Open Access
2011 Interpolation Percolation
Martin Zerner
Author Affiliations +
Electron. J. Probab. 16: 981-1000 (2011). DOI: 10.1214/EJP.v16-895

Abstract

Let $X$ be a countably infinite set of real numbers and let $(Y_x)_{x\in X}$ be an independent family of stationary random subsets of the real numbers, e.g. homogeneous Poisson point processes. We give criteria for the almost sure existence of various "regular" functions f with the property that $f(x)\in Y_x$ for all $x\in X$. Several open questions are posed.

Citation

Download Citation

Martin Zerner. "Interpolation Percolation." Electron. J. Probab. 16 981 - 1000, 2011. https://doi.org/10.1214/EJP.v16-895

Information

Accepted: 23 May 2011; Published: 2011
First available in Project Euclid: 1 June 2016

zbMATH: 1225.60155
MathSciNet: MR2801458
Digital Object Identifier: 10.1214/EJP.v16-895

Subjects:
Primary: 60D05 , 60K35.
Secondary: 54D05

Keywords: interpolation , path connected , percolation , stationary random set

Vol.16 • 2011
Back to Top