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Abstract

It is known that, in the dependent case, partial sums processes which are elements of D([0, 1])
(the space of right-continuous functions on [0, 1]with left limits) do not always converge weakly
in the J1-topology sense. The purpose of our paper is to study this convergence in D([0, 1])
equipped with the M1-topology, which is weaker than the J1 one. We prove that if the jumps
of the partial sum process are associated then a functional limit theorem holds in D([0,1])
equipped with the M1-topology, as soon as the convergence of the finite-dimensional distribu-
tions holds. We apply our result to some stochastically monotone Markov chains arising from
the family of iterated Lipschitz models..
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1 Introduction

Let (Xn)n∈Z be a sequence of real-valued random variables. Let S0 = 0 and Sn = X1+ . . .+Xn be the
associated partial sums and let (ξn(t))t∈[0,1] be the normalized partial sum process,

ξn(t) =
1

an
(Sn(t)− bn[nt]), t ∈ [0, 1],

where (bn)n∈N and (an)n∈N are some deterministic sequences with an→∞ as n→∞, Sn(t) = S[nt]
and [x] denotes the integer part of x .

The sequence of processes (ξn(t))t∈[0,1] obeys a functional limit theorem (FLT) if there exists a
proper stochastic process (Y (t))t∈[0,1] with sample paths in the space D := D([0, 1],R) of all right-
continuous R-valued functions with left limits defined on [0, 1], such that ξn(·) =⇒ Y (·) in D
equipped with some topology.

Appropriate topologies on D were introduced by Skorohod (1956). The first one is the standard
J1-metric defined by

dJ1
(x1, x2) = inf

λ∈Λ

�

‖x1oλ− x2‖ ∨ ‖λ− e‖
	

,

where Λ is the set of strictly increasing functions λ on [0, 1] such that both λ and its inverse λ−1 are
continuous, e is the identity map on [0, 1] and ‖·‖ is the uniform metric. Convergence in D equipped
with the J1-topology yields convergence jumps to jumps. In other words, if limn→∞ dJ1

(xn, x) = 0
in D and if x has a jump at time t, i.e. ∆x(t) := x(t)− x(t−) 6= 0, then for n sufficiently large xn
must have a jump with both magnitudes and locations converging to those of the limiting function
x (we refer for instance to the book of Whitt (2002), Section 3.3).

We come back to the sequence of the normalized partial sum process (ξn(·))n∈N and their limiting
behavior in D equipped with the J1-topology, when the limit process Y is a special case of Lévy
process. Recall that a Lévy process (Y (t))t≥0 with Lévy measure ν on R \ {0} is a stochastic process
with sample paths in D such that Y (0) = 0 and that Y has stationary and independent increments.
The full jump structure of a Lévy process Y is described by the counting random measure µY on
R+×R \ {0} associated with its jumps:

µY (·, ·) =
∑

s≥0,∆Y (s)6=0

δ(s,∆Y (s)),

which is a Poisson random measure with intensity measure Leb⊗ν . The process (ξn(t))t∈[0,1] jumps

at times tk =
k
n , 1≤ k ≤ n. The amount of its kth jump is

4ξn(tk) = ξn(tk)− ξn(t
−
k ) =

k
∑

i=1

X i − bn

an
−

k−1
∑

i=1

X i − bn

an
=

Xk − bn

an
.

Analogously the structure of the jumps of (ξn(t))t∈[0,1] is then described by the sequence of point
processes µn defined by,

µn(·, ·) =
n
∑

k=1

δ
( k

n ,
Xk−bn

an
)
(·, ·).

So it is not surprising that a necessary condition for the FLT of the sequence (ξn(t))t∈[0,1] to a Lévy
process in D equipped with the J1-topology is the convergence of the sequence of point processes
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µn towards µY in the space of point measures on [0, 1]×R \ {0} equipped with the vague topology.
This convergence implies in turn, since µY is a Poisson random measure with intensity Leb⊗ν , that

lim
n→∞

P( max
2≤ j≤[nt]

|X j − bn| ≥ εan | |X1− bn| ≥ εan) = 1− e−tν(|x |>ε).

We refer to Tyran-Kamińska (2010a)-(2010b), for more details. Hence convergence in D equipped
with the J1-topology does not allow more than one jump in a very little time.

This limit condition does not ensure the convergence of partial sums processes constructed from
any dependent random variables (X i)i∈Z in D equipped with the J1-topology. Avram and Taqqu
(1992) proved that the J1-topology is not appropriate for the convergence of a partial sum process
constructed from a finite order moving average with at least two non-zero coefficients. But if the
coefficients of the moving average are all of the same sign, then the convergence holds in D equipped
with the M1-topology.

The M1-topology is weaker than the J1 one. As it was noted, see for instance Avram and Taqqu
(1992), Basrak et al. (2010), Whitt (2002), these two topologies differ in a neighborhood of a jump
of the limit process: in the case of the M1-topology, several jumps are allowed but the graph of the
sequence of processes must be approximately a "monotone staircase". This means that the jumps of
(ξn(·))t∈[0,1] which are the triangular arrays ( X i−bn

an
)1≤i≤n evolve in the same directions, or satisfy a

kind of positive dependence.

The most popular notion of positive dependence is the association. A sequence X1, X2, . . . is as-
sociated if for all n, the vector X (n) = (X1, X2, . . . , Xn) satisfies the following condition: for any
coordinatewise bounded and nondecreasing functions f , g on Rn, Cov( f (X (n)), g(X (n))) ≥ 0. In
particular, independent random variables and their nondecreasing transformations such that mov-
ing average with positive coefficients are all associated, we refer to Esary et al. (1967) for more
about this notion.

Our first new result, which was announced in Louhichi and Rio (2011), is that, if the jumps of the
process (ξn(t))t∈[0,1] are associated then a FLT holds in D equipped with the M1-topology as soon
as the convergence of the finite-dimensional distributions holds.

Theorem 1. Let X1, X2, . . . be a strictly stationary sequence of associated real-valued random variables.
Let α ∈]0,2] be fixed and (an)n>0 be a nondecreasing sequence of positive reals, regularly varying with
index 1/α, such that limn→∞ an = ∞. Suppose that there exists a sequence of reals (bn)n for which
C := sup{ |bk − bn| : 0 < n ≤ k ≤ 2n < ∞} < ∞, and that for any k-tuples (t1, . . . , tk) with
0≤ t1 < t2 < . . .< tk ≤ 1, the finite-dimensional distribution

(a−1
n (Sn(t1)− [nt1]bn), . . . , a−1

n (Sn(tk)− [ntk]bn))

converges in distribution to (Yα(t1), . . . , Yα(tk)) for some stochastic process (Yα(t))t∈[0,1] with sample
paths in D, fulfilling

lim
x→+∞

xα/2P(|Yα(t)| ≥ x) = 0, ∀ t ∈ [0,1]. (1.1)

Let ξn be the process defined on [0, 1] by ξn(t) = a−1
n (Sn(t) − [nt]bn). Suppose that C = 0 or

lim infn→∞(an/n)> 0. Then ξn(·) =⇒ Yα(·) as n tends to infinity, in D equipped with the M1-topology.

Let us note that for a strictly stationary sequence of associated real-valued random variables with fi-
nite second moment and finite series of covariances, the functional convergence towards a Brownian
motion was already proved by Newman and Wright (1981).
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Our paper is organized as follows. In Section 2, we study an important class of associated Markov
chains, called stochastically monotone (we discuss this point in the appendix below). An important
example of stochastically monotone Markov chains arises from the family of iterated Lipschitz mod-
els. We first recall some key facts about iterated Lipschitz models having a unique in law stationary
and heavy-tailed solution with exponent α > 0. We next recall (Proposition 2 below), the condi-
tions ensuring the convergence in law of the properly normalized and centered partial sum of this
stochastic recursion model to an α-stable law with α ∈]0,2]. We identify in particular the parame-
ters of this stable limit law. As a consequence of Theorem 1 and Proposition 2 below, we establish
Theorem 2 which gives a functional convergence for the partial sum processes constructed from
this stochastic recursion model. The limit process is a strictly stable Lévy process if α ∈]0,2[\{1},
a stable Lévy process if α = 1 and a Brownian motion otherwise. The proofs are in Section 3. In
order to prove Theorem 1, we establish the tightness property in the Skorohod M1-topology. Our
main tools are a well known maximal inequality and an Ottaviani type inequality, which is up to
our knowledge new for strictly stationary associated sequences. The proofs of some auxiliary re-
sults are in Section 4. The paper ends with an Appendix discussing the association property for the
stochastically monotone Markov chains.

2 Limit theorems for iterated Lipschitz models

Let (Ω,A ,P) be a probability space. Let Ψ be a real-valued measurable random function on R×Ω,
so Ψ can be viewed as a random element of the space of Borel-measurable functions from R to R
and for each x ∈R, Ψ(x) = Ψ(x , ·) is a random variable. Let (Ψn)n≥1 be a sequence of independent
copies of Ψ and X0 be a real-valued random variable independent of (Ψn)n≥1. Define the recurrence
equation,

Xn =Ψn(Xn−1). (2.2)

Since Ψn is independent of (X i)i≤n−1, (Xn)n≥0 defines a Markov chain with initial distribution being
the distribution of X0. Clearly,

E( f (Xn)|Xn−1 = x) = E( f (Ψn(x))) = E( f (Ψ(x))).

