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Abstract

In this paper, we study the exponential utility maximization problem in an incomplete mar-
ket with a default time inducing a discontinuity in the price of stock. We consider the case of
strategies valued in a closed set. Using dynamic programming and BSDEs techniques, we pro-
vide a characterization of the value function as the maximal subsolution of a backward stochastic
differential equation (BSDE) and an optimality criterium. Moreover, in the case of bounded co-
efficients, the value function is shown to be the maximal solution of a BSDE. Moreover, the value
function can be written as the limit of a sequence of processes which can be characterized as the
solutions of Lipschitz BSDEs in the case of bounded coefficients. In the case of convex constraints
and under some exponential integrability assumptions on the coefficients, some complementary
properties are provided. These results can be generalized to the case of several default times or
a Poisson process.
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1 Introduction

In this paper, we study the exponential utility maximization problem in an incomplete market with
a default time inducing a discontinuity in the price of stock.

Recall that concerning the study of the utility maximization problem from terminal wealth, there
exist two possible approaches:

– The first one is the dual approach formulated in a static way. This dual approach has been
largely studied in the literature. Among them, in a Brownian framework, we quote Karatzas
et al. [19] in a complete market and Karatzas et al. [20] in an incomplete market. In the
case of general semimartingales, we quote Kramkov and Schachermayer [23], Shachermayer
[35] and Delbaen et al. [8] for the particular case of the exponential utility function. For the
case with a default in a markovian setting we refer to Lukas [26]. Using this approach, these
different authors solve the utility maximization problem in the sense of finding the optimal
strategy and also give a characterization of this one via the solution of the dual problem.

– The second approach is the direct study of the primal problem(s) by using stochastic control
tools such as dynamic programming. Recall that these techniques had been used in finance
but only in a markovian setting for a long time. For example the reference paper of Merton
[27] uses the well known Hamilton-Jacobi-Bellman verification theorem to solve the utility
maximization problem of consumption/wealth in a complete market. The use in finance of
stochastic dynamic techniques (presented in El Karoui’s course [12] in a general setting) is
more recent. One of the first work in finance using these techniques is that of El Karoui and
Quenez [13]. Also, recall that the backward stochastic differential equations (BSDEs) have
been introduced by Bismut [5] for the linear case and by Peng [31] and Duffie and Epstein
[10] in the non linear case. In the paper of El Karoui et al. [14], several applications to
finance are provided. One of the achievement of the paper is a verification theorem which
characterizes the dynamic value function of an optimization problem as the solution of a
Lipschitz BSDE. This principle has many applications in finance. One of them can be found
in Rouge and El Karoui [33] who study the exponential utility maximization problem in the
incomplete Brownian case and characterize the dynamic indifference price as the solution
of a quadratic BSDE (introduced by Kobylanski [22]). Concerning the exponential utility
maximization problem, there is also the work of Hu et al. [18] still in the Brownian case.
Using a verification theorem (different from the previous one), they characterize the logarithm
of the dynamic value function as the solution of a quadratic BSDE.

Due to the presence of jumps, the case of a discontinuous framework is much more involved. Con-
cerning the study of the exponential utility maximization problem in this case, we refer to Morlais
[28]. In that paper, the price process of stock is driven by an independent Brownian motion and a
Poisson point process. The author considers the particular case of admissible strategies valued in a
compact set (not necessarily convex) and assumes that the coefficients of the model are bounded.
Using the same approach as in [18], she proves that the logarithm of the associated value function
is the unique solution of a quadratic BSDE (for which she shows an existence and a uniqueness
result).
In this paper, we consider the more general case of unbounded coefficients and of strategies con-
strained to be valued in a given closed set. Since this set is not necessarily convex, the dual approach
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cannot be applied. Using dynamic programming techniques, the value function denoted by J is
characterized as the maximal subsolution of a BSDE. Moreover, we provide an optimal criterium and
another characterization of the value function as the nonincreasing limit of a sequence of processes
(J k)k∈N, where for each k, J k is the value function associated with the subset of admissible strategies
bounded by k.

