for every measurable non-negative function F , the
two formulas hold: for fixed t > 0,

Ñx

[ ∫ σ

0

dsl
t
s F (Ws, R

g
s , R

d
s)

]
= Ẽx

[
e−
∫ t
0
ds β̃(Ys) F (Y[0,t), R

B,g
[0,t), R

B,d
[0,t))

]
, (4.8)

where under Ẽx and conditionally on Y , RB,g and RB,d are two independent Poisson
point measures with intensity νB defined in (4.5), and

Nx

[ ∫ σ

0

dsl
t
s α(Ŵs)F (Ws, R

g
s , R

d
s)

]
= Ex

[
e−
∫ t
0
ds β(Ys) F (Y[0,t), R

B,g
[0,t), R

B,d
[0,t))

]
, (4.9)

where under Ex and conditionally on Y , RB,g and RB,d are two independent Poisson
point measures with intensity νB.

As an example of application of this Proposition, we easily recover the following well
known result.

Corollary 4.5. Under (H1)-(H3), for every measurable non-negative functions f and g
on S, we have:

Nx

[
Xt(f) e−Xt(g)

]
= Ex

[
e−
∫ t
0
ds ∂λψ

(
Ys, NYs

[
1−eXt−s(g)

])
f(Yt)

]
.

In particular, we recover the so-called “many-to-one” formula (with g = 0 in Corollary
4.5):

Nx[Xt(f)] = Ex

[
e−
∫ t
0
ds β(Ys) f(Yt)

]
. (4.10)

Proof. We set for w ∈ W with η(w) = t and r1, r2 two point measures on R+ × Ω̄

F (w, r1, r2) = f(ŵ) eh(r1)+h(r2),

where h(
∑
i∈I δ(si,W i)) =

∑
si<t

Xweight(W i)t−si(g). We have:

Nx

[
Xt(f) e−Xt(g)

]
= Nx

[ ∫ σ

0

dsl
t
s α(Ŵs)F (Ws, R

g
s , R

d
s)

]
= Ex

[
e−
∫ t
0
ds β(Ys) f(Yt) e

h(RB,g
[0,r)

)+h(RB,d
[0,r)

)

]
= Ex

[
e−
∫ t
0
ds β(Ys) f(Yt) e−

∫ t
0

2α(Ys)NYs [1−e
X

weight
t−s (g)

]

]
= Ex

[
e−
∫ t
0
ds ∂λψ

(
Ys, NYs

[
1−eXt−s(g)

])
f(Yt)

]
,

where we used item (ii) of Proposition 3.12 for the first and last equality, (4.9) with F

previously defined for the second, formula for exponentials of Poisson point measure
and (3.26) for the third.

Remark 4.6. Equation (4.10) justifies the introduction of the following family of prob-
ability measures indexed by t ≥ 0:

dP
(B,t)
x |Dt

dPx |Dt
=

e−
∫ t
0
ds β(Ys)

Ex

[
e−
∫ t
0
ds β(Ys)

] , (4.11)
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which may be understood as the law of the ancestral lineage of an individual sampled at
random at height t under the excursion measure Nx, and also correspond to Feynman-
Kac penalization of the original spatial motion Px (see [25]). Notice that this law does
not depend on the parameter α. These probability measures are not compatible as t
varies but will be shown in Lemma 5.12 to converge as t → ∞ in restriction to Ds, s
fixed, s ≤ t, under some ergodic assumption, see Lemma 5.6.

4.2 Williams decomposition

We first recall Williams decomposition for the Brownian snake (see [28] for Brow-
nian excursions, [27] for Brownian snake or [2] for general homogeneous branching
mechanism without spatial motion).

Under the excursion measures N0
x, Ñx and Nx, recall that Hmax = sup[0,σ]Hs. Be-

cause of the continuity of H, it is possible to define Tmax = inf{s > 0, Hs = Hmax}. Notice
the properties of the Brownian excursions implies that a.e. Hs = Hmax only if s = Tmax.
We set v0

t (x) = N0
x[Hmax > t] and recall this function does not depend on x. Thus, we

shall write v0
t for v0

t (x). Standard computations give:

v0
t =

β0

eβ0t−1
·

The next result is a straightforward adaptation from Theorem 3.3 of [2] and gives the
distribution of (Hmax,WTmax , R

g
Tmax

, RdTmax
) under N0

x.

Proposition 4.7 (Williams decomposition under N0
x). We have:

(i) The distribution of Hmax under N0
x is characterized by: N0

x[Hmax > h] = v0
h.

(ii) Conditionally on {Hmax = h0}, WTmax under N0
x is distributed as Y[0,h0) under P̃x.

(iii) Conditionally on {Hmax = h0} andWTmax , R
g
Tmax

and RdTmax
are under N0

x independent
Poisson point measures on R+ × Ω̄ with intensity:

1[0,h0)(s)ds 1{Hmax(W )<h0−s} N
0
WTmax (s)[dW ].

In other words, for any non-negative measurable function F , we have

N0
x

[
F (Hmax,WTmax , R

g
Tmax

, RdTmax
)

]
= −

∫ ∞
0

∂hv
0
h dh Ẽx

[
F (h, Y[0,h), R̂

W,(h),g, R̂W,(h),d)

]
,

where under Ẽx and conditionally on Y[0,h), R̂
W,(h),g and R̂W,(h),d are two independent

Poisson point measures with intensity ν̂W,(h)(ds, dW ) = 1[0,h)(s)ds 1{Hmax(W )<h−s} N
0
Ys

[dW ].

Notice that items (ii) and (iii) in the previous Proposition implies the existence of
a measurable family (N

0,(h)
x , h > 0) of probabilities on (Ω̄, Ḡ) such that N

0,(h)
x is the

distribution of W (more precisely of (WTmax , R
g
Tmax

, RdTmax
)) under N0

x conditionally on
{Hmax = h}.

Remark 4.8. In Klebaner & al [18], the Esty time reversal “is obtained by condition-
ing a [discrete time] Galton Watson process in negative time upon entering state 0

(extinction) at time 0 when starting at state 1 at time −n and letting n tend to in-
finity”. The authors then observe that in the linear fractional case (modified geo-
metric offspring distribution) the Esty time reversal has the law of the same Galton
Watson process conditioned on non extinction. Notice that in our continuous set-
ting, the process (Hs, 0 ≤ s ≤ Tmax) is under N

0,(h)
x a Bessel process up to its first hit-

ting time of h, and thus is reversible: (Hs, 0 ≤ s ≤ Tmax) under N
0,(h)
x is distributed as

(h−HTmax−s, 0 ≤ s ≤ Tmax) under N
0,(h)
x . It is also well known (see Corollary 3.1.6 of

EJP 18 (2013), paper 37.
Page 20/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1801
http://ejp.ejpecp.org/


A Williams decomposition for spatially dependent super-processes.

[11]) that (Hσ−s, 0 ≤ s ≤ σ − Tmax) under N
0,(h)
x is distributed as (Hs, 0 ≤ s ≤ Tmax) un-

der N
0,(h)
x . We deduce from these two points that (Xs(1), 0 ≤ s ≤ h) under N

0,(h)
x is dis-

tributed as (Xh−s(1), 0 ≤ s ≤ h) under N
0,(h)
x . This result, which holds at fixed h, gives

a version in continuous time of the Esty time reversal. Passing to the limit as h → ∞,
see Section 5.7, we then get the equivalent of the Esty time reversal in a continuous
setting.

Before stating Williams decomposition, Theorem 4.12, let us prove some properties
for the functions vt(x) = Nx[Hmax > t] = Nx[Xt 6= 0] and ṽt(x) = Ñx[Hmax > t] which will
play a significant rôle in the next Section. Recall (3.10) states that

αvt = ṽt.

Notice also that (3.11) implies that q is bounded from above by (β0 + ‖ β̃ ‖∞)/2.

Lemma 4.9. Assume (H1). We have:

q(x) + v0
t ≥ ṽt(x) ≥ v0

t . (4.12)

Furthermore for fixed x ∈ S, ṽt(x) is of class C1 in t and we have:

∂tṽt(x) = Ẽx

[
e
∫ t
0

Σr(Yt−r) dr
]
∂tv

0
t , (4.13)

where the function Σ defined by:

Σt(x) = 2(v0
t + q(x)− ṽt(x)) = ∂λψ

0(v0
t )− ∂λψ̃(x, ṽt(x)) (4.14)

satisfies:
0 ≤ Σt(x) ≤ 2q(x) ≤ β0 + ‖ β̃ ‖∞ . (4.15)

Proof. We deduce from item (iii) of Proposition 3.7 that, as ϕ ≥ 0 (see Lemma 3.8),

ṽt(x) = Ñx[Xt 6= 0] = N0
x

[
1{Xt 6=0} e

∫+∞
0

ds Xs(ϕ)
]
≥ N0

x[Xt 6= 0] = v0
t .

We also have

ṽt(x) = N0
x

[
1{Xt 6=0} e

∫+∞
0

ds Xs(ϕ)
]

= N0
x

[
e
∫+∞
0

ds Xs(ϕ)−1
]

+N0
x

[
1− 1{Xt=0} e

∫+∞
0

ds Xs(ϕ)
]

= q(x) +N0
x

[
1− 1{Xt=0} e

∫+∞
0

ds Xs(ϕ)
]

≤ q(x) +N0
x

[
1− 1{Xt=0}

]
= q(x) + v0

t ,

where we used (3.15) for the third equality. This proves (4.12).
Using Williams decomposition under N0

x, we get:

ṽt(x) = −
∫ +∞

t

∂rv
0
r dr N

0,(r)
x

[
e
∫+∞
0

ds Xs(ϕ)
]
.