This fact gives a simple criterion for (Xn)n∈N to be stochastically monotone (and hence associated,
by Proposition 5 in the Appendix below).

Lemma 1. Let (Xn)n≥0 be the Markov chain defined by (2.2). Suppose moreover that Ψ has nonde-
creasing paths, i.e. for each ω ∈ Ω the map x 7→ Ψ(x ,ω) is a.s nondecreasing. Then for any initial
distribution, (Xn)n≥0 is an homogeneous stochastically monotone Markov chain.

An another formula for Xn is given by iterating (2.2). We have Xn = Wn(X0), where Wn is the
random map from R to R defined by W0(x) = x and,

Wn(x) = Ψn ◦Ψn−1 ◦ . . . ◦Ψ1(x). (2.3)

Let (Zn)n≥1 be another sequence of random mapping from R to R defined by Z0(x) = x and,

Zn(x) = Ψ1 ◦ . . . ◦Ψn−1 ◦Ψn(x).
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It follows, since the two vectors (Ψ1, . . . ,Ψn−1,Ψn) and (Ψn,Ψn−1, . . . ,Ψ1) are equally distributed,
that for any x ∈R, Wn(x) and Zn(x) have the same distribution for any n≥ 1.

Based on the a.s. asymptotic behavior of (Zn(x))n∈N, Letac (1986) gave some criteria ensur-
ing the existence and the uniqueness in law of the solution of the random equation,

R=Ψ(R) in law, Ψ and R are independent. (2.4)

More precisely Letac’s principle is as follows (we refer also to Theorem 2.1 in Goldie (1991)).

Lemma 2. Assume Ψ has a.s. continuous paths. Suppose that Zn(x) converges a.s as n tends to infinity
to some random variable Z that does not depend on x. Then the law of Z satisfies (2.4) and is the
unique such law. Also the sequence (Wn(x))n≥1 has this law as its limit law for any initial x.

By adding some contracting-type assumptions on the random map Ψ, one can prove that (Zn(x))n≥1
is a Cauchy sequence getting simple sufficient conditions for the existence of Z as defined in Lemma
2. This is the purpose of the following lemma. Its proof is very classical, we refer for instance to
Diaconis and Freedman (1999).

Lemma 3. Suppose that Ψ is a Lipschitz map with finite a.s. Lipschitz random positive constant A.
Suppose that,

E(ln(A))< 0, E| ln(A)|<∞, E ln+ |Ψ(0)|<∞, (2.5)

where x+ =max(x , 0), then all the requirements of Lemma 2 are satisfied.

The following result proved in Goldie (1991), see Corollary 2.4 there, gives conditions under which
the tails of the stationary solution of (2.4), when it exists, are asymptotic to a power.

Proposition 1. Let M be a random variable such that E|M |α = 1, E|M |α ln+ |M |<∞ for some α > 0
and the conditional law of ln |M |, given M 6= 0, is nonarithmetic. Then mα := E(|M |α ln |M |) belongs
to ]0,∞[. Let R be a random variable satisfying (2.4). Suppose that R is independent of the couple
(M ,Ψ).

1. If M > 0 a.s. and E
�

�(Ψ(R)+)α− ((MR)+)α
�

�<∞, then

lim
t→∞

αtαP(R> t) = C+ =
1

mα
E
�

(Ψ(R)+)α− ((MR)+)α
�

(2.6)

2. If M > 0 a.s. and E
�

�(Ψ(R)−)α− ((MR)−)α
�

�<∞, then

lim
t→∞

αtαP(R<−t) = C− =
1

mα
E
�

(Ψ(R)−)α− ((MR)−)α
�

. (2.7)

Recall that for x ∈R, x+ =max(x , 0) and x− =max(−x , 0).

Examples. Here are some examples of stochastically monotone iterated Markov chains having an
unique in law stationary solution R with heavy-tailed distribution.
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1. A random difference equation. Let (A, B) be a couple of random variables with values in
R+×R. Here the nondecreasing function Ψ is given by

Ψ(x) = Ax + B. (2.8)

Suppose that M = A satisfies all the requirements of Proposition 1. If E|B|α < ∞, then the
conclusion of Proposition 1 holds with R=

∑∞
k=1 A1 . . . Ak−1Bk,

C+ =
1

E(Aα ln(A))
E
�

((B+ AR)+)α− ((AR)+)α
�

,

C− =
1

E(Aα ln(A))
E
�

((B+ AR)−)α− ((AR)−)α
�

,

cf. Theorem 4.1 in Goldie (1991).

2. Letac’s model. Let (A, B, C) be a random vector with values in R+×R2 and define,

Ψ(x) = Amax(x , B) + C .

Proposition 6.1 of Goldie (1991) gives conditions for the existence of the stationary solution
of Letac’s model. If −∞≤ E(ln(A))< 0, E(ln(1∨ B))<∞ and E(ln(1∨ C))<∞, then

R= sup

 

∞
∑

k=1

CkΠk−1, (
m
∑

k=1

CkΠk−1+ BmΠm)m≥1

!

,

where Πm = A1A2 . . . Am is a.s finite and its law is the unique law fulfilling (2.4). Suppose that
M = A satisfies all the requirements of Proposition 1. If

E|C |α <∞, E(AB+)α <∞

then the conclusion of Proposition 1 holds with

C+ =
1

E(Aα ln(A))
E
�

((C + Amax(R, B))+)α− ((AR)+)α
�

,

C− =
1

E(Aα ln(A))
E
�

((C + Amax(R, B))−)α− ((AR)−)α
�

,

cf. Theorem 6.2 in Goldie (1991).

3. A random extremal equation. Here Ψ is given, for any x ∈R, by

Ψ(x) =max(B, Ax),

where A≥ 0 a.s. Proposition 5.1 of Goldie (1991) shows that if E ln(A)< 0 and E(ln(1∨B))<
∞ then R= supk≥1 Bk

∏k−1
i=1 Ai is a.s. finite and its law is the unique law such that (2.4) holds.

Suppose that M = A satisfies all the requirements of Proposition 1. If E(B+)α <∞, then the
conclusion of Proposition 1 holds with

C+ =
1

E(Aα ln(A))
E
�

(B+ ∨ AR+)α− ((AR)+)α
�

,

C− =
1

E(Aα ln(A))
E
�

(B− ∧ AR−)α− ((AR)−)α
�

,

cf. Theorem 5.2 in Goldie (1991).
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Let, for x ∈ R, (X x
n )n∈N be the Markov chain defined by (2.2) and starting at X0 = x . Convergence

in distribution of a suitably normalized partial sum of these Markov chain

1

an

n
∑

i=1

(X x
i − bn)

to an α-stable distribution was studied by Mirek (2011) (we refer the reader also to Bartkiewicz et
al. (2011) for, specially, the case a random difference equation.)

Recall that an infinitely divisible random variable X onR is called α-stable if, for any positive a there
exists some real c such that, for any real u,

φa(u) = φ(a1/αu)eicu,

and it is called strictly α-stable if, for any positive a, its characteristic function φ satisfies, for any
u ∈R,

φa(u) = φ(a1/αu),

we refer the reader, for instance, to Sato (1999) Chapter 3. The characteristic function of a non-
trivial α-stable random variable X is

E(eiuX ) =











exp
¦

−σα|u|α
�

1− isgn(u)β tan(πα
2
)
�

+ iµu
©

if α ∈]0, 2[\{1}
exp
¦

−σ|u|
�

1+ isgn(u)β 2
π

ln |u|
�

+ iµu
©

if α= 1

exp
n

−σ
2

2
u2+ iµu

o

if α= 2,

where sgn(t) = 1It>0−1It<0, σ > 0, β ∈ [−1,1] and µ ∈R. The parameters σ,β and µ are uniquely
determined by the distribution of X (Samorodnitsky and Taqqu, 1994). An α-stable random variable
with parameters σ,β and µ is denoted by Sα(σ,β ,µ).

Proposition 2 below is essentially Mirek’s result written in the one dimensional case. The parameters
β and σ depend on C+ and C− (defined respectively by (2.6) and (2.7)) and on Π∞, where

Π∞ =
∞
∑

k=1

ψ̄θk
× . . .× ψ̄θ1

, (2.9)

the iid random variables ψ̄θk
, . . . , ψ̄θ1

are those defined in (H1) of Assumption 1.6 in Mirek (2011),
that is, if ψ̄(x) = limt→0 tΨ(x/t) exists for any x ∈ R and ψ̄(x) = M x for any x in the support of
the stationary measure ν , then ψ̄θk

, . . . , ψ̄θ1
are independent copies of M .

