Translator Disclaimer
2012 Uniqueness for Fokker-Planck equations with measurable coefficients and applications to the fast diffusion equation
Nadia Belaribi, Francesco Russo
Author Affiliations +
Electron. J. Probab. 17: 1-28 (2012). DOI: 10.1214/EJP.v17-2349

Abstract

The object of this paper is the uniqueness for a $d$-dimensional Fokker-Planck type equation with inhomogeneous (possibly degenerated) measurable not necessarily bounded coefficients. We provide an application to the probabilistic representation of the so-called Barenblatt's solution of the fast diffusion equation which is the partial differential equation $\partial_t u = \partial^2_{xx} u^m$ with $m\in]0,1[$. Together with the mentioned Fokker-Planck equation, we make use of small time density estimates uniformly with respect to the initial condition.

Citation

Download Citation

Nadia Belaribi. Francesco Russo. "Uniqueness for Fokker-Planck equations with measurable coefficients and applications to the fast diffusion equation." Electron. J. Probab. 17 1 - 28, 2012. https://doi.org/10.1214/EJP.v17-2349

Information

Accepted: 2 October 2012; Published: 2012
First available in Project Euclid: 4 June 2016

zbMATH: 1268.82024
MathSciNet: MR2988399
Digital Object Identifier: 10.1214/EJP.v17-2349

Subjects:
Primary: 60H30

JOURNAL ARTICLE
28 PAGES


SHARE
Vol.17 • 2012
Back to Top