Using again Williams decomposition under N0
x, we have

N0,(r)
x

[
e
∫+∞
0

ds Xs(ϕ)
]

= Ẽx

[
e
2
∫ r
0
ds N0

Yr−s

[
(e
∫+∞
0 dt Xt(ϕ)−1)1{Xs=0}

]]

= Ẽx

[
e
2
∫ r
0
ds N0

Ys

[
(e
∫+∞
0 dt Xt(ϕ)−1)1{Xr−s=0}

]]
. (4.16)
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We deduce that, for fixed x, r 7→ N
0,(r)
x

[
e
∫+∞
0

ds Xs(ϕ)
]

is non-decreasing and continuous

as N0
y[Hmax = t] = 0 for t > 0. Therefore, we deduce that for fixed x, ṽt(x) is of class C1

in t:
∂tṽt(x) = N0,(t)

x

[
e
∫+∞
0

ds Xs(ϕ)
]
∂tv

0
t .

We have thanks to item (iii) from Proposition 3.7:

N0
y

[
(e
∫+∞
0

dt Xt(ϕ)−1)1{Xs=0}

]
= N0

y [Xs 6= 0] + N0
y

[
e
∫+∞
0

dt Xt(ϕ)−1
]
−N0

y

[
e
∫+∞
0

dt Xt(ϕ) 1{Xs 6=0}

]
= v0

s + q(y)− ṽs(y)

=
1

2

[
∂λψ

0(v0
s)− ∂λψ̃(y, ṽs(y))

]
,

(4.17)

where the last equality follows from (3.8), (3.11) and (3.12). Thus, with Σs(y) =

∂λψ
0(v0

s)− ∂λψ̃(y, ṽs(y)), we deduce that:

N0,(t)
x

[
e
∫+∞
0

ds Xs(ϕ)
]

= Ẽx

[
e
∫ t
0
ds Σs(Yt−s)

]
.

This implies (4.13). Notice that, thanks to (4.12), Σ is non-negative and bounded from
above by 2q.

Fix h > 0. We define the probability measures P(h) absolutely continuous with re-
spect to P and P̃ on Dh with Radon-Nikodym derivative:

dP
(h)
x |Dh

dP̃x |Dh
=

e
∫ h
0

Σh−r(Yr) dr

Ẽx

[
e
∫ h
0

Σh−s(Ys) dr
] · (4.18)

Notice this Radon-Nikodym derivative is 1 if the branching mechanism ψ is homo-
geneous. We deduce from (4.13) and (4.14) that:

dP
(h)
x |Dh

dP̃x |Dh
=

∂hv
0
h

∂hṽh(x)
e−
∫ h
0
dr (∂λψ̃(Yr,ṽh−r(Yr))−∂λψ0(v0h−r))

and, using (3.7):

dP
(h)
x |Dh

dPx |Dh
=

1

α(Yh)

∂hv
0
h

∂hvh(x)
e−
∫ h
0
dr (∂λψ(Yr,vh−r(Yr))−∂λψ0(v0h−r)) . (4.19)

In the next Lemma, we give an intrinsic representation of the Radon-Nikodym deriva-
tives (4.18) and (4.19), which does not involve β0 or v0.

Lemma 4.10. Assume (H1)-(H3). Fix h > 0. The processes M (h) = (M
(h)
t , t ∈ [0, h))

and M̃ (h) = (M̃
(h)
t , t ∈ [0, h)), with:

M
(h)
t =

∂hvh−t(Yt)

∂hvh(x)
e−
∫ t
0
ds ∂λψ(Ys,vh−s(Ys)) and M̃

(h)
t =

∂hṽh−t(Yt)

∂hṽh(x)
e−
∫ t
0
ds ∂λψ̃(Ys,ṽh−s(Ys)),

are non-negative bounded Dt-martingales respectively under Px and P̃x. Furthermore,
we have for 0 ≤ t < h:

dP
(h)
x |Dt

dPx |Dt
= M

(h)
t and

dP
(h)
x |Dt

dP̃x |Dt
= M̃

(h)
t . (4.20)
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Notice the limit M (h)
h of M (h) and the limit M̃ (h)

h of M̃ (h) are respectively given by
the right-handside of (4.19) and (4.18).

Remark 4.11. Comparing (3.3) and (4.20), we have that P
(h)
x = Pgx with g(t, x) =

∂hvh−t(x), if g satisfies the assumptions of Remark 3.3.

Proof. First of all, the process M̃ (h) is clearly Dt-adapted. Using (4.13), we get:

Ẽy

[
e
∫ h−t
0

Σh−t−r(Yr) dr
]

=
∂hṽh−t(y)

∂hv0
h−t

·

We set:

M̃
(h)
h =

e
∫ h
0

Σh−r(Yr) dr

Ẽx

[
e
∫ h
0

Σh−s(Ys) dr
] ·

We have:

Ẽx[M̃
(h)
h |Dt] =

e
∫ t
0

Σh−r(Yr) dr

Ẽx

[
e
∫ h
0

Σh−s(Ys) dr
] ẼYt

[
e
∫ h−t
0

Σh−t−r(Yr) dr
]

=
∂hṽh−t(Yt)

∂hṽh(x)

∂hv
0
h

∂hv0
h−t

e
∫ t
0

Σh−r(Yr) dr

=
∂hṽh−t(Yt)

∂hṽh(x)
e−
∫ t
0
∂λψ̃
(
Ys,ṽh−s(Ys)

)
ds ∂hv

0
h

∂hv0
h−t

e
∫ t
0
∂λψ

0
(
v0h−s

)
ds

In the homogeneous setting, v0 simply solves the ordinary differential equation:

∂hv
0
h = −ψ0(v0

h).

This implies that

∂h log(∂hv
0
h) =

∂2
hv

0
h

∂hv0
h

= −∂λψ0(v0
h)

and thus
∂hv

0
h

∂hv0
h−t

e
∫ t
0
∂λψ

0
(
v0h−s

)
ds = 1. (4.21)

We deduce that

Ẽx[M̃
(h)
h |Dt] =

∂hṽh−t(Yt)

∂hṽh(x)
e−
∫ t
0
dr ∂λψ̃(Yr,ṽh−r(Yr)) = M̃

(h)
t .

Therefore, M̃ (h) is a Dt-martingale under P̃x and the second part of (4.20) is a conse-
quence of (4.18). Then, use (3.7) to get that M (h) is a Dt-martingale under Px and the
first part of (4.20).

We now give the Williams’ decomposition: the distribution of (Hmax,WTmax , R
g
Tmax

, RdTmax
)

under Nx or equivalently under Ñx/α(x). Recall the distribution P
(h)
x defined in (4.18)

or (4.19).

Theorem 4.12 (Williams’ decomposition under Nx). Assume (H1)-(H3). We have:

(i) The distribution of Hmax under Nx is characterized by: Nx[Hmax > h] = vh(x).

(ii) Conditionally on {Hmax = h0}, the law of WTmax under Nx is distributed as Y[0,h0)

under P
(h0)
x .
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(iii) Conditionally on {Hmax = h0} andWTmax , R
g
Tmax

and RdTmax
are under Nx independent

Poisson point measures on R+ × Ω̄ with intensity:

1[0,h0)(s)ds 1{Hmax(W ′)<h0−s}α(WTmax(s)) NWTmax (s)[dW
′].

In other words, for any non-negative measurable function F , we have

Nx

[
F (Hmax,WTmax , R

g
Tmax

, RdTmax
)

]
= −

∫ ∞
0

∂hvh(x) dh E(h)
x

[
F (h, Y[0,h), R

W,(h),g, RW,(h),d)

]
,

where under E
(h)
x and conditionally on Y[0,h), R

W,(h),g and RW,(h),d are two independent
Poisson point measures with intensity:

νW,(h)(ds, dW ) = 1[0,h)(s)ds 1{Hmax(W )<h−s}α(Ys) NYs [dW ]. (4.22)

Notice that items (ii) and (iii) in the previous Proposition imply the existence of a
measurable family (N

(h)
x , h > 0) of probabilities on (Ω̄, Ḡ) such that N(h)

x is the distribu-
tion of W (more precisely of (WTmax , R

g
Tmax

, RdTmax
)) under Nx conditionally on {Hmax = h}.

Proof. We keep notations introduced in Proposition 4.7. We have:

Ñx

[
F (Hmax,WTmax , R

g
Tmax

, RdTmax
)

]
= N0

x

[
e
∫+∞
0

ds Xs(ϕ) F (Hmax,WTmax , R
g
Tmax

, RdTmax
)

]
= N0

x

[
F (Hmax,WTmax , R

g
Tmax

, RdTmax
) e(RgTmax

+RdTmax
)(f)

]
= −

∫ ∞
0

∂hv
0
h dh Ẽx

[
F (h, Y[0,h), R̂

W,(h),g, R̂W,(h),d) e(R̂W,(h),g+R̂W,(h),d)(f)

]
= −

∫ ∞
0

∂hv
0
h dh Ẽx

[
F (h, Y[0,h), R

W,(h),g, RW,(h),d) e
2
∫ h
0
ds N0

Ys

[
(e
∫+∞
0 dt Xt(ϕ)−1)1{Xr−s=0}

] ]
= −

∫ ∞
0

∂hv
0
h dh Ẽx

[
F (h, Y[0,h), R

W,(h),g, RW,(h),d) e
∫ h
0

Σh−s(Ys) ds

]
= −

∫ ∞
0

∂hv
0
h dh Ẽx

[
e
∫ h
0

Σh−s(Ys) ds

]
E(h)
x

[
F (h, Y[0,h), R

W,(h),g, RW,(h),d)

]
= −

∫ ∞
0

∂hṽh(x) dh E(h)
x

[
F (h, Y[0,h), R

W,(h),g, RW,(h),d)

]
,

where the first equality comes from (H1) and item (iii) of Proposition 3.7; we set
f(s,W ) =

∫ +∞
0

Xr(W )(ϕ) for the second equality; we use Proposition 4.7 for the third

equality; we use Lemma 4.3 for the fourth with RW,(h),g and RW,(h),d which under Ẽ
(h)
x

and conditionally on Y[0,h) are two independent Poisson point measures with intensity

νW,(h); we use (4.17) for the fifth, definition (4.18) of E
(h)
x for the sixth, and (4.13) for

the seventh. Then use (3.26) and (3.10) to conclude.