Proposition 2. Suppose that all the requirements of Theorem 1.15 of Mirek (2011) are satisfied. Then
there exist real-valued sequences (an) and (bn) such that a−1

n

∑n
i=1(X

x
i − bn) converges in law to an α-

stable random variable. More precisely, denoting by ν the unique solution in law of (2.4), the sequences
(an)n and (bn)n are given by

an = n1/α and bn = 0, for α ∈]0,1[,

an = n and bn =
∫

n2 x/(n2+ x2)ν(d x), for α= 1,

an = n1/α and bn =
∫

xν(d x), for α ∈]1,2[
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an = (n ln(n))1/2 and bn =
∫

xν(d x), for α= 2.

Furthermore the parameters β ,σ and µ of the corresponding stable limit laws are given by

β = (C+− C−)/(C++ C−),

and for α ∈]0,2[\{1}, µ= 0,

σα =
(C++ C−)Γ(2−α)

α(1−α)
cos(

π

2
α)E

�

(Π∞+ 1)α−Πα∞
�

,

for α= 1,

µ= E
�

Π∞ ln(Π∞)− (Π∞+ 1) ln(Π∞+ 1)
�

+

∫ ∞

1

sin r

r2 dr +

∫ 1

0

sin r − r

r2 dr, σ =
π

2
(C++ C−),

and finally, for α= 2, µ= 0 and σ2 = (1+ 2E(Π∞))(C++ C−)/2.

Our task is to get a functional limit theorem for the iterated Lipschitz models fulfilling the assump-
tions of Proposition 2. This follows by combining Proposition 2 and Theorem 1. The limit process
is either a Brownian motion, a stable or a strictly stable Lévy process. Recall that a Lévy process
(X (t))t≥0 is called stable or strictly stable if the distribution of X1 is, respectively, stable or strictly
stable. We refer the reader to Definition 13.2 of Sato (1999). More precisely, we have the following
functional limit theorem.

Theorem 2. Suppose that the random map Ψ is a.s. nondecreasing and Lipschitz with finite a.s.
Lipschitz random positive constant A fulfilling (2.5). Let ν be the unique solution in law of (2.4). Let
(X νn )n∈N be the Markov chain defined by (2.2) and starting at X0 with distribution ν . Suppose that for
0< α≤ 2, the requirements and then the conclusions of Proposition 2 hold i.e.

1

an

n
∑

i=1

(X x
i − bn) =⇒ Sα(σ,β ,µ), in distribution as n tends to infinity, (2.10)

for any x ∈ R, where an and bn are introduced in Proposition 2 and µ = 0 when α 6= 1. Then the
sequence of processes







1

an

[nt]
∑

i=1

(X νi − bn), t ∈ [0,1]







converges in D([0,1]) equipped with the M1-topology to a Lévy process (Z(t))t∈[0,1], where

1. If α ∈]0,2[\{1}, then (Z(t))t≥0 is a strictly stable Lévy process and, for any fixed t ∈ [0,1], the
random variable Z(t) is distributed as t1/αSα(σ,β , 0) or as Sα(t1/ασ,β , 0).

2. If α = 1, then (Z(t))t≥0 is a stable Lévy process and for any fixed t ∈ [0, 1] the random variable
Z(t) is distributed as tS1(σ,β ,µ) + t 2

π
βσ log(t), which is the distribution of S1(tσ,β , tµ).

3. If α= 2, then (Z(t))t≥0 is a centered Brownian motion with variance σ2.

Remark. In the case α= 2, the limit is a continuous process. Since M1-convergence to a continuous
limit implies uniform convergence (Whitt (2002), Chapter 12, Section 4), the ordinary invariance
principle has been established.
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3 Proofs

3.1 Proof of Theorem 1

In order to prove the convergence in D of the sequence of processes (ξn(·))n, we have only to estab-
lish the tightness property since the convergence of the finite-dimensional distributions is assumed
to hold. For this, we need first some notation. Throughout the sequel, for any real numbers y1, y2
and y3,

‖y2− [y1, y3]‖= inf
t∈[y1,y3]

|y2− t|

denotes the distance between y2 and the segment [y1, y3]. For each cadlag function ξ in the space
D([0,1]), let

ω(ξ,δ) = sup
t∈[0,1]

sup{‖ξ(t2)− [ξ(t1),ξ(t3)]‖ : (t −δ)∨ 0≤ t1 < t2 < t3 ≤ (t +δ)∧ 1}.

According to Skorohod (1956) (we refer also to Whitt (2002), Chapter 12 and to Louhichi and Rio
(2011)), we have to prove that,

lim
δ↓0

limsup
n→∞

P(ω(ξn,δ)> ε) = 0, (3.11)

since this last limit provides the tightness property in the Skorohod M1-topology and consequently
proves Theorem 1. The first tool to prove (3.11) is the following lemma, which will allow us to
control M∗n = sup0≤n1<n2<n3≤n M(n1, n2, n3) in the case of associated sequences, where for n1, n2
and n3 natural integers, M(n1, n2, n3) denotes the distance from Sn2

to the segment [Sn1
, Sn3
], that

is,

M(n1, n2, n3) =

¨

0 if Sn2
∈ [Sn1

, Sn3
]

|Sn1
− Sn2

| ∧ |Sn3
− Sn2

| if Sn2
/∈ [Sn1

, Sn3
].

Lemma 4. Let (X i)i∈Z be a sequence of associated random variables. Then, for any positive ε,

P(M∗n ≥ ε)≤ P
2� max

0≤k≤n
|Sk| ≥ ε/2

�

.

Proof of Lemma 4. We first claim that

M∗n ≤min
�

sup
0≤l≤m≤n

(Sm− Sl), sup
0≤l≤m≤n

(Sl − Sm)
�

. (3.12)

In fact suppose that Sn2
> Sn1

and Sn2
> Sn3

. Clearly either Sn3
≤ Sn1

or Sn3
> Sn1

. In the first case,
M(n1, n2, n3) = Sn2

− Sn1
=min(Sn2

− Sn1
, Sn2
− Sn3

). In the second case M(n1, n2, n3) = Sn2
− Sn3

=
min(Sn2

−Sn3
, Sn2
−Sn1

). In both cases M(n1, n2, n3) is less than the right hand side of (3.12) for all
n1 < n2 < n3. This proves (3.12) when Sn2

> Sn1
and Sn2

> Sn3
. The other cases being similar, they

will be omitted.

Now define
W+

n = sup
0≤l≤m≤n

(Sm− Sl), W−
n = sup

0≤l≤m≤n
(Sl − Sm).
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The association property gives, since W+
n and W−

n are respectively a nondecreasing and a nonin-
creasing function of (X1, . . . , Xn),

P(W+
n ≥ ε, W−

n ≥ ε)≤ P(W
+
n ≥ ε)P(W

−
n ≥ ε). (3.13)

Now

W+
n ≤ 2 max

0≤l≤n
|Sl |, W−

n ≤ 2 max
0≤l≤n

|Sl |. (3.14)

Therefore, collecting (3.12), (4.41) and (3.14), we get that

P(M∗n ≥ ε)≤ P(W
+
n ≥ ε)P(W

−
n ≥ ε)≤ P

2� max
0≤k≤n

|Sk| ≥ ε/2
�

,

which completes the proof of Lemma 4. �
According to Lemma 4, we have to control P

�

max0≤k≤n |Sk| ≥ ε/2
�

. For this we need an Ottaviani
type inequality (cf. Proposition 3 below). The following lemma is the main ingredient to establish
an Ottaviani type inequality for a strictly stationary associated sequence. It is a key tool for bounding
the median of S∗n :=max(0, S1, . . . , Sn).

Lemma 5. Let (X j) j∈Z be a strictly stationary associated sequence of real-valued random variables. For
any positive N, set ZN = S∗

2N −min(0, S2N ). Then, for any u in [0,1[,

QZN
(u)≤Q|X1|(u) + 2

N−1
∑

L=0

Q|S2L |(u(1− u)/2),

recall that, for any real-valued random variable X , QX denotes the quantile function of X , which is the
cadlag inverse of the tail function HX of the random variable X .

Proof of Lemma 5. We prove this lemma by induction on N . Throughout the proof a∨b =max(a, b)
and a+ =max(a, 0). Let x and y be nonnegative reals:

(S∗2N+1 > x + y)⊂ (S2N > x/2)∪ (S2N+1 − S2N > x/2)∪ (S2N ∨ S2N+1 ≤ x , S∗2N+1 > x + y).

Next

(S2N ∨ S2N+1 ≤ x , S∗2N+1 > x + y)⊂ (S∗2N − S+
2N > y)∪ ( max

k∈[2N ,2N+1]
Sk − (S2N ∨ S2N+1)> y).

Now, from the stationarity of the sequence (X i)i , we have that

P( max
k∈[2N ,2N+1]

Sk − (S2N ∨ S2N+1)> y) = P(S∗2N − S+
2N > y)

and
P(S2N > x/2) = P(S2N+1 − S2N > x/2).