The definition of N(h)
x gives in turn sense to the conditional law N

(h)
x = Nx(.|Hmax =

h) of the (L, β, α) super-process conditioned to die at time h, for all h > 0. The next
Corollary is then a straightforward consequence of Theorem 4.12.

Corollary 4.13. Assume (H1)-(H3). Let h > 0. Let x ∈ S and Y[0,h) be distributed

according to P
(h)
x . Consider the Poisson point measure N =

∑
j∈J δ(sj ,Xj) on [0, h) × Ω

with intensity:
21[0,h)(s)ds 1{Hmax(X)<h−s}α(Ys) NYs [dX].
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The process X(h) = (X
(h)
t , t ≥ 0), which is defined for all t ≥ 0 by:

X
(h)
t =

∑
j∈J, sj<t

Xj
t−sj ,

is distributed according to N(h)
x .

We now give the super-process counterpart of Theorem 4.12.

Corollary 4.14 (Williams’ decomposition under Pν). Assume (H1)-(H3).

(i) The distribution of Hmax under Pν is characterized by: Pν(Hmax ≤ h) = e−ν(vh).

(ii) Conditionally on {Hm = h0}, X under Pν is distributed as the independent sum of
X ′ and X(h0), where:

– X(h0) is distributed according the probability measure:∫
ν(dx)

∂hvh0
(x)

ν(∂hvh0)
N(h0)
x .

– X ′ is distributed according to the probability measure Pν(.|Hmax < h0).

In particular the distribution of X ′ + X(h0) conditionally on h0 is a regular version
of the distribution of the (L, β, α) super-process conditioned to die at a fixed time h0,

which we shall write P(h0)
ν .

Proof. Let µ be a finite measure on R+ and f a non-negative measurable function
defined on R+ × S. For a measure-valued process Z = (Zt, t ≥ 0) on S, we set
Z(fµ) =

∫
f(t, x) Zt(dx)µ(dt). We also write fs(t, x) = f(s+ t, x).

Let X ′ and X(h0) be defined as in Corollary 4.14. In order to characterized the
distribution of the process X ′ +X(h0), we shall compute

A = E[e−X
′(fµ)−X(h0)(fµ)].

We shall use notations from Corollary 4.13. We have:

A = −
∫ +∞

0

ν(∂hvh) e−ν(h) dh

∫
S

∂hvh(x)

ν(∂hvh)
ν(dx)

E(h)
x

[
E[e−

∑
j∈J X

j(fsjµ) |Y[0,h)]
]
Eν

[
e−X(fµ) |Hmax < h

]
= −

∫
E

ν(dx)

∫ +∞

0

∂hvh(x) dh

E(h)
x

[
E[e−

∑
j∈J X

j(fsjµ) |Y[0,h)]
]
Eν

[
e−X(fµ) 1{Hmax<h}

]
,

where we used the definition ofX ′ andN for the first equality, and the equalityPν(Hmax <

h) = Pν(Hmax ≤ h) = e−ν(h) for the second. Recall notations from Theorem 4.12. We
set:

G

(∑
i∈I

δ(si,W i),
∑
i′∈I′

δ(si′ ,W i′ )

)
= e−

∑
j∈I∪I′ X

j(W j)(fsjµ)
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and g(h) = Eν
[
e−X(fµ) 1{Hmax<h}

]
. We have:

A = −
∫
E

ν(dx)

∫ +∞

0

∂hvh(x) dh E(h)
x

[
G(RW,(h),g, RW,(h),d)g(h)

]
=

∫
E

ν(dx) Nx

[
G(RTmax

g , RTmax

d )g(Hmax)
]

=

∫
E

ν(dx) Nx

[
e−X(fµ)Eν

[
e−X(fµ) 1{Hmax<h}

]
|h=Hmax

]

= E

∑
i∈I

e−X
i(fµ)

∏
j∈I; j 6=i

e−X
j(fµ) 1{Hjmax<Himax}


= E

[
e−
∑
i∈I X

i(fµ)
]

= Eν

[
e−X(fµ)

]
,

where we used the definition of G and g for the first and third equalities, Theorem 4.12
for the second equality, the master formula for Poisson point measure

∑
i∈I δXi with

intensity ν(dx) Nx[dX] for the fourth equality (and the obvious notation Hi
max = inf{t ≥

0;Xi
t = 0}) and Theorem 2.3 for the last equality. Thus we get:

E[e−X
′(fµ)−X(h0)(fµ)] = Eν

[
e−X(fµ)

]
.

This readily implies that the process X ′ +X(h0) is distributed as X under Pν .

5 Applications of the Williams decomposition

This Section is concerned with the derivation of the Q-process from the Williams de-
composition. The main assumption needed is a product-criticality assumption, properly
defined in the diffusive and in the multitype settings. We therefore restrict ourselves to
these two settings, which we now introduce.

5.1 The super-diffusion

A super-diffusion is a super-process having a diffusion for spatial motion.
Let S be an arbitrary domain of RK for K integer. Let aij and bi be in C1,µ(S), the

usual Hölder space of order µ ∈ [0, 1), which consists of functions whose first order
derivatives are locally Hölder continuous with exponent µ, for each i, j in {1, . . . ,K}.
The functions ai,j will be chosen such that the matrix (aij)(i,j)∈{1...K}2 is positive definite.
In that case, the following elliptic operator:

L(u) =

K∑
i=1

bi ∂xiu+
1

2

K∑
i,j=1

aij ∂xi,xju.

defines a diffusion on S. The generalized eigenvalue λ0 of the operator β −L is defined
by:

λ0 = sup {` ∈ R,∃u ∈ D(L), u > 0 such that (β − L)u = ` u}· (5.1)

Denoting E the expectation operator associated to the process with generator L, an
equivalent probabilistic definition of the generalized eigenvalue λ0 is the following:

λ0 = − sup
A⊂RK

lim
t→∞

1

t
log Ex

[
e−
∫ t
0
ds β(Ys) 1{τAc>t}

]
,
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where x ∈ RK is arbitrary, τAc = inf {t > 0 : Y (t) /∈ A} is the hitting time of the com-
plement of A, and the supremum runs over the compact subsets A of RK . The op-
erator (β − λ0) − L is said critical when the space of positive harmonic functions for
(β − λ0) − L is one-dimensional, generated by φ0. In that case, the space of positive
harmonic functions of the adjoint of (β − λ0) − L is also one dimensional, generated
by φ̃0. We say the operator (β − λ0) − L is product-critical if

∫
S
dx φ0(x) φ̃0(x) < ∞.

Under this assumption, we may and will choose the eigenvectors normalized in such a
way that

∫
S
dx φ0(x) φ̃0(x) = 1. We refer to Pinsky [24] for background on product crit-

ical operators, and to Engländer et al [14] for an application to branching diffusions.
Lemma 5.6 below gives the probabilistic meaning of this assumption: The probability
measure Pφ0 defined by (3.2) with g = φ0 is the law of a recurrent Markov process.
Recall the conditions on α and β the parameters of the branching mechanism stated in
section 2. When L is the generator of a diffusion, assumptions (H2) and (H3) hold as
soon as α ∈ C4(S),

5.2 The multitype Feller diffusion

The multitype Feller diffusion is the super-process with finite state space: S =

{1, . . . ,K} for K integer. In this case, the spatial motion is a pure jump Markov process,
which will be assumed irreducible. Its generator L is a square matrix (qij)1≤i,j≤K of size
K with lines summing up to 0, and qij gives the transition rate from i to j for i 6= j. The
generalized eigenvalue λ0 is defined by:

λ0 = sup {` ∈ R,∃u > 0 such that (Diag(β)− L)u = `u}, (5.2)

where Diag(β) is the diagonal K × K matrix with diagonal coefficients derived from
the vector β. We stress that the generalized eigenvalue corresponds to the Perron
Frobenius eigenvalue, i.e. the eigenvalue with the maximum real part, which is real
according to the Perron Frobenius theorem. Moreover, the associated eigenspace is
one-dimensional. We will denote by φ0 and φ̃0 its left, resp. right, eigenvectors, nor-
malized so that

∑K
i=1 φ0(i)φ̃0(i) = 1. This means the operator (Diag(β)− λ0)−L, which

we shall also denote by (β − λ0)− L to unify notation with section 5.1, is automatically
product-critical. The Perron Frobenius Theorem includes the fact that the coordinates
of φ0 and φ̃0 are positive. A reference on this Theorem is Seneta [26]. Concerning the
branching mechanism, the functions β and α in (2.2) are vectors of size K, and (H2)

and (H3) therefore automatically hold. For more details about the construction of finite
state space super-process, we refer to example 2 p. 10 of Dynkin [13]. For previous
investigations of the associated Q-process, we refer to Champagnat and Roelly [6] and
Pénisson [22].

5.3 The convergence of the Williams spatial motion from the root

We will show in Section 5.5 that the convergence of P(h) as h → ∞ essentially
amounts to that of the spatial motion P(h). We establish the latter convergence in this
Section.

We go on assuming that P is the law of a diffusion in RK for K integer or the law of
a finite state space Markov process. We will denote by λ0 the generalized eigenvalue of
the operator (β − L), see (5.2) or (5.1), and by φ0 the associated right eigenvector. We
shall consider the assumption:

(H4) The operator (β − λ0) − L is product-critical, φ0 ∈ D(L) and there exist two
positive constants C1 and C2 such that ∀x ∈ S, C1 ≤ φ0(x) ≤ C2.