Both the above facts imply that

P(S∗2N+1 > x + y)≤ 2P(S2N > x/2) + 2P(S∗2N −max(0, S2N )> y). (3.15)
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We now bound up the second term on right hand in the above inequality. Clearly

(S∗2N − S+
2N > y) = (S∗2N > y)∩ (S∗2N − S2N > y).

Next S∗
2N is a nondecreasing function of (X i)1≤i≤2N and S∗

2N − S2N is a nonincreasing function of
(X i)1≤i≤2N . Hence, by the association property,

P(S∗2N > y and S∗2N − S2N > y)≤ P(S∗2N > y)P(S∗2N − S2N > y).

Consider now the stationary and associated sequence (Yi)i∈Z defined by Yi = −X−i . Set Tn =
Y1+ . . .+ Yn and T ∗n =max(0, T1, . . . , Tn). Then

S∗2N − S2N =max(0,−X2N , . . . ,−X2N − . . .− X1)
Law
= T ∗2N

due to the fact that (Yi)i∈Z is a strictly stationary sequence. Hence, from (3.15) and the above
inequality,

P(S∗2N+1 > x + y)≤ 2P(S2N > x/2) + 2P(S∗2N > y)P(T ∗2N > y). (3.16)

Now, proceeding in the same way for the sequence (Yi) and noticing that the transformation which
turns the sequence (X i)i∈Z into the sequence (Yi)i∈Z is involutive, we get that

P(T ∗2N+1 > x + y)≤ 2P(T2N > x/2) + 2P(T ∗2N > y)P(S∗2N > y). (3.17)

Let
pN (z) = P(T

∗
2N > z) +P(S∗2N > z).

Since Tn has the same distribution as −Sn, adding the two above inequalities, we get that

pN+1(x + y)≤ 2P(|S2N |> x/2) + 4P(S∗2N > y)P(T ∗2N > y)≤ 2P(|S2N |> x/2) + (pN (y))
2. (3.18)

Choosing y = yN = p−1
N (u) and x = xN = 2Q|S2N |(u(1− u)/2) in (3.18) and noting that, for this

choice of (x , y),
pN (yN )≤ u and P(|S2N |> xN/2)≤ u(1− u)/2,

we then infer that
pN+1(xN + yN )≤ u,

which means that p−1
N+1(u)≤ xN + yN . Hence, for any u in ]0, 1[,

p−1
N+1(u)≤ p−1

N (u) + 2Q|S2N |(u(1− u)/2). (3.19)

Proceeding by induction and noting that p0(x) = P(|X1|> x), which ensures that p−1
0 (u)≤Q|X1|(u),

we infer from (3.19) that, for any positive N

p−1
N (u)≤Q|X1|(u) + 2

N−1
∑

L=0

Q|S2L |(u(1− u)/2).

Finally, since T ∗n has the same distribution as S∗n− Sn,

pN (z) = P(S
∗
2N − S2N > z) +P(S∗2N > z)≥ P(max(S∗2N − S2N , S∗2N )> z),

whence QZN
(u)≤ p−1

N (u), which completes the proof of Lemma 5 . �

In order to get an Ottaviani type inequality, we now apply Lemma 5 under the assumptions of
Theorem 1. Our result is the following.
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Proposition 3. Let (X j) j∈Z be a strictly stationary associated sequence of real-valued random variables.
Let ZN be defined as in Lemma 5 and βN = a−1

2N QZN
(1/2). Then for any positive x,

(a) P(S∗2N ≥ x + a2NβN )≤ 2P(S2N ≥ x).

Assume furthermore that, for some α in ]0,2] and some sequence (an)n>0 with the same properties as
in Theorem 1, a−1

n Sn converges in distribution to a finite random variable Yα as n→∞. Then

(b) limsup
N→∞

βN ≤ 2(21/α− 1)−1Q|Yα|((1/8)− 0).

Proof of Proposition 3. To prove (a), we apply inequalities (21) and (22) in Newman (1982), page
365, with λ1 = x , λ2 = x + yN and yN = a2NβN , yielding

P(S∗2N ≥ x + yN )≤ P(S2N ≥ x) +P(S∗2N ≥ x + yN )P(S
∗
2N − S2N > yN ). (3.20)

Next, since S∗
2N − S2N ≤ ZN ,

P(S∗2N − S2N > yN )≤ P(ZN >QZN
(1/2))≤ 1/2,

which together with (3.20), implies (a) of Proposition 3.

We now prove (b). Let x be any continuity point of H|Yα| such that x > Q|Yα|((1/8)− 0). The real
x can be arbitrarily near from Q|Yα|((1/8)− 0), since the set of discontinuities of H|Yα| is countable.
Moreover, there exists some z < 1/8 such that Q|Yα|(z)≤ x . Now, by the assumption of convergence
in distribution,

lim
N→∞

P(a−1
2N |S2N |> x) = H|Yα|(x)≤ z < 1/8.

Hence, there exists some positive integer N0 such that, for any N ≥ N0,

P(a−1
2N |S2N |> x)≤ 1/8.

Thus, for N ≥ N0,
Qa−1

2N |S2N |(1/8) = a−1
2N Q|S2N |(1/8)≤ x .

Since x can be arbitrarily near from Q|Yα|((1/8)− 0), it ensures that

limsup
N→∞

a−1
2N Q|S2N |(1/8)≤Q|Yα|((1/8)− 0).

Hence, by the Toeplitz lemma,

limsup
N→∞

�
N−1
∑

L=0

a2L

�−1 N−1
∑

L=0

Q|S2L |(1/8)≤Q|Yα|((1/8)− 0). (3.21)

To complete the proof, we will need the following elementary lemma.

Lemma 6. Let (an)n>0 be a sequence of positive reals regularly varying with index 1/α. Then

lim sup
N→∞

a−1
2N

N−1
∑

L=0

a2L ≤ (21/α− 1)−1.
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Proof of Lemma 6. We have, since the sequence (an) is regularly varying with index 1/α:

lim
L→∞

a2L−1

a2L
= 2−1/α.

We deduce that for any 1> β > 2−1/α there exists a positive integer L0 such that,

∀ L > L0,
a2L−1

a2L
≤ β .

Let k ≥ L0. Clearly,
a2k

a2N
=

N
∏

L=k+1

a2L−1

a2L
≤ βN−k.

Consequently,
N−1
∑

k=L0

a2k

a2N
≤

N−1
∑

k=L0

βN−k ≤
β

1− β
.

Hence,

lim sup
N→∞

N−1
∑

L=0

a2L

a2N
≤ limsup

N→∞

L0−1
∑

L=0

a2L

a2N
+ lim sup

N→∞

N−1
∑

L=L0

a2L

a2N
.

We then conclude, since limN→∞ aN = 0, that

limsup
N→∞

N−1
∑

L=0

a2L

a2N
≤

β

1− β
,

for any 2−1/α < β < 1. We conclude the proof of Lemma 6 from the last limit letting β tending to
2−1/α. �

Now, starting from (3.21) and applying Lemmas 6 and 5, we get (b), which completes the proof of
Proposition 3. �

End of the Proof of (3.11). We have now all the ingredients for the proof of (3.11). For a fixed n,
let us consider the stationary sequence (X ′i )i defined by X ′i = X i − bn. Set S′m = X ′1 + X ′2 + . . .+ X ′m
and S′n(t) = S′[nt]. Then ξn(t) = a−1

n S′[nt]. Let k ≥ 3 be any integer and δk = 1/k. It is enough to
prove that, for any positive ε,

lim
k→∞

lim sup
n→∞

P(ω(ξn,δk)> ε) = 0. (3.22)

We start by noting that

P(w(ξn,δk)> ε) ≤
k−3
∑

j=0

P
�

sup
j/k≤t1<t2<t3≤( j+3)/k

‖S′n(t2)− [S′n(t1), S′n(t3)]‖> anε
�

≤
k−3
∑

j=0

P
�

sup
[ jn/k]≤n1<n2<n3≤[( j+3)n/k]

M ′(n1, n2, n3)> anε
�

,
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where M ′(n1, n2, n3) is defined from the random variables S′m exactly as M(n1, n2, n3) from the
random variables Sm just before the proof of Lemma 4. Next, from the stationarity of the sequence
(X ′i )i>0,

sup
[ jn/k]≤n1<n2<n3≤[( j+3)n/k]

M ′(n1, n2, n3)
Law
= sup

0≤n1<n2<n3≤[( j+3)n/k]−[ jn/k]
M ′(n1, n2, n3),

which ensures that

P(w(ξn,δk)> ε)≤ (k− 2)P
�

sup
0≤n1<n2<n3≤1+[3n/k]

M ′(n1, n2, n3)> anε
�

.

Hence, by Lemma 4 applied to the sequence (X ′i )i>0,

P(w(ξn,δk)> ε)≤ (k− 2)P2� max
0≤ j≤1+[3n/k]

|S′j|> anε/2
�

. (3.23)

For n≥ k, let the positive integer N be defined by 2N−1 ≤ [3n/k]< 2N . Set

Z ′L =max(0, S′1, . . . , S′2L )−min(0, S′2L ) and Z ′′L =max(0,−S′1, . . . ,−S′2L )−min(0,−S′2L ).