Under (H4), we introduce Pφ0
x the probability measure on (D,D) defined by (3.2) with
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g replaced by φ0:

∀t ≥ 0,
dPφ0

x |Dt
dPx |Dt

=
φ0(Yt)

φ0(Y0)
e−
∫ t
0
ds (β(Ys)−λ0) . (5.3)

Under (H4), we also know that the (Lφ0 , λ0, αφ0) super-process is the h-transform of
the (L, β, α)-super-process with h = φ0, see Definition 3.4 as well as Proposition 3.5 and
the definition of the generalized eigenvalue (5.2) and (5.1). We then define vφ0

t (x) for
all t > 0 and x ∈ S by:

vφ0

t (x) = N(Lφ0 ,λ0,αφ0)
x [Hmax > t]. (5.4)

Recall from (3.10) that vφ0 and v are linked through:

vφ0

t (x) =
vt(x)

φ0(x)
· (5.5)

Our first task is to give precise bounds on the decay of vφ0

t as t goes to ∞. This is
achieved in the following Lemmas, the proofs of some of them (Lemmas 5.1, 5.2, 5.4,
5.5 and 5.7) are postponed to the Appendix.

Lemma 5.1 gives a bound in the case λ0 = 0. The proof relies on a coupling argument
in the construction of Dhersin and Serlet [9], and yields bounds from below and from
above for the extinction time Hmax.

Lemma 5.1. Assume λ0 = 0, (H2) and (H4). Then for all t > 0:

αφ0(x)
1

‖αφ0‖2∞
≤ t vφ0

t (x) ≤ αφ0(x)

∥∥∥∥ 1

αφ0

∥∥∥∥2

∞
.

We deduce from this lemma that assumption (H1) holds:

Lemma 5.2. Assume λ0 ≥ 0, (H2) and (H4). Then (H1) holds.

Remark 5.3. A super-process X satisfies local extinction if its restrictions to compact
domains of S satisfies global extinction. The non-negativity of the generalized eigen-
value of the operator (β − L) in general characterizes the local extinction property, see
Engländer and Kyprianou [15]. Here, the last part of the additional assumption (H4)

allows us to obtain the stronger global extinction property.

We then proceed by giving a Feynman-Kac formula for vφ0 and ∂vφ0 .

Lemma 5.4. Assume λ0 ≥ 0, and (H2)-(H4). Let ε > 0. We have:

vφ0

h+ε(x) = e−λ0h Eφ0
x

[
e−
∫ h
0
ds α(Ys) φ0(Ys) v

φ0
h+ε−s(Ys) vφ0

ε (Yh)

]
, (5.6)

∂hv
φ0

h+ε(x) = e−λ0h Eφ0
x

[
e−2

∫ h
0
ds α(Ys) φ0(Ys) v

φ0
h+ε−s(Ys) ∂hv

φ0
ε (Yh)

]
. (5.7)

We give exponential bounds for vφ0 and ∂tv
φ
0 in the sub-critical case.

Lemma 5.5. Assume λ0 > 0, (H2)-(H4). Fix t0 > 0. There exists C3 and C4 two positive
constants such that, for all x ∈ S, t > t0:

C3 ≤ vφ0

t (x) eλ0t ≤ C4. (5.8)

There exists C5 and C6 two positive constants such that, for all x ∈ S, t > t0:

C5 ≤ |∂tvφ0

t (x)| eλ0t ≤ C6. (5.9)
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In what follows, the notation oh(1) refers to any function Fh such that limh→+∞ ‖Fh ‖∞ =

0. For improving Lemma 5.5, we need the following ergodic formula (5.10), which is a
direct consequence of the product-criticality assumption. Recall that, under (H4), the
generalized eigenvectors φ0 and φ̃0 are chosen normalized so that

∫
φ0(x) φ̃0(x) dx = 1.

Lemma 5.6. Assume (H2)-(H4). Then the probability measure Pφ0 admits a stationary
measure π, with π(dx) = φ0(x) φ̃0(x) dx, and we have:

sup
f∈bS,‖f‖∞≤1

|Eφ0
x [f(Yt)]− π(f)| −−−−→

t→+∞
0. (5.10)

The proof essentially repeats the argument used in Engländer, Harris and Kyprianou
[14], see Remark 5.

Proof. We first note that −Lφ0 is the (usual) h-transform of the operator (β−λ0)−L with
h = φ0, where the h-transform of L(·) is L(h·)

h . Now, we assumed that (β − λ0) − L is a
product-critical operator. First, criticality is invariant under h-transforms for operators.
Also, a calculus shows that φ̃0 and φ0 transforms into φ0 φ̃0 and 1 respectively when
turning from (β−λ0)−L to −Lφ0 , which is thus again product-critical. We finally apply
Theorem 9.9 p.192 of [24] which states that (5.10) holds, with φ0 replaced by 1 and φ̃0

by φ0 φ̃0.

We are now in position to refine Lemma 5.5.

Lemma 5.7. Assume λ0 ≥ 0, (H2)-(H4). Then for all ε > 0, we have:

∂tv
φ0

h+ε(x) eλ0h = Eφ0
π

[
e−2

∫ h
0
ds α φ0 v

φ0
s+ε(Y−s) ∂tv

φ0
ε (Y0)

]
(1 + oh(1)). (5.11)

In addition, for λ0 > 0, we have that:

Eφ0
π

[
e−2

∫∞
0
ds α φ0 v

φ0
s+ε(Y−s) ∂tv

φ0
ε (Y0)

]
is finite (notice the integration is up to +∞) and:

∂tv
φ0

h+ε(x) eλ0h = Eφ0
π

[
e−2

∫∞
0
ds α φ0 v

φ0
s+ε(Y−s) ∂tv

φ0
ε (Y0)

]
+ oh(1). (5.12)

Next step is to deduce the convergence of the spatial motion. Fix x ∈ S. We observe
from (4.20) and (5.3) that P

(h)
x is absolutely continuous with respect to Pφ0

x on D[0,t] for
0 ≤ t < h.

Lemma 5.8. Assume (H2)-(H4). For λ0 ≥ 0, we have:

dP
(h)
x |D[0,t]

dPφ0

x |D[0,t]

−−−−−→
h→+∞

1 Pφ0
x -a.s. and in L1(Pφ0

x ),

and, for λ0 > 0, we also have:

dP
(h)
x |D[0,h/2]

dPφ0

x |D[0,h/2]

−−−−−→
h→+∞

1 Pφ0
x -a.s. and in L1(Pφ0

x ).
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Proof. We compute

dP
(h)
x |D[0,t]

dPφ0

x |D[0,t]

=
∂tvh−t(Yt) e−λ0t

∂tvh(Y0)

φ0(Y0)

φ0(Yt)
e−2

∫ t
0
ds α(Ys) vh−s(Ys)

=
∂tv

φ0

h−t(Yt) e−λ0t

∂tv
φ0

h (Y0)
e−2

∫ t
0
ds α(Ys) φ0(Ys) v

φ0
h−s(Ys)

=
Eφ0
π

[
e−2

∫ 0
−(h−t−ε) ds α(Ys) φ0(Ys) v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

](
1 + oh(1)

)
Eφ0
π

[
e−2

∫ 0
−h−ε ds α(Ys) φ0(Ys) v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

](
1 + oh(1)

) (
1 + oh(1)

)
=

Eφ0
π

[
e−2

∫ 0
−h−ε ds α(Ys) φ0(Ys) v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

]
Eφ0
π

[
e−2

∫ 0
−h−ε ds α(Ys) φ0(Ys) v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

](1 + oh(1)
)

= 1 + oh(1),

where we used (4.20), (5.3) and the normalization v(x) = vφ0(x) φ0(x) for the first
and second equalities , (5.11) twice and the boundedness of α and φ0 as well as the
convergence of vh to 0 for the third and fourth equality, and Lemma 5.5 (if λ0 > 0) or
Lemma 5.1 (if λ0 = 0) for the fifth. Scheffé’s lemma then implies that the convergence
also holds in L1(Pφ0

x ).
Similar arguments relying on (5.12) instead of (5.11) imply that

dP
(h)
x |D[0,h/2]

dPφ0

x |D[0,h/2]

= 1 + oh(1)

for λ0 > 0. Since oh(1) is bounded and converges uniformly to 0, we get that the

convergence of dP
(h)
x |D[0,h/2]

/dPφ0

x |D[0,h/2]
towards 1 holds Pφ0

x -a.s. and in L1(Pφ0
x ).

The previous Lemma enables us to conclude about the convergence of the spatial
motion.

Proposition 5.9. Assume λ0 ≥ 0, (H2)-(H4). Then we have:

dP
(h)
x |D[0,t]

dPx |D[0,t]

→
dPφ0

x |D[0,t]

dPx |D[0,t]

, as h→∞,Px-a.s. and in L1(Px).

Proof. We write:
dP

(h)
x |D[0,t]

dPx |D[0,t]

=
dP

(h)
x |D[0,t]

dPφ0

x |D[0,t]

dPφ0

x |D[0,t]

dPx |D[0,t]

·

We then use the first item of Lemma 5.8 to conclude.

In our two special examples from Section 5.1 (super-diffusion) and Section 5.2 (mul-
titype Feller diffusion), we can describe precisely the dynamic of the spine under P(h)

and Pφ0 .

Proposition 5.10 (Multitype Feller diffusion). Assume P is the law of a finite state
space Markov process with transition rates qij from i to j, i 6= j. Then:

(i) P
(h)
x is a finite state space non-homogeneous Markov process defined on [0, h)

issued from x with transition rates from i to j, i 6= j, equal to
∂hvh−t(j)

∂hvh−t(i)
qij at time

t, 0 ≤ t < h.
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(ii) Pφ0
x is a a finite state space homogeneous Markov process defined on [0,∞) issued

from x with transition rates from i to j, i 6= j, equal to
φ0(j)

φ0(i)
qij .

The logarithmic derivative of the function x→ ∂hvh−t(x) (respectively x→ φ0(x)) is

used to bias the dynamic at time t of the Markov process with law P in P
(h)
x (resp. Pφ0

x ).

Proof. The first item is a consequence of the following adaptation of Lemma 3.2 to time
dependent function. Let gt(x) be a time dependent function. We introduce the proba-
bility measure Pg defined by (3.2) with g(t, Yt) = gt(Yt). Denoting by Lgt the generator
of (the non-homogeneous Markov process) Yt under Pg, we have that:

∀u ∈ Dg(L), Lgt (u) =
L(gtu)− L(gt)u

gt
· (5.13)

Recall that for all vector u, L(u)(i) =
∑
j 6=i qij

(
u(j)−u(i)

)
. Then apply (5.13) to the time

dependent function gt(x) = ∂tvh−t(x), and note that Pg = P(h) thanks to (4.20). For the
second item, we use Lemma 3.2.

Proposition 5.11 (Superdiffusion). Assume P is the law of a diffusion with infinitesimal
generator L. Then:

(i) P
(h)
x is a non-homogeneous diffusion on [0, h) issued from x with generator given

by

(
L+ a

∇∂hvh−t
∂hvh−t

∇.
)

at time t, 0 ≤ t < h.

(ii) Pφ0
x is an homogeneous diffusion on [0,∞) issued from xwith generator

(
L+ a

∇φ0

φ0
∇.
)

.

A drift pointing to the high values of ∂hvh−t (resp. φ0) is added to the initial process

with generator L in the construction of P
(h)
x (resp. P

(φ0)
x ). The proof is similar to that of

Lemma 5.10..

5.4 The convergence of the Bismut spatial motion

We prove in this Section that the law of the ancestral lineage of an individual ran-
domly chosen at height t under Nx converges to Pφ0

x defined in (5.3) as t goes to infinity.
Recall we defined in (4.11) the following family of probability measures indexed by

t ≥ 0:

dP
(B,t)
x |Dt

dPx |Dt
=

e−
∫ t
0
ds β(Ys)

Ex

[
e−
∫ t
0
ds β(Ys)

] ,
The probability measure P

(B,t)
x |Dt corresponds to the law of the ancestral lineage of an

individual randomly chosen at height t.

Lemma 5.12. Assume (H4). We have, for every 0 ≤ t0 ≤ t:

dP
(B,t)
x |Dt0

dPx |Dt0
−−−−→
t→+∞

dPφ0

x |Dt0
dPx |Dt0

Px-a.s. and in L1(Px).

Notice that, contrary to Lemma 5.9, there is no restriction on the sign of λ0 for this
Lemma to hold. Compare also with forthcoming Remark 5.20.

Remark 5.13. This result may be interpreted as a globular phase for a random poly-
mers model, see Cranston, Koralov and Molchanov, and Vainberg [8], Theorem 8.3, or
as a Feynman-Kac penalization result, see Roynette and Yor [25].
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Proof. We have:

dP
(B,t)
x |Dt0

dPx |Dt0
= e−

∫ t0
0 ds β(Ys)

EYt0

[
e−
∫ t−t0
0 ds β(Ys)

]
Ex

[
e−
∫ t
0
ds β(Ys)

]
= e−

∫ t0
0 ds (β(Ys)−λ0) φ0(Yt0)

φ0(Y0)

EYt0

[
e−
∫ t−t0
0 ds (β(Ys)−λ0) φ0(Yt−t0 )

φ0(Y0)
1

φ0(Yt−t0 )

]
Ex

[
e−
∫ t
0
ds (β(Ys)−λ0) φ0(Yt)

φ0(x)
1

φ0(Yt)

]
=
dPφ0

x |Dt0
dPx |Dt0

Eφ0

Yt0
[1/φ0(Yt−t0)]

Eφ0
x [1/φ0(Yt)]

−→
t→∞

dPφ0

x |Dt0
dPx |Dt0

π( 1
φ0

)

π( 1
φ0

)
=
dPφ0

x |Dt0
dPx |Dt0

,

where we use the Markov property at the first equality, we force the apparition of λ0

and φ0 at the second equality. This lets appear the Radon-Nikodym derivative of Pφ0
x

with respect to Px, whence the third equality. Lemma 5.6 then ensures the Px-a.s.
convergence to 1 of the fraction in the third equality as t goes to ∞. Moreover, the
Scheffé lemma implies that the convergence also holds in L1(Px).

5.5 The convergence to the Q-process

Recall P(h)
ν defined after Corollary 4.14 is the distribution of the (L, β, α)-super-

process started at ν ∈ Mf (S), conditionally on {Hmax = h}. We shall compare P(h)
ν

with the distribution P(≥h)
ν of the (L, β, α)-super-process started at ν ∈ Mf (S) condi-

tionally on {Hmax ≥ h} defined by:

P(≥h)
ν = Pν(·|Hmax ≥ h).

Recall the distribution of the Q-process, when it exists, is defined as the weak limit of
P

(≥h)
ν when h goes to infinity. The next Lemma insures that if P(h)

ν weakly converges to
a limit P(∞)

ν , then this limit is also the distribution of the Q-process.

Lemma 5.14. Fix t > 0. If P(h)
ν converges weakly to P(∞)

ν on (Ω,Ft), then P(≥h)
ν con-

verges weakly to P(∞)
ν on (Ω,Ft).

Proof. Let Z = 1A with A ∈ Ft such that P(∞)
ν (∂A) = 0. Using the Williams’ decomposi-

tion under Pν given by Corollary 4.14, we have for h > t:

E(≥h)
ν [Z] = eν(vh)

∫ ∞
h

E(h′)
ν [Z] f(h′)dh′,

where f(h) = −ν(∂hvh) exp(−ν(vh)). We write down the difference:

E(≥h)
ν [Z]− E(∞)

ν [Z] = eν(vh)

∫ ∞
h

(
E(h′)
ν [Z]− E(∞)

ν [Z]
)
f(h′)dh′.

SinceP(h′)
ν weakly converges toP(∞)

ν on (Ω,Ft) andP(∞)
ν (∂A) = 0, we get limh′→+∞E

(h′)
ν [Z]−

E
(∞)
ν [Z] = 0. We conclude that limh→+∞E

(≥h)
ν [Z] − E(∞)

ν [Z] = 0, which gives the re-
sult.

We now address the question of convergence of the family of probability measures
(P

(h)
x , h ≥ 0), and first state the result on the convergence of N(h)

x .
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Theorem 5.15. Assume λ ≥ 0, (H2)-(H4). Let t ≥ 0. The triplet

((WTmax)[0,t], (R
g
Tmax

)[0,t], (R
d
Tmax

)[0,t])

under N
(h)
x converges weakly to the distribution of the triplet (Y[0,t], R

B,g
[0,t], R

B,d
[0,t]) where

Y has distribution P
(φ0)
x and conditionally on Y , RB,g and RB,d are two independent

Poisson point measures with intensity νB given by (4.5). We even have the slightly
stronger result: for any bounded measurable function F ,

N(h)
x

[
F
(
(WTmax)[0,t], (R

g
Tmax

)[0,t], (R
d
Tmax

)[0,t]

)]
−−−−−→
h→+∞

Eφ0
x

[
F
(
Y[0,t], R

B,g
[0,t], R

B,d
[0,t]

)]
. (5.14)

The proof of the next preliminary Lemma is postponed to the end of this Section.

Lemma 5.16. Let R and R̃ be two Poisson point measures on a Polish space with
respective intensity ν and ν̃. Assume that ν̃(dx) = 1A(x)ν(dx), where A is measurable
and ν(Ac) < +∞. Then for any bounded measurable function F , we have:∣∣∣E[F (R)]− E[F (R̃)]

∣∣∣ ≤ 2 ‖F ‖∞ ν(Ac).

Proof. Let h > t. We use notations from Theorem 4.12. Let F be a bounded measurable
function onW× (R+× Ω̄)2. From the Williams’ decomposition, Theorem 4.12, we have:

N(h)
x

[
F ((WTmax)[0,t], (R

g
Tmax

)[0,t], (R
d
Tmax

)[0,t])

]
= E(h)

x

[
F
(
Y[0,t], R

W,g,(h)
[0,t] , R

W,d,(h)
[0,t]

)]
= E(h)

x

[
ϕh(Y[0,t])

]
,

where ϕh is defined by:

ϕh(y[0,t]) = E(h)
x

[
F
(
y[0,t], R

W,g,(h)
[0,t] , R

W,d,(h)
[0,t]

)∣∣∣∣Y = y

]
.

We also set:

ϕ∞(y[0,t]) = Eφ0
x

[
F
(
y[0,t], R

B,g
[0,t], R

B,d
[0,t]

)∣∣∣∣Y = y

]
.

We want to control:

∆h = N(h)
x

[
F ((WTmax)[0,t], (R

g
Tmax

)[0,t], (R
d
Tmax

)[0,t])

]
− Eφ0

x

[
F (Y[0,t], R

B,g
[0,t], R

B,d
[0,t])

]
.

Notice that:

∆h = E(h)
x

[
ϕh(Y[0,t])

]
− Eφ0

x

[
ϕ∞(Y[0,t])

]
=
(
E(h)
x

[
ϕh(Y[0,t])

]
− Eφ0

x

[
ϕh(Y[0,t])

])
+ E(∞)

x

[
(ϕh − ϕ∞)(Y[0,t])

]
. (5.15)

We prove that the first term of the right hand-side of (5.15) converges to 0. We have:

E(h)
x

[
ϕh(Y[0,t])

]
− Eφ0

x

[
ϕh(Y[0,t])

]
= Ex

[(
dP

(h)
x |Dt

dPx |Dt
−
dPφ0

x |Dt
dPx |Dt

)
ϕh(Y[0,t])

]
.