Applying now (a) of Proposition 3 to the sequences (X ′i )i and (−X ′i )i , we get that

P
�

max
0≤ j≤1+[3n/k]

|S′j|> anε/2
�

≤ 2P
�

|S′2N | ≥ anε/2−max(QZ ′N
(1/2),QZ ′′N

(1/2))
�

. (3.24)

We now prove that, for k large enough, under the assumptions of Theorem 1

AN :=max(QZ ′N
(1/2),QZ ′′N

(1/2))≤ anε/4. (3.25)

By Lemma 5 applied successively to the sequences (X ′i ) and (−X ′i ),

AN ≤Q|X ′1|(1/2) + 2
N−1
∑

L=0

Q|S′
2L |(1/8). (3.26)

Now let S̃k = Sk − kbk, then
|S′2L | ≤ |S̃2L |+ 2L|bn− b2L |.

Set log2(u) = log(u)/ log(2). Let M = [log2(n)]. Then

|bn− b2L | ≤
M−1
∑

K=L

|b2K+1 − b2K |+ |bn− b2M | ≤ C(M − L+ 1)

Therefrom
|S′2L | ≤ |S̃2L |+ C2L(log2(n)− L+ 1),

Moreover Q|X ′1|(1/2) ≤ Q|X1|(1/2) + |bn|. Consequently, starting from (3.26) and using the above
upper bounds,

AN ≤Q|X1|(1/2) + 2
N−1
∑

L=0

Q|S̃2L |(1/8) + |bn|+ 2C2N (log2(n) + 1− N) + 4C .
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Now, using the convergence in distribution of a−1
2L S̃2L to Yα := Yα(1) and proceeding as in the proof

of (b) of Proposition 3, we get that

lim sup
N→∞

a−1
2N

�

Q|X1|(1/2) + 2
N−1
∑

L=0

Q|S̃2L |(1/8)
�

≤ 2Q|Yα|((1/8)− 0),

which ensures that there exists some positive constant c such that, for any n and any k ≤ n,

AN ≤ ca2N + C log2(2n) + 2C2N log2(k) + 4C .

(note that |bn| ≤ C log2(2n) + |b1| ). From the above inequality and the assumption that
lim infn(an/n)> 0 if C 6= 0, for any positive ε there exists some positive integer k0 > 6 such that, for
k ≥ k0 and n≥ k, (3.25) holds true.

Next, from (3.25), for k ≥ k0 and n large enough, since the sequence (an)n>0 is regularly varying
with index 1/α and k2N ≤ 6n,

P
�

max
0≤ j≤1+[3n/k]

|S′j|> anε/2
�

≤ 2P(|S′2N |> anε/4)≤ 2P(|S′2N |> a2N (k/6)1/αε/6).

Collecting the above inequality and (3.23), we get that, for k ≥ k0 and n≥ k,

P(w(ξn,δk)> ε)≤ 4kP2�a−1
2N |S′2N |> (k/6)1/αε/6

�

. (3.27)

Next
|S′2N | ≤ |S̃2N |+ 2N |bn− b2N | ≤ |S̃2N |+ C2N log2(k),

since n2−N ≤ k/3. Now, under the assumptions of Theorem 1, there exists some positive integer
k1(≥ k0) such that, for k ≥ k1 and n large enough, C2N log2(k) ≤ a2N (k/6)1/αε/12 (recall that
C = 0 or lim infn(an/n)> 0). Then, from (3.27),

P(w(ξn,δk)> ε)≤ 4kP2�a−1
2N |S̃2N |> (k/6)1/αε/12

�

. (3.28)

Now a−1
2N S̃2N converges in distribution to Yα, and therefrom, for k ≥ k1,

limsup
n→∞

P
�

a−1
2N |S̃2N |> (k/6)1/αε/12

�

≤ P(|Yα| ≥ (k/6)1/αε/12),

which, combined with (3.28), ensures that

limsup
n→∞

P(w(ξn,δk)> ε)≤ 4kP2(|Yα| ≥ (k/6)1/αε/12). (3.29)

The convergence result (3.22) follows then from (3.29) and the tail condition (1.1). Theorem 1 is
then proved. �

3.2 Proof of Proposition 2

Define for v ∈ {−1,1}, hv(x) = E
�

exp
�

i x vΠ∞
��

, where Π∞ is the random variable defined by
(2.9). Let ϕα be the characteristic function of the α-stable limit law of Proposition 2. Our purpose is
to give the expressions of the parameters of this α-stable limit law using Theorem 1.15 and its proof
in Mirek (2011).
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1. If α ∈]0, 1[, then ϕα(uv) = exp(uαCα(v)), for any u> 0 and v ∈ {−1,1}. The constants Cα(v)
are given by (6.39) of Mirek (2011), Cα(v) =

∫

(eivx − 1)hv(x)Λ(d x), where Λ is the unique
Radon measure on R \ {0} for which,

lim
y→0

1

|y|α

∫ +∞

−∞
f (y x)ν(d x) =

∫

f (x)Λ(d x),

for any bounded and continuous function f that vanishes in a neighborhood of 0, (cf. Theorem
4.3 in Mirek (2011)). In particular, Λ satisfies the following polar decomposition (cf. Equation
(4.5) in Mirek (2011))

∫

f (x)Λ(d x) = C+
∫ ∞

0

f (r)
dr

rα+1 + C−
∫ ∞

0

f (−r)
dr

rα+1 ,

for functions f as above. Denoting by Re(z) and Im(z) respectively the real and the imaginary
parts of a complex number z, we infer that

Re(Cα(1)) = (C++ C−)

∫ ∞

0

Re((ei x − 1)h1(x))
d x

xα+1

= −
(C++ C−)
α(1−α)

E
�

(Π∞+ 1)α−Πα∞
�

Γ(2−α) cos(
π

2
α).

The last bound follows, since for α ∈]0,2[\{1},
∫ ∞

0

1− cos ax

x1+α d x =
aα

α

∫ ∞

0

sin x

xα
d x

∫ ∞

0

sin x

xα
d x =

Γ(2−α)
1−α

cos(
π

2
α).

Similarly,

Im(Cα(1)) = (C+− C−)

∫ ∞

0

Im((ei x − 1)h1(x))
d x

xα+1

= (C+− C−)
1

α
E
�

(Π∞+ 1)α−Πα∞
�

Γ(1−α) sin(
π

2
α).

The two last equalities together with the equation Cα(1) =−σα+ iσαβ tan(πα/2), give

Im(Cα(1)) = σ
αβ tan(πα/2), Re(Cα(1)) =−σα.

Hence, β tan(πα/2) =− Im(Cα(1))
Re(Cα(1))

. This proves the result, since Γ(2−α) = (1−α)Γ(1−α).

2. If α ∈]1, 2[, then ϕα(uv) = exp(uαCα(v)), for any u> 0 and v ∈ {−1,1}. The constants Cα(v)
are given by (6.43) of Mirek (2011), Cα(v) =

∫ �

(eivx − 1)hv(x)− ivx
�

Λ(d x). As before, we
obtain,

Re(Cα(1)) = (C++ C−)

∫ ∞

0

Re((ei x − 1)h1(x))
d x

xα+1

= −
C++ C−

α(1−α)
E
�

(Π∞+ 1)α−Πα∞
�

Γ(2−α) cos(
π

2
α),
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and,

Im(Cα(1)) = (C+− C−)

∫ ∞

0

Im((ei x − 1)h1(x)− i x)
d x

xα+1 .

We deduce, since for γ ∈]2, 3[
∫ ∞

0

sin x − x

xγ
d x =

1

(γ− 1)(2− γ)

∫ ∞

0

sin x

xγ−2 d x =−
Γ(3− γ)

(γ− 1)(2− γ)
cos(

π

2
γ),

that

Im(Cα(1)) =
C+− C−

α(1−α)
E
�

(Π∞+ 1)α−Πα∞
�

Γ(2−α) sin(
π

2
α).

Noting that Cα(1) =−σα+ iσαβ tan(πα/2), we have then

σα =−Re(Cα(1)), β tan(πα/2) =−
Im(Cα(1))
Re(Cα(1))

,

which gives the expressions of the parameters β and σ.

3. If α = 1, then ϕα(uv) = exp(uC1(v) + iuvτ(u)) for any u > 0 and v ∈ {−1, 1} where C1(v) is

given by (6.41) of Mirek (2011), C1(v) =
∫

�

(eivx − 1)hv(x)− i x v
1+x2

�

Λ(d x), and

τ(u) =

∫

� x

1+ u2 x2 −
x

1+ x2

�

Λ(d x)

= (C+− C−)

∫ ∞

0

� x

1+ u2 x2 −
x

1+ x2

� d x

x2 =−(C
+− C−) ln(u).