Then use that ϕh is bounded by ‖F ‖∞ and Proposition 5.9 to get:

lim
h→∞

E(h)
x

[
ϕh(Y[0,t])

]
− Eφ0

x

[
ϕh(Y[0,t])

]
= 0. (5.16)

We then prove the second term on the right hand-side of (5.15) converges to 0. No-
tice that conditionally on Y , RW,g,(h)

[0,t] and RW,d,(h)
[0,t] (resp. RB,g[0,t] and RB,d[0,t]) are independent
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Poisson point measures with intensity 1[0,t](s) ν
W,(h)(ds, dW ) where νW,(h) is given by

(4.22) (resp. 1[0,t](s) ν
B(ds, dW ) where νB is given by (4.5)). And we have:

1[0,t](s) ν
W,(h)(ds, dW ) = 1{Hmax(W )<h−s}1[0,t](s) ν

B(ds, dW ).

Thanks to (3.10) and (4.12), we get that:∫
1{Hmax(W )≥h−s}1[0,t](s) ν

B(ds, dW ) =

∫ t

0

ds α(ys)Nys [Hmax ≥ h−s] =

∫ t

0

ds vh−s(ys) < +∞.

Using this Lemma with ν given by 1[0,t](s) ν
B(ds, dW ) and A given by {Hmax(W ) <

h− s}, we deduce that:∣∣(ϕh − ϕ∞)(y[0,t])
∣∣ ≤ 4 ‖F ‖∞

∫ t

0

ds vh−s(ys).

We deduce that:∣∣∣E(∞)
x

[
(ϕh − ϕ∞)(Y[0,t])

]∣∣∣ ≤ 4 ‖F ‖∞ Eφ0
x

[∫ t

0

ds vh−s(Ys)

]
.

Recall that (H1) implies that vh−s(x) converges to 0 as h goes to infinity. Since v is
bounded (use (3.10) and (4.12)), by dominated convergence, we get:

lim
h→∞

Eφ0
x

[
(ϕh − ϕ∞)(Y[0,t])

]
= 0. (5.17)

Therefore, we deduce from (5.15) that limh→+∞∆h = 0, which gives (5.14).

Our next goal, achieved in forthcoming Corollary 5.19, is to establish the conver-
gence of the measure valued super-process X under both N(h)

x and P(h)
ν . We first state

a simple Lemma:

Lemma 5.17. Assume that λ0 ≥ 0, and that (H2)-(H4) hold. Then the following con-
vergence holds in L1(ν):

∂hvh
ν(∂hvh)

−−−−−→
h→+∞

φ0

ν(φ0)
.

Proof. We deduce from (5.5) and (5.11) that:

∂tvh(x) = f(h)φ0(x) (1 + oh(1)) e−λ0h,

for some positive function f of h. Then we get:

∂hvh(x)

ν(∂hvh)
=
φ0(x)

ν(φ0)
(1 + oh(1)).

This gives the result, since oh(1) is bounded.

We now define a super-process with spine distribution Pφ0 .

Definition 5.18. Let ν ∈Mf (S). Let Y be distributed according to∫
ν(dx)

φ0(x)

ν(φ0)
Pφ0
x ,

and, conditionally on Y , letN =
∑
j∈J δ(sj ,Xj) be a Poisson point measure with intensity:

21R+(s)ds α(Ys)NYs [dX].

Consider the process X(∞) = (X
(∞)
t , t ≥ 0), which is defined for all t ≥ 0 by:

X
(∞)
t =

∑
j∈J, sj<t

Xj
t−sj .
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(i) Let X ′ independent of X(∞) and distributed according to Pν . Then, we write P(∞)
ν

for the distribution of X ′ +X(∞).

(ii) If ν is the Dirac mass at x, we write N(∞)
x for the distribution of X(∞).

Notice that for ν = δx, the distribution of Y reduces to Pφ0
x . As a consequence of

Theorem 5.15 and Lemma 5.17, we get the convergence of P(h)
ν .

Corollary 5.19. If λ ≥ 0 and (H2)-(H4) hold, then, for each t ≥ 0:

(i) The distribution N(h)
x converges weakly to N(∞)

x on (Ω,Ft).

(ii) Let ν ∈Mf (S). The distribution P(h)
ν converges weakly to P(∞)

ν on (Ω,Ft).

Proof. Point (i) is a direct consequence of Theorem 5.15, Definition 5.18 and Proposition
3.12. According to Corollary 4.14, under P(h)

ν , X is distributed according to X ′ + X(h)

where X ′ and X(h) are independent, X ′ is distributed according to P(≤h)
ν and X(h) is

distributed according to ∫
S

ν(dx)
∂hvh(x)

ν(∂hvh)
N(h)
x [dX].

Lemma 5.17 implies this distribution converges weakly to:∫
S

ν(dx)
φ0(x)

ν(φ0)
N(∞)
x [dX]

(because of the convergence of the densities in L1(ν)) on (Ω,Ft) as h goes to infinity.

This and the weak convergence of P(≤h)
ν to Pν as h goes to infinity give point (ii).

Remark 5.20. Engländer and Pinsky offer in [16] a decomposition of super-critical
non-homogeneous super-diffusion, using immigration on the infinite lineages of the so-
called prolific individuals (as denominated further in Bertoin, Fontbona and Martinez
[4]). It is interesting to note that the generator of the lineages of these individuals is Lw
where w formally satisfies the evolution equation Lw = ψ(w), whereas the generator of
the unique infinite lineage of theQ-process is Lφ0 where φ0 formally satisfies Lφ0 = βφ0.
In particular, we notice that the generator of the backbone Lw depends on both β and
α and that the generator of Lφ0 does not depend on α.

Now comes the postponed proof of Lemma 5.16.

Proof of Lemma 5.16. Similarly to Lemma 4.3 (formally take f = −∞1Ac), we have:

E
[
F (R)1{R(Ac)=0}

]
= E

[
F (R̃)

]
e−ν(Ac) .

We deduce that:∣∣∣E[F (R)]− E[F (R̃)]
∣∣∣ =

∣∣∣E[F (R)]− E[F (R)1{R(Ac)=0}] eν(Ac)
∣∣∣

≤
∣∣E[F (R)]− E[F (R)1{R(Ac)=0}]

∣∣+ ∣∣∣E[F (R)1{R(Ac)=0}](1− eν(Ac))
∣∣∣

≤ ‖F ‖∞(1− P(R(Ac) = 0)) + ‖F ‖∞P(R(Ac) = 0)(eν(Ac)−1)

= 2 ‖F ‖∞(1− e−ν(Ac))

≤ 2 ‖F ‖∞ ν(Ac).

This gives the result.
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5.6 The convergence of the Williams spatial motion from the extinction time

We will show in Section 5.7 that the convergence as h→∞ of the process (Xh+s, s ≤
0), where X has law P(h), essentially amounts to that of (Yh+s, s ≤ 0), where Y has law
P(h). Our goal in this Section is therefore to provide a convergence result for the spatial
motion P(h) shifted by −h. We shall work with the space D− = D(R−, S) equipped with
the Skorokhod topology. For I an interval on (−∞, 0], we set DI = σ(Yr, r ∈ I). Let us
denote by θ the translation operator, which maps any process R to the shifted process
θh(R) defined by:

θh(R)· = R·+h .

The process R may be a path, a killed path or a point measure, in which case we
set, for R =

∑
j∈J δ(sj ,xj), θh(R) =

∑
j∈J δ(h+sj ,xj). We denote P(−h) the push forward

probability measure of P(h) by θh, defined on D[−h,0] by:

P(−h)(Y ∈ •) = P(h)(θh(Y ) ∈ •) = P(h)((Yh+s, s ∈ [−h, 0]) ∈ •). (5.18)

Lemma 5.6 implies that the probability measure Pφ0
π admits a stationary version on

D(R, S), which we still denote by Pφ0
π . Observe from (4.19), (5.18) and (5.3) that P

(−h)
π is

absolutely continuous with respect to Pφ0
π on D[−h,0]. We define L(−h) the corresponding

Radon-Nikodym derivative:

L(−h) =
dP

(−h)
π |D[−h,0]

dPφ0

π |D[−h,0]

=
1

α(Y0)φ0(Y0)

∂hv
0
h eβ0h

∂hv
φ0

h (Y−h) eλ0h
e−2

∫ 0
−h(α(Ys)v−s(Ys)−v0−s) ds . (5.19)

The next Lemma insures the convergence of L(−h) to a limit, say L(−∞).

Lemma 5.21. Assume λ0 > 0, (H2)-(H4). We have:

L(−h) −−−−−→
h→+∞

L(−∞) Pφ0
π -a.s. and in L1(Pφ0

π ).

Proof. Notice that limh→+∞ ∂hv
0
h eβ0h = −β2

0 . We also deduce from (4.14), (4.15) and

(5.8) that
∫ 0

−h(α(Ys)v−s(Ys)−v0
−s) ds increases, as h goes to infinity, to

∫ 0

−∞(α(Ys)v−s(Ys)−
v0
−s) ds which is finite. For fixed t > 0, we also deduce from (5.12) (with h replaced by
h− t and ε by t) that Pφ0

π a.s.:

lim
h→+∞

∂tv
φ0

h (Y−h) eλ0h = eλ0t Eφ0
π

[
e−2

∫−t
−∞ ds α(Ys) φ0(Ys) v

φ0
−s(Ys) ∂tv

φ0

t (Y−t)
]
.

We deduce from (5.19) the Pφ0
π a.s. convergence of (L(−h), h > 0) to L(−∞). Notice

from (5.9) that, for fixed t, the sequence (L(−h), h > t) is bounded. Hence the previous
convergence holds also in L1(Pφ0

π ).

As Eφ0
π

[
L(−h)

]
= 1, we deduce that Eφ0

π

[
L(−∞)

]
= 1. We define the probability mea-

sure P
(−∞),φ0
π on (D−,D(−∞,0]) by its Radon Nikodym derivative:

dP
(−∞),φ0

π |D(−∞,0]

dPφ0

π |D(−∞,0]

= L(−∞). (5.20)

Remark 5.22. Assume λ0 > 0, (H2)-(H4). Define for h > t > 0:

L
(−h)
−t = Eφ0

π [L(−h)|D(−∞,−t]] =
dP

(−h)
π |D[−h,−t]

dPφ0

π |D[−h,−t]

L
(−∞)
−t = Eφ0

π [L(−∞)|D(−∞,−t]] =
dP

(−∞),φ0

π |D(−∞,−t]

dPφ0

π |D(−∞,−t]

·
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Using (4.21) and Lemma 5.4, we get:

L
(−h)
−t =

∂tvt(Y−t)

∂tvh(Y−h)

φ0(Y−h)

φ0(Y−t)
e−λ0(h−t) e−2

∫−t
−h ds α(Ys) v−s(Ys)

=
e−2

∫−t
−h ds α(Ys) φ0(Ys) v

φ0
−s(Ys) ∂tv

φ0

t (Y−t)

Eφ0

Y−h

[
e−2

∫−t
−h ds α(Ys) φ0(Ys) v

φ0
−s(Ys) ∂tv

φ0

t (Y−t)
] ·

Using Lemma 5.7 and convergence of (L
(−h)
−t , h > t) to L(−∞)

−t , which is a consequence
of Lemma 5.21, we also get that for t > 0:

L
(−∞)
−t =

e−2
∫−t
−∞ ds α(Ys) φ0(Ys) v

φ0
−s(Ys) ∂tv

φ0

t (Y−t)

Eφ0
π

[
e−2

∫−t
−∞ ds α(Ys) φ0(Ys) v

φ0
−s(Ys) ∂tv

φ0

t (Y−t)
] ·

These formulas are more self-contained than (5.19) and the definition of L(−∞) as a
limit, but they only hold for t > 0.

Lemma 5.23. Assume λ0 > 0, (H2)-(H4). For all x ∈ S, t ≥ 0, and f bounded and
D[−t,0] measurable:

E(−h)
x

[
f(Y[−t,0])

]
−−−−−→
h→+∞

E(−∞),φ0
[
f(Y[−t,0])

]
.

Proof. Let 0 < t and F be a bounded and D[−t,0] measurable function. For h large
enough, we have:

E(−h)
x

[
F (Y[−t,0])

]
= E(h)

x

[
E

(h/2)
Yh/2

[
F (θh/2(Y )[−t,−s])

]]
= Eφ0

x

[dP
(h)
x |Dh/2

dPφ0

x |Dh/2

E
(h/2)
Yh/2

[
F (θh/2(Y )[−t,0])

]]
= Eφ0

x

[
E

(h/2)
Yh/2

[
F (θh/2(Y )[−t,0])

]]
+ oh(1)

= E(h/2)
π

[
F (θh/2(Y )[−t,0])

]
+ oh(1)

= E(−h/2)
π

[
F (Y[−t,0])

]
+ oh(1),

where we used the definition of P(−h) and the Markov property for the first equality,
Lemma 5.8 together with F bounded by ‖F‖∞ for the third, and Lemma 5.6 for the
fourth. We continue the computations as follows:

E(−h)
x

[
F (Y[−t,0])

]
= Eφ0

π

[
L(−h/2)F (Y[−t,0])

]
+ oh(1)

= Eφ0
π

[
L(−∞)F (Y[−t,0])

]
+ oh(1)

= E(−∞),φ0
π

[
F (Y[−t,0])

]
+ oh(1),

where we used Lemma 5.21 for the second equality.

5.7 The convergence backward from the extinction time

A last preparatory Lemma is needed for proving the convergence of the super-
process backward from the extinction time. The proof of the Lemma is a straightforward
application of (5.8).

Lemma 5.24. Assume λ0 > 0, and (H2)-(H4). Then, for all t > 0, there exists a non-
negative function m such that for all x ∈ S, for all h > 0:

vh(x)− vh+t(x) ≤ m(h) and

∫ ∞
1

dr m(r) <∞.
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We now state our last main result.

Theorem 5.25. Assume λ > 0, (H2)-(H4).

(i) The distribution of the triplet
(
θh(WTmax)[−t,0], θh(RTmax

g )[−t,0], θh(RTmax

d )[−t,0]

)
under

N
(h)
x converges weakly to the distribution of the triplet (Y[−t,0], R

W,g
[−t,0], R

W,d
[−t,0]) where

Y has distribution P(−∞) and conditionally on Y , RW,g and RW,d are two indepen-
dent Poisson point measures with intensity:

1{s<0}α(Ys) ds 1{Hmax(W )<−s} NYs [dW ].

We even have the slightly stronger result: for any bounded measurable function
F ,

N(h)
x

[
F
(
θh(WTmax)[−t,0], θh(RTmax

g )[−t,0], θh(RTmax

d )[−t,0]

)]
−−−−−→
h→+∞

E(−∞)

[
F
(
Y[−t,0], R

W,g
[−t,0], R

W,d
[−t,0]

)]
. (5.21)

(ii) The process θh(X)[−t,0] = (Xh+s, s ∈ [−t, 0]) under N(h)
x weakly converges towards

X
(−∞)
[−t,0] , where for s ≤ 0:

X(−∞)
s =

∑
j∈J, sj<s

Xj
s−sj ,

and conditionally on Y with distribution P(−∞),
∑
j∈J δ(sj ,Xj) is a Poisson point

measure with intensity:

2 1{s<0}α(Ys) ds 1{Hmax(X)<−s} NYs [dX].

Proof. Let 0 < t < h. We use notations from Theorems 4.12, 5.15. Let F be a bounded
measurable function on W− × (R− × Ω̄)2 with W− the set of killed paths indexed by
negative times. We want to control δh defined by:

δh = N(h)
x

[
F
(
θh(WTmax)[−t,0], θh(RgTmax

)[−t,0], θh(RdTmax
)[−t,0]

)]
− E(−∞)

[
F
(
Y[−t,0], R

W,g
[−t,0], R

W,d
[−t,0]

)]
.

We set:

Υ(y[−t,0]) = E(−∞)

[
F
(
y[−t,0], R

W,g
[−t,0], R

W,d
[−t,0]

)∣∣∣∣Y = y

]
.

We deduce from Williams’ decomposition, Theorem 4.12, and the definition of RW,g and
RW,d, that:

N(h)
x

[
F
(
θh(WTmax)[−t,0], θh(RgTmax

)[−t,0], θh(RdTmax
)[−t,0]

)]
= E(−h)

x

[
Υ(Y[−t,0])

]
.

We thus rewrite δh as:

δh = E(−h)
x

[
Υ(Y[−t,0])

]
− E(−∞)

[
Υ(Y[−t,0])

]
.

The function Υ being bounded by ‖F‖∞ and measurable, we may conclude under as-
sumption (H6) that limh→+∞ δh = 0. This proves point (i).
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We now prove point (ii). Let t > 0 and ε > 0 be fixed. Let F be a bounded measurable
function on the space of continuous measure-valued applications indexed by negative
times. For a point measure on R− × Ω̄, M =

∑
i∈I δ(si,Wi), we set:

F̃ (M) = F

((∑
i∈I

θsi(X(Wi))
)

[−t,0]

)
.

For h > t, we want a control of δ̄h defined by:

δ̄h = N(h)
x

[
F
(
θh(X)[−t,0]

)]
− E(−∞)

[
F̃
(
RW,g +RW,d

)]
.

By Corollary 4.13, we have:

N(h)
x

[
F
(
θh(X)[−t,0]

)]
= N(h)

x

[
F̃
(
θh(RgTmax

+RdTmax
)
)]
.

Thus, we get:

δ̄h = N(h)
x

[
F̃
(
θh(RgTmax

+RdTmax
)
)]
− E(−∞)

[
F̃
(
RW,g +RW,d

)]
. (5.22)

For a > s fixed, we introduce δ̄ah, for h > a, defined by:

δ̄ah = N(h)
x

[
F̃
(
θh(RgTmax

+RdTmax
)[−a,0]

)]
− E(−∞)

[
F̃
(
(RW,g +RW,d)[−a,0]

)]
. (5.23)

Notice the restriction of the point measures to [−a, 0]. Point (i) directly yields that
limh→+∞ δ̄ah = 0. Thus, there exists ha > 0 such that for all h ≥ ha,

δ̄ah ≤ ε/2.

We now consider the difference δ̄h − δ̄ah. We associate to the point measures M intro-
duced above the most recent common ancestor of the population alive at time −t:

A(M) = sup{s > 0;
∑
i∈I

1{si<−s}1{Hmax(Wi)>−t−si} 6= 0}.

Let us observe that:

N(h)
x a.s., F̃

(
θh(RgTmax

+RdTmax
)
)
1{A≤a} = F̃

(
θh(RgTmax

+RdTmax
)[−a,0]

)
1{A≤a}, (5.24)

with A = A(θh(RgTmax
+ RdTmax

)[−h,0]) in the left and in the right hand side. Similarly, we
have:

P(−∞) a.s., F̃
(
RW,g +RW,d

)
1{A≤a} = F̃

(
(RW,g +RW,d)[−a,0]

)
1{A≤a}, (5.25)

with A = A
(
RW,g + RW,d

)
in the left and in the right hand side. We thus deduce the

following bound on δ̄h − δ̄ah:

|δ̄h − δ̄ah| ≤ 2‖F‖∞
[
N(h)
x

[
A > a

]
+ P(−∞)

[
A > a

]]
= 2‖F‖∞

[
E(−h)
x

[
1− e−

∫ h
a
dr 2α(Y−r)(vr−t−vr)(Y−r)]

+ E(−∞)
[
1− e−

∫∞
a
dr 2α(Y−r)(vr−t−vr)(Y−r)]

]
≤ 8‖F‖∞‖α‖∞

∫ ∞
a−t

dr g(r),
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where we used (5.22), (5.23), (5.24) and (5.25) for the first inequality, the definition of
A for the first equality, as well as (5.24) and the fact that 1− e−x ≤ x if x ≥ 0 for the last
inequality. From (5.24), we may choose a large enough such that: |δ̄h − δ̄ah| ≤ ε/2. We
deduce that for all h ≥ max(a, ha): |δ̄h| ≤ |δ̄h − δ̄ah|+ |δ̄ah| ≤ ε. This proves point (ii).