We have, since
∫∞

0
sin x

x d x = π
2

,

Re(C1(1)) = (C
++ C−)

∫ ∞

0

Re((ei x − 1)h1(x))
d x

x2 =−
π

2
(C++ C−)

and

Im(C1(1)) +τ(u) = (C+− C−)

∫ ∞

0

�

Im((ei x − 1)h1(x))−
x

1+ x2

� d x

x2 +τ(u)

=

∫ ∞

0

�

E(sin(Π∞+ 1)x)−E(sin(Π∞x))−
x

1+ x2

� d x

x2 +τ(u).

Now, recall that, for any a > 0
∫ ∞

0

(sin(ax)− ax Ix∈]0,1])
d x

x2 =−a ln(a) + ca
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with c =
∫∞

1
r−2sin rdr +

∫ 1

0
r−2(sin r − r)dr (Sato (1999), page 84). Hence,

∫ ∞

0

�

E sin((Π∞+ 1)x)−E sin(Π∞x)−
x

1+ x2

� d x

x2

= E(Π∞ ln(Π∞)− (Π∞+ 1) ln(Π∞+ 1)) + c+

∫ ∞

0

�

x Ix∈]0,1]−
x

1+ x2

� d x

x2

= E(Π∞ ln(Π∞)− (Π∞+ 1) ln(Π∞+ 1)) + c.

This completes the proof in the case α= 1, since

σ =−Re(C1(1)), uIm(C1(1)) + uτ(u) =−σuβ
2

π
ln(u) +µu.

4. If α= 2, then ϕ2(uv) = exp(u2C2(v)), for any positive u and v ∈ {−1, 1}, where C2(v) is given
by (6.45) of Mirek (2011), that is C2(v) =−(1+ 2E(Π∞))(C++ C−)/4.

�

3.3 Proof of Theorem 2

In order to prove Theorem 2, we shall apply Theorem 1. Since the random mapΨ is a.s. nondecreas-
ing, Lemma 1 and Proposition 5 of the appendix allow to deduce that the Markov chain (X νn )n≥0
is homogeneous and associated. We can also check that (X νn )n≥0 is strictly stationary. According to
Theorem 1, we have then to check first the convergence of the finite-dimensional distributions. For
this, we shall use the following proposition.

Proposition 4. Let (X x
n )n∈N be the Markov chain defined by (2.2) and starting at x. Suppose that the

random map Ψ is Lipschitz with finite a.s. Lipschitz random positive constant A fulfilling (2.5). Let ν
be the unique solution in law of (2.4). Let, for 0 < α ≤ 2, (an) and (bn) be as defined in Theorem 1.
Suppose moreover that limn→∞ bn/an = 0 and that,

lim
n→∞

∫

E

 

f

 

1

an

n
∑

i=1

(X x
i − bn)

!!

ν(d x) = E( f (Z)), (3.30)

for any bounded and Lipschitz function f and some random variable Z.

1. Suppose that lim infn→∞
an
n is either 0 or∞ and

C = 0 if lim inf
n→∞

an

n
= 0, (3.31)

recall that C := sup{ |bk − bn| : 0 < n ≤ k ≤ 2n < ∞}. Let (Z(t))t≥0 be a process with
stationary and independent increments such that for any fixed t, the random variable Z(t) is
distributed as t1/αZ. Define, for any t ∈ [0,1], S x

n (t) =
∑[nt]

i=1 X x
i . Then the finite-dimensional

distributions of the process {a−1
n (S

x
n (t)− [nt]bn), t ∈ [0,1]} converge in distribution to those of

the process (Z(t))0≤t≤1.
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2. Suppose now that,

lim
n→∞

an

n
=: a ∈]0,∞[, lim

n→∞
(b[nt]− bn) =: Ct , ∀ t ∈]0,1]. (3.32)

Let (Z(t))t≥0 be a process with stationary and independent increments such that for any fixed t,

the random variable Z(t) is distributed as t
�

Z + Ct

a

�

. Then the finite-dimensional distributions

of the process {a−1
n (S

x
n (t)− [nt]bn), t ∈ [0, 1]} converge in distribution to those of the process

(Z(t))0≤t≤1.

We prove Proposition 4 in the subsection below and we continue the proof of Theorem 2. Let us
note first that the convergence (3.30) follows by integrating over ν the limit convergence (2.10)
and by using the dominated convergence theorem. Our purpose now is to check that the sequences
(an) and (bn) of Theorem 2 satisfy all the requirements of Theorem 1 and Proposition 4. Clearly,
the sequence (an) is nondecreasing, tending to infinity with n and regularly varying with index 1/α
and limn→∞ bn/an = 0. If α ∈]0,2] \ {1}, then lim infn→∞

an
n is either 0 or ∞ and bn is either 0 or

∫

xν(d x), consequently C = 0 and Condition (3.31) is then satisfied. According to Proposition 2,
the first conclusion of Proposition 4 is then satisfied with Z(t)∼ t1/αSα(σ,β , 0) which is distributed
as Sα(t1/ασ,β , 0), by property 1.2.3 of Samorodnitsky and Taqqu (1994). It remains then to check
(3.32) i.e. the case when α= 1. For this we need the following lemma.

Lemma 7. Let ν be some probability law on R satisfying sup{tν(|x |> t) : t > 0}= C0 <∞. Let

bn =

∫

R

n2 x

x2+ n2 dν(x).

Then the sequence (bn)n satisfies the condition

(a) sup{|bk − bn| : n≤ k ≤ 2n}<∞.

Assume furthermore that, for some nonnegative real constants C+ and C−,

lim
t→+∞

tν(x > t) = C+ and lim
t→+∞

tν(x <−t) = C−.

Then, for any u in ]0,1],

(b) lim
n→∞
(b[nu]− bn) = (C

+− C−) ln(u).

We shall prove this lemma in Subsection 4.2 below and we continue the proof of Theorem 2. Using
Proposition 1 we deduce that the requirements of Lemma 7 are satisfied by the measure ν which is
the unique solution of (2.4). Hence the limits (3.32) are satisfied with

an = n, a = 1, Ct = (C
+− C−) ln(t), t ∈]0, 1].

From this we get that Ct = βσ
2
π

ln(t) for any positive t. According to Proposition 2, the second con-
clusion of Proposition 4 holds with Z(t)∼ t(S1(σ,β ,µ)+ Ct), which is distributed as S1(tσ,β , tµ),
by properties 1.2.3 and 1.2.2 of Samorodnitsky and Taqqu (1994). To finish the proof of Theorem
2, we have to check, according to Theorem 1, that

lim
x→∞

xα/2P(|Z | ≥ x) = 0, (3.33)
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for a random variable Z distributed as Sα(σ,β ,µ). When α ∈]0,2[, Property 1.2.15 page 16 of
Samorodnitsky and Taqqu (1994) shows that

lim
x→∞

xαP(Z > x) = Cα
1+ β

2
σα, lim

x→∞
xαP(Z <−x) = Cα

1− β
2
σα,

with

Cα =

�
∫ ∞

0

x−α sin(x)d x

�−1

=
2

π
1Iα=1+

1−α
Γ(2−α) cos(πα

2
)
1Iα6=1.

Those limits prove the tail condition (3.33) when α ∈]0,2[. When α = 2, (3.33) is satisfied since
S2(σ,β , 0) is a Gaussian random variable. Hence (3.33) holds true which implies (1.1). The proof
of Theorem 2 is then complete by using Theorem 1. �

4 Proofs of some auxiliary results

4.1 Proof of Proposition 4

We first need the following technical lemma.

Lemma 8. Let (X x
n )n∈N be an homogenous Markov chain on R starting at x. Let S x

n (t) =
∑[nt]

i=1 X x
i for

t ∈ [0,1]. Suppose that:

1. There exists a probability measure νx such that, for any 0 ≤ s < t ≤ 1 and for any continuous
Lipschitz function g with values in [0,1] one has, for some real sequences (an) strictly positive
and (bn),

lim
n→∞

E

�

�

�

�

hn(X
x
[ns])−

∫

hn(y)νx(d y)

�

�

�

�

= 0, (4.34)

where

hn(y) = hn(y, s, t) = E



g



a−1
n

[nt]−[ns]
∑

l=1

(X y
l − bn)







 .

2. For any 0< s < t ≤ 1

lim
n→∞

[nt]−[ns]
∑

l=1+[n(t−s)]

∫

P
�

a−1
n

�

�X y
l − bn

�

�≥ ε
�

νx(d y) = 0. (4.35)

3. For any bounded and Lipschitz function f and any fixed t ∈ [0,1],

lim
n→∞

∫

E



 f



a−1
n

[nt]
∑

i=1

(X y
i − bn)







νx(d y) = E( f (Z(t))), (4.36)

for some process (Z(t))0≤t≤1 with stationary and independent increments.

Then the finite-dimensional distributions of the process {a−1
n (S

x
n (t)− [nt]bn), t ∈ [0,1]} converge in

distribution to those of the process (Z(t))0≤t≤1.
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Proof of Lemma 8. Let 0 = t−1 < t0 < . . . < tm < tm+1 = 1 be fixed. Our aim is to check that the
(m+ 1)-tuple a−1

n (S
x
n (t0)− [nt0]bn, S x

n (t1)− S x
n (t0)− ([nt1]− [nt0])bn, . . . , S x

n (tm)− S x
n (tm−1)−

([ntm]− [ntm−1])bn) converges in distribution to (Z(t0), . . . , Z(tm)− Z(tm−1)). We claim that it
suffices to prove this result for m = 1. For this, let f and g be two continuous and Lipschitz
functions with values in [0,1]. Fix 0< s < t < 1. We have, using the Markov property,

An := E
�

f
�

a−1
n (S

x
n (s)− [ns]bn)

�

g
�

a−1
n (S

x
n (t)− S x

n (s)− ([nt]− [ns])bn)
��

= E
�

f
�

a−1
n (S

x
n (s)− [ns]bn)

�

hn(X
x
[ns])

�

, (4.37)

where

hn(y) = E






g






a−1

n

[nt]
∑

i=[ns]+1

(X x
i − bn)







�

�

�

�

�

X x
[ns] = y






.

The homogeneity property of the chain gives

hn(y) = E



g



a−1
n

[nt]−[ns]
∑

l=1

(X y
l − bn)







 . (4.38)

Recall that An is defined by (4.37), whence
�

�

�An−E
�

f
�

a−1
n (S

x
n (s)− [ns]bn)

��

E(g(Z(t − s)))
�

�

�

≤ E
�

�

�hn(X
x
[ns])−E(g(Z(t − s)))

�

�

� . (4.39)

We first control the right hand side of (4.39):

E

�

�

�hn(X
x
[ns])−E(g(Z(t − s)))

�

�

�

≤ E
�

�

�

�

hn(X
x
[ns])−

∫

hn(y)νx(d y)

�

�

�

�

+

�

�

�

�

∫

�

hn(y)−E(g(Z(t − s)))
�

νx(d y)

�

�

�

�

. (4.40)

Our task is to control, using (4.35) and (4.36), the second term in the right hand side of (4.40). We
have, for any positive ε, letting Lip(g) = supx∈R,y∈R∗ |(g(x + y)− g(x))/y|,

�

�

�

�

�

E



g



a−1
n

[nt]−[ns]
∑

l=1

(X y
l − bn)







−E



g



a−1
n

[n(t−s)]
∑

l=1

(X y
l − bn)









�

�

�

�

�

≤ εLip(g) +P






a−1

n

�

�

�

�

�

�

[nt]−[ns]
∑

l=1+[n(t−s)]

(X y
l − bn)

�

�

�

�

�

�

≥ ε







≤ εLip(g) +
[nt]−[ns]
∑

l=1+[n(t−s)]

P
�

a−1
n

�

�X y
l − bn

�

�≥ ε/2
�

, (4.41)
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since 0≤ [nt]− [ns]− [n(t − s)]≤ 2. Clearly
�

�

�

�

∫

�

hn(y)−E(g(Z(t − s)))
�

νx(d y)

�

�

�

�

≤

�

�

�

�

�

∫



hn(y)−E



g



a−1
n

[n(t−s)]
∑

l=1

(X y
l − bn)











νx(d y)

�

�

�

�

�

+

�

�

�

�

�

∫

E



g



a−1
n

[n(t−s)]
∑

l=1

(X y
l − bn)







νx(d y)−E(g(Z(t − s)))

�

�

�

�

�

.

We now get, integrating (4.41) over νx and taking in mind the definition of hn,
�

�

�

�

∫

�

hn(y)−E(g(Z(t − s)))
�

νx(d y)

�

�

�

�

≤ εLip(g) +
[nt]−[ns]
∑

l=1+[n(t−s)]

∫

P
�

a−1
n

�

�X y
l − bn

�

�≥ ε/2
�

νx(d y)

+

�

�

�

�

�

∫

E



g



a−1
n

[n(t−s)]
∑

l=1

(X y
l − bn)







νx(d y)−E(g(Z(t − s)))

�

�

�

�

�

.

The last bound together with (4.35) and (4.36) gives then

lim
n→∞

�

�

�

�

∫

�

hn(y)−E(g(Z(t − s)))
�

νx(d y)

�

�

�

�

= 0.

Now this last limit, (4.40) and (4.34) yield

lim
n→∞

E

�

�

�hn(X
x
[ns])−E(g(Z(t − s)))

�

�

�= 0, (4.42)

for any 0 < s < t < 1. We get, letting s = 0 in (4.34) and using (4.36), that, for any t ∈]0,1] (the
function g being arbitrary),

lim
n→∞

E
�

f
�

a−1
n (S

x
n (t)− [nt]bn)

��

= E( f (Z(t))).

Consequently

lim
n→∞

E
�

f
�

a−1
n (S

x
n (s)− [ns]bn)

��

E(g(Z(t − s))) = E( f (Z(s)))E(g(Z(t − s)))

= E( f (Z(s))g(Z(t)− Z(s))), (4.43)

since the process (Z(t))t≥0 is assumed to be with stationary and independent increments. We finally
conclude, combining (4.39), (4.43) and (4.42), that

lim
n→∞

An = E( f (Z(s))g(Z(t)− Z(s))).

The proof of Lemma 8 is then complete. �
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End of the proof of Proposition 4. Let ν be the unique solution in law of (2.4). Our pur-
pose is to check all the requirements of Lemma 8 from that of Proposition 4 with νx = ν .

Proof of (4.34). Recall that

hn(y) = E



g



a−1
n

[nt]−[ns]
∑

l=1

(X y
l − bn)







 ,

where g is a Lipschitz function with values in [0, 1]. Recall also that X x
n = Wn(x) where Wn is

defined by (2.3). Since for each n the random map Ψn is a.s. An-Lipschitz,

|Wn(x)−Wn(y)| ≤ A1 . . . An|x − y|.

Hence, for any reals y , z and any positive M ,

�

�hn(y)− hn(z)
�

�≤ E

 

1∧ Lip (g)
1

an

n
∑

l=1

|Wl(y)−Wl(z)|

!

≤ E

 

1∧ Lip (g)
1

an
|y − z|

n
∑

l=1

A1 . . . Al

!

≤ E

 

1∧ Lip (g)
M

an

n
∑

l=1

A1 . . . Al

!

+ 1I|y−z|≥M . (4.44)

Now

E

�

�

�

�

hn(X
x
[ns])−

∫

hn(y)ν(d y)

�

�

�

�

=

∫ �

�

�

�

hn(z)−
∫

hn(y)ν(d y)

�

�

�

�

PX x
[ns]
(dz)

≤
∫ ∫

�

�hn(z)− hn(y)
�

�ν(d y)PX x
[ns]
(dz).

The last bound together with (4.44) gives, for any M > 0,

E

�

�

�

�

hn(X
x
[ns])−

∫

hn(y)ν(d y)

�

�

�

�

≤ E

 

1∧ Lip (g)
M

an

n
∑

l=1

A1 . . . Al

!

+

∫

P(|X x
[ns]− y| ≥ M)ν(d y).

We deduce from the first two conditions in (2.5) that
∑

l≥1 A1 . . . Al < ∞ a.s. Since an tends to
infinity with n, it follows that

lim
n→∞

E

 

1∧ Lip (g)
M

an

n
∑

l=1

A1 . . . Al

!

= 0.

Now we use the conclusion of Lemma 2 that guarantees the convergence in law of X x
n for any x to

conclude that,

lim
M→∞

lim
n→∞

∫

P(|X x
[ns]− y| ≥ M)ν(d y) = 0.

The two last limits prove (4.34).
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Proof of (4.35). Recall that ν is the unique solution in law of (2.4). We have, since for each
n X νn is distributed according to ν ,

[nt]−[ns]
∑

l=1+[n(t−s)]

∫

P
�

a−1
n

�

�X y
l − bn

�

�≥ ε
�

ν(d y)≤ 2P
�

a−1
n

�

�X ν1 − bn

�

�≥ ε
�

,

which tends to 0 as n goes to infinity since limn→∞ bn/an = 0 and limn→∞ an =∞.

Proof of (4.36) assuming (3.30). Clearly,

E



 f



a−1
n

[nt]
∑

i=1

(X y
i − bn)







= E



 f





a[nt]

an
a−1
[nt]

[nt]
∑

i=1

(X y
i − b[nt]) +

[nt]
an
(b[nt]− bn)







 . (4.45)

We shall first control the term [nt]
an
(b[nt] − bn) by using Condition (3.31). We have, for any positive

integer L,

[nt]
an
|b[nt]− bn| ≤

n

an

L−1
∑

i=0

|b2i+1[nt]− b2i[nt]|+
n

an
|b2L[nt]− bn|.

Choose L = Ln =
h

log2

�

n
[nt]

�i

so that 2L[nt]≤ n< 2L+1[nt]. Hence

|b2L[nt]− bn| ≤ sup{|bk − bn|, 0< n≤ k ≤ 2n<∞}= C .