Appendix: Proof of Lemmas 5.1, 5.2, 5.4, 5.5 and 5.7

This appendix is devoted to the proofs of the technical Lemmas contained in Section
5.3.

The following proof of Lemma 5.1 uses a coupling argument in the construction of
Dhersin and Serlet [9] of a modified snake for non-homogeneous super-processes. This
coupling yields first bounds on vφ0

t (x).

Proof of Lemma 5.1. From (H2) and (H4), there exist m,M ∈ R such that

∀x ∈ S, 0 < m ≤ αφ0(x) ≤M <∞.

Let W be a ( M
αφ0
L, 0,M) Brownian snake and define the time change Φ for every w ∈ W

by Φt(w) =
∫ t

0
ds M

αφ0
(w(s)). As ∂tΦt(w) ≥ 1, we have that t→ Φt(w) is strictly increasing.

Let t → Φ
(−1)
t (w) denote its inverse. Then, using Proposition 12 of [9], first step of the

proof, we have that the time changed snake W ◦ Φ−1, with value

(W ◦ Φ−1)s = (Ws(Φ
−1
t (Ws)), t ∈ [0,Φ−1(Ws, Hs)])

at time s, is a (L, 0, αφ0) Brownian snake. Noting the obvious bound on the time change
Φ−1
t (w) ≤ t, we have, according to Theorem 14 of Dhersin and Serlet [9]:

P

(
M
αφ0

Lφ0 ,0,M
)

αφ0(x)
M δx

(Hmax ≤ t) ≥ P
(Lφ0 ,0,αφ0)
δx

(Hmax ≤ t)

which implies:

αφ0(x)

M
N

(
M
αφ0
Lφ0 ,0,M

)
x (Hmax > t) ≤ N(Lφ0 ,0,αφ0)

x (Hmax > t)

from the exponential formula for Poisson point measures. Now, the left hand side of this
inequality may be computed explicitly:

N

(
M
αφ0
Lφ0 ,0,M

)
x (Hmax > t) = N

(
M
αφ0
Lφ0 ,0,M

)
x (Hmax > t) =

1

Mt

and the right hand side of this inequality is vφ0

t (x) from (5.4). We thus have proved that:

αφ0(x)

M2t
≤ vφ0

t (x),

and this yields the first part of the inequality of Lemma 5.1. The second part is obtained
in the same way using the coupling with the

(
m
αφ0
Lφ0 , 0,m

)
Brownian snake.

Proof of Lemma 5.2. Assumption (H4) allow us to apply Lemma 5.1 for the case λ0 = 0,
which yields that vφ0

∞ = 0, and then v∞ = 0 thanks to (5.5). This in turn implies that
(H1) holds in the case λ0 = 0 according to Lemma 2.5. For λ0 > 0, we may use item 5
of Proposition 13 of [9] (which itself relies on a Girsanov theorem) with P(L,0,αφ0) in the
rôle of Pc and P(Lφ0,λ0,αφ0) in the rôle of Pb,c to conclude that the extinction property
(H1) holds under P(Lφ0,λ0,αφ0).
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Proof of Lemma 5.4. Let ε > 0. The function vφ0 is known to solve the following mild
form of the Laplace equation, see equation (2.3):

vφ0

t+s(x) + Eφ0
x

[ ∫ t

0

dr
(
λ0 v

φ0

t+s−r(Yr) + α(Yr)φ0(Yr)(v
φ0

t+s−r(Yr))
2
)]

= Eφ0
x

[
vφ0
s (Yt)

]
.

By differentiating with respect to s and taking t = t−s, we deduce from dominated con-
vergence and the bounds (4.12), (4.13) and (4.15) on vφ0 = v/φ0 and its time derivative
(valid under the assumptions (H1)-(H3)) the following mild form on the time derivative
∂tv

φ0 :

∂tv
φ0

t (x) + Eφ0
x

[ ∫ t−s

0

dr
(
λ0 + 2α(Yr)φ0(Yr)v

φ0

t−r(Yr)
)
∂tv

φ0

t−r(Yr)

]
= Eφ0

x

[
∂tv

φ0
s (Yt−s)

]
.

From the Markov property, for fixed t > 0, the two following processes:(
vφ0

t−s(Ys)−
∫ s

0

dr
(
λ0 + α(Yr)φ0(Yr)v

φ0

t−r(Yr)
)
vφ0

t−r(Yr), 0 ≤ s < t

)
and (

∂tv
φ0

t−s(Ys)−
∫ s

0

dr
(
λ0 + 2α(Yr)φ0(Yr)v

φ0

t−r(Yr)
)
∂tv

φ0

t−r(Yr), 0 ≤ s < t

)
are Ds-martingale under Pφ0

π . A Feynman-Kac manipulation, as done in the proof of
Lemma 3.1, enables us to conclude that for fixed t > 0:(

vφ0

t−s(Ys) e−
∫ s
0
dr
(
λ0+α(Yr)φ0(Yr)v

φ0
t−r(Yr)

)
, 0 ≤ s < t

)
and (

∂tv
φ0

t−s(Ys) e−
∫ s
0
dr
(
λ0 +2α(Yr)φ0(Yr)v

φ0
t−r(Yr)

)
, 0 ≤ s < t

)
are Ds-martingale under Pφ0

π . Taking expectations at time s = 0 and s = h with t = h+ε,
we get the representations formulae stated in the Lemma:

vφ0

h+ε(x) = e−λ0h Eφ0
x

[
e−
∫ h
0
ds α(Ys) φ0(Ys) v

φ0
h+ε−s(Ys) vφ0

ε (Yh)

]
,

∂hv
φ0

h+ε(x) = e−λ0h Eφ0
x

[
e−2

∫ h
0
ds α(Ys) φ0(Ys) v

φ0
h+ε−s(Ys) ∂hv

φ0
ε (Yh)

]
.

Proof of Lemma 5.5. Since vφ0
ε = vε/φ0 = ṽε/(αφ0), we can conclude from (4.12), (H2)

and (H4) that vφ0
ε is bounded from above and from below by positive constants. Simi-

larly, we also get from (4.13), (4.14) and (4.15) that |∂hṽε| is bounded from above and
from below by two positive constants. Thus, we have the existence of four positive
constants, D1, D2, D3 and D4, such that, for all x ∈ S:

D1 ≤ vφ0
ε (x) ≤ D2, (5.26)

D3 ≤ |∂tvφ0
ε (x)| ≤ D4. (5.27)

From equations (5.6), (5.26) and the positivity of vφ0 , we deduce that:

vφ0

h+ε(x) ≤ D2 e−λ0h . (5.28)

Putting back (5.28) into (5.6), we have the converse inequality D5 e−λ0h ≤ vφ0

h+ε(x) with
D5 = D1 exp {−D2 ‖α‖∞ ‖φ0 ‖∞ /λ0} > 0. This gives (5.8).

Similar arguments using (5.7) and (5.27) instead of (5.6) and (5.26), gives (5.9).
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Proof of Lemma 5.7. Using the Feynman-Kac representation (5.6) of ∂hv
φ0

h+ε and the
Markov property, we have:

∂hv
φ0

h+ε(x) eλ0h

= Eφ0
x

[
e−2

∫ h
0
ds α(Ys) φ0(Ys) v

φ0
h+ε−s(Ys) ∂hv

φ0
ε (Yh)

]
= Eφ0

x

[
e−2

∫√h
0

ds α φ0 v
φ0
h+ε−s(Ys) Eφ0

Y√h

[
e
−2
∫ h−√h
0

ds α(Ys) φ0(Ys) v
φ0
h−
√
h+ε−s

(Ys) ∂hv
φ0
ε (Yh−

√
h)
]]
.

Notice that∣∣∣∣ ∫
√
h

0

ds α φ0 v
φ0

h+ε−s(Ys)

∣∣∣∣ ≤ ‖α‖∞ ‖φ0 ‖∞
√
h ‖vφ0

h+ε−
√
h
‖
∞

= oh(1), (5.29)

according to Lemma 5.5 if λ0 > 0 and Lemma 5.1 if λ0 = 0. We get:

∂hv
φ0

h+ε(x) eλ0h = Eφ0
x

[
Eφ0

Y√h

[
e
−2
∫ h−√h
0

ds α(Ys) φ0(Ys) v
φ0
h−
√
h+ε−s

(Ys) ∂hv
φ0
ε (Yh−

√
h)
]](

1 + oh(1)
)

= Eφ0
π

[
e
−2
∫ h−√h
0

ds α(Ys) φ0(Ys) v
φ0
h−
√
h+ε−s

(Ys) ∂hv
φ0
ε (Yh−

√
h)

](
1 + oh(1)

)
= Eφ0

π

[
e
−2
∫ 0
−(h−

√
h)
ds α(Ys) φ0(Ys) v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

](
1 + oh(1)

)
= Eφ0

π

[
e−2

∫ 0
−h ds α(Ys) φ0(Ys) v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

](
1 + oh(1)

)
,

where we used (5.29) for the first equality, Lemma 5.6 for the second, stationarity of Y
under Pφ0

π for the third and (5.29) again for the last. This gives (5.11).
Moreover, if λ0 > 0, we get that:

Eφ0
π

[
e−2

∫ 0
−∞ ds α φ0 v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

]
is finite and that:

lim
h′→+∞

Eφ0
π

[
e−2

∫ 0
−h′ ds α φ0 v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

]
= Eφ0

π

[
e−2

∫ 0
−∞ ds α φ0 v

φ0
ε−s(Ys) ∂hv

φ0
ε (Y0)

]
.

Therefore, we deduce (5.12) from (5.11).
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