Clearly, for any 0≤ i ≤ L− 1,
|b2i+1[nt]− b2i[nt]| ≤ C .

Consequently,
[nt]
an
|b[nt]− bn| ≤

n

an
(Ln+ 1)C ,

which converges to 0 as n tends to infinity by (3.31), since limsupn→∞ Ln ≤ log2(1/t). Hence the
left hand side of (4.45) converges, under the initial distribution ν , to E( f (t1/αZ)) by (3.30), since
an is regularly varying with index 1/α. This proves (4.36) with Z(t) distributed as t1/αZ for any
t ∈ [0, 1]. We suppose now that Condition (3.32), instead of (3.31), holds. We deduce first that the
sequence (an) is regularly varying with index 1 and we complete the proof by combining (4.45),
(3.30) and (3.32) as before.

Hence the requirements of Lemma 8 are fulfilled, which implies Proposition 4. �

4.2 Proof of Lemma 7

We first prove (a). By definition

bk − bn =

∫

R

(k2− n2)x3

(x2+ n2)(x2+ k2)
dν(x),
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whence

|bk − bn| ≤
∫

R

k2|x |3

(x2+ n2)(x2+ k2)
dν(x)≤

1

2n

∫

R

k2 x2

x2+ k2 dν(x),

since x2+ n2 ≥ 2n|x |. Set H(t) = ν(|x |> t). Noting that

k2 x2

x2+ k2 =

∫ |x |

0

2t

(1+ (t/k)2)2
d t

and applying the Fubini-Tonelli Theorem, we get that

1

2n

∫

R

k2 x2

x2+ k2 dν(x) =
1

n

∫ ∞

0

tH(t)
(1+ (t/k)2)2

d t ≤
C0k

n

∫ ∞

0

1

(1+ y2)2
d y,

using the change of variables y = t/k and the assumption that tH(t) ≤ C0. Since (k/n) ≤ 2, it
implies (a).

To prove (b), we separate the integral on R defining bn in two parts. So, let

b+n =

∫

R+

n2 x

x2+ n2 dν(x) and b−n =

∫

R−

−n2 x

x2+ n2 dν(x).

With these definitions, bn = b+n − b−n . Consequently we have to prove that

lim
n→∞
(b+[nu]− b+n ) = C+ ln(u) and lim

n→∞
(b−[nu]− b−n ) = C− ln(u). (4.46)

Since the proof of these two assertions uses exactly the same arguments, we will only prove the first
part of (4.46). Let H+(t) = ν(x > t). Set k = [nu]. With these notations, exactly as in the proof of
(a),

b+k − b+n =

∫ ∞

0

x3(k2− n2)
(x2+ n2)(x2+ k2)

dν(x).

Set

ϕn(x) =
x3(k2− n2)

(x2+ n2)(x2+ k2)
.

Since ϕ(0) = 0, exactly as in the proof of (a)

b+k − b+n =

∫ ∞

0

ϕ′n(t)H+(t)d t.

Next tH+(t) = C++ ε(t), for some function ε converging to 0 as t tends to∞. It follows that

b+k − b+n = C+

∫ ∞

0

ϕ′n(t)
d t

t
+ In with In =

∫ ∞

0

ε(t)ϕ′n(t)
d t

t
.

Some elementary computations show that

�

�

�

ϕ′n(t)
t

�

�

�≤
8t

(1+ (t/n)2)(k2+ t2)
.
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Whence, using the change of variables y = (t/n)2,

|In| ≤ 4

∫ ∞

0

|ε(ny1/2)|
(y + 1)(y + ([nu]/n)2)

d y.

Since ([nu]/n) converges to the positive real u as n tends to∞, the upper bound tends to 0 by the
dominated convergence theorem (note that the function ε is uniformly bounded on R+). It remains
to prove that

lim
n→∞

∫ ∞

0

ϕ′n(t)
d t

t
= ln(u). (4.47)

To prove (4.47) we integrate by parts again (here k = [nu]):
∫ ∞

0

ϕ′n(t)
d t

t
=

∫ ∞

0

ϕn(t)
d t

t2 =

∫ ∞

0

t(k2− n2)
(t2+ n2)(t2+ k2)

d t = ln
�[nu]

n

�

,

which implies (4.47). Hence (4.46) holds true, which implies the second part of Lemma 7. �

5 Appendix: Stochastically monotone Markov chains

Recall that a real-valued Markov chain (Xn)n∈N is stochastically monotone if for any n ∈ N, the
function x 7→ E( f (Xn+1)|Xn = x) is nondecreasing for every fixed nondecreasing real-valued func-
tion f defined on R. The purpose of the proposition below is to study the association property for
stochastically monotone Markov chains.

Proposition 5. If (Xn)n∈N is a real-valued and stochastically monotone Markov chain then, for any
initial distribution, (Xn)n∈N is a sequence of associated random variables.

Proposition 5 is not new. It was stated in Daley (1968) without proof and proved for monotone
Markov processes in Liggett (1985) (cf. Corollary 2.21 there). We give its proof for the sake of
clarity. For this, we need first the following lemma.

Lemma 9. Let (Xn)n∈N be a real-valued and stochastically monotone Markov chain then, for any
n ∈ N and k ∈ N∗, the function x 7→ E( f (Xn+1, . . . , Xn+k)|Xn = x) is nondecreasing for every fixed
nondecreasing real-valued function f defined on Rk.

Proof of Lemma 9. The proof is done by induction on k. For k = 1 the property follows from the
definition of stochastically monotone Markov chain. Now, let f be a nondecreasing function on Rk.
Define,

hn(y) = E( f (Xn+1, . . . , Xn+k)|Xn+1 = y) = E( f (y, Xn+2, . . . , Xn+k)|Xn+1 = y).

By the induction assumption, the function hn is nondecreasing . From this we conclude, since
the Markov chain is stochastically monotone, that the function x 7→ E(hn(Xn+1)|Xn = x) is also
nondecreasing. This fact completes the proof of Lemma 9 since E( f (Xn+1, . . . , Xn+k)|Xn = x) =
E(hn(Xn+1)|Xn = x). �

From Lemma 9, we now derive Proposition 5.
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Proof of Proposition 5. Let (Xn)n∈N be a real-valued and a stochastically monotone Markov chain
with initial distribution µ. Denote by Covµ and Eµ, respectively, the covariance and the expectation
when the initial distribution is µ. Our purpose is to check that, for any n ∈N,

Covµ( f (X0, . . . , Xn), g(X0, . . . , Xn))≥ 0,

for any coordinatewise nondecreasing real-valued functions f and g defined on Rn+1, whenever
this covariance is well defined. The proof is done by induction on n. The induction property holds
for n= 0 since a real-valued random variable is associated. Now we have,

Eµ
�

f (X0, . . . , Xn)g(X0, . . . , Xn)
�

= Eµ
�

E
�

f (X0, . . . , Xn)g(X0, . . . , Xn)|X0
��

= Eµ(hn(X0)), (5.48)

where hn(x) = E
�

f (x , X1, . . . , Xn)g(x , X1, . . . , Xn)|X0 = x
�

, which can be written as hn(x) =
Eµ1

�

h̃(X1)
�

, where µ1 is the distribution of X1 given X0 = x , and h̃ is defined by

h̃(y) = E( f (x , y, X2, . . . , Xn)g(x , y, X2, . . . , Xn)|X1 = y).

The induction assumption gives,

h̃(y)≥ E( f (x , y, X2, . . . , Xn)|X1 = y)E(g(x , y, X2, . . . , Xn)|X1 = y). (5.49)

In order to control the right-hand side of the last inequality we note, taking into account Lemma 9,
that the two functions

y 7→ E( f (x , y, X2, . . . , Xn)|X1 = y), y 7→ E(g(x , y, X2, . . . , Xn)|X1 = y)

are both nondecreasing. We then obtain, taking the expectation over µ1 in Inequality (5.49) and
using again the induction assumption,

hn(x)≥ E
�

f (x , X1, . . . , Xn)|X0 = x
�

E
�

g(x , X1, . . . , Xn)|X0 = x
�

. (5.50)

We conclude, combining (5.48) and (5.50), that

Eµ
�

f (X0, . . . , Xn)g(X0, . . . , Xn)
�

≥ Eµ(Fn(X0)Gn(X0)),

where Fn(x) = E
�

f (x , X1, . . . , Xn)|X0 = x
�

and Gn(x) = E
�

g(x , X1, . . . , Xn)|X0 = x
�

. Now, from
Lemma 9, the two functions x 7→ Fn(x) and x 7→ Gn(x) are nondecreasing. Since a real-valued
random variable is always associated, this gives

Eµ(Fn(X0)Gn(X0))≥ Eµ(Fn(X0))Eµ(Gn(X0)).

The last inequality completes the proof, since

Eµ(Fn(X0)) = Eµ
�

f (X0, . . . , Xn)
�

, Eµ(Gn(X0)) = Eµ
�

g(X0, . . . , Xn)
�

.

�
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