In the case of bounded coefficients, we provide some more precise results. First, in the case of
a compact set D, the value function is shown to be the solution of a Lipschitz BSDE. From this,
we derive that in the non compact case, the processes J k, for k ∈ N, are the solutions of Lipschitz
BSDEs. Now, by making a logarithmic change of variables, we are led to a nonincreasing sequence of
solutions of quadratic BSDEs. Thanks to the monotone stability convergence property for quadratic
BSDEs (see [22] or [28]), we show that the sequence (J k)k∈N converges to a limit, which is a
solution (and not only a subsolution) of the BSDE associated with the value function J . We then
provide that the value function J , equal to this limit, is characterized as the maximal solution (and
not only the maximal subsolution) of this BSDE.

At last, we study the case of coefficients which only satisfy some exponential integrability conditions.
If D is a convex and compact set, the value function is shown to be the solution of a BSDE. From
this, we derive that in the non compact case, the approximating processes J k, for k ∈ N, are the
unique solutions of BSDEs.

The outline of the paper is as follows. In Section 2, we present the market model and the maxi-
mization problem in the case of only one risky asset. In Section 3, we consider the more simple
case studied in [28] that is, where the coefficients are supposed bounded and where the admissible
strategies are valued in a compact set. Using a verification theorem for BSDEs (different from the
one used in [28]), we easily show that the value function can be characterized as the solution of a
Lipschitz BSDE. In Section 4, we consider the general case where the coefficients are not supposed
bounded and where the admissible strategies are valued in a closed set (not necessarily compact).
We show that the value function is characterized as the maximal subsolution of a BSDE. Second,
we provide a characterization of the value function as the nonincreasing limit of a sequence of pro-
cesses (J k)k∈N which are the value functions associated with some subsets of bounded admissible
strategies. In Section 5, we consider the case of bounded coefficients. Using the result of Section
3, we derive that the processes J k, k ∈ N, are the solutions of Lipschitz BSDEs. We then show that
the sequence (J k)k∈N converges to a solution (and not only a subsolution) of the BSDE relative to
the value function. From this, we derive that the value function is characterized as the maximal
solution of this BSDE. In Section 6, we consider the case of coefficients satisfying some exponential
integrability conditions. In the last section, we generalize the previous results to the case of several
assets and several default times, and we also extend these results to a Poisson jump model.

2 The market model

Let (Ω,G ,P) be a complete probability space. We assume that all processes are defined on a finite
time horizon [0, T], with T <∞ and we also suppose the space to be equipped with two stochastic
processes: a unidimensional standard Brownian motion W and a jump process N defined by Nt =
1τ≤t for any t ∈ [0, T], where τ is a random variable which stands for a default time (see Section 7.1
for several default times). We assume that this default can appear at any time that is P(τ > t) > 0
for any t ∈ [0, T]. We denote by G = {Gt , 0 ≤ t ≤ T} the completed filtration generated by these
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processes. The filtration is supposed to be right-continuous and W is a G-Brownian motion.
We denote by M the compensated martingale of the process N and by Λ its compensator which is
assumed to be absolutely continuous w.r.t. Lebesgue’s measure, so that there exists a process λ such
that Λt =

∫ t

0
λsds. Hence, the G-martingale M satisfies

Mt = Nt −
∫ t

0

λsds . (2.1)

We introduce the following sets which are used throughout the sequel:

– S +,∞ is the set of positive G-adapted P-essentially bounded rcll processes.

– S 2 is the set of G-adapted rcll processes ϕ such that E[supt |ϕt |2]<+∞.

– L1,+ is the set of positive G-adapted rcll processes ϕ such that E[ϕt]<∞ for any t ∈ [0, T].

– L2(W ) (resp. L2
loc(W )) is the set of G-predictable processes Z such that

E
h

∫ T

0

|Zt |2d t
i

<∞ (resp.

∫ T

0

|Zt |2d t <∞ a.s. ) .

– L2(M) (resp. L2
loc(M), L1

loc(M)) is the set of G-predictable processes U such that

E
h

∫ T

0

λt |Ut |2d t
i

<∞ (resp.

∫ T

0

λt |Ut |2d t <∞ ,

∫ T

0

λt |Ut |d t <∞ a.s. ) .

We recall the useful martingale representation theorem (see for example Jeanblanc et al. [16])
which is paramount throughout the sequel:

Lemma 2.1. Any (P,G)-local martingale m has the representation

mt = m0+

∫ t

0

asdWs +

∫ t

0

bsdMs , ∀ t ∈ [0, T] a.s. , (2.2)

where a ∈ L2
loc(W ) and b ∈ L1

loc(M). If m is a square integrable martingale, each term on the right-
hand side of the representation (2.2) is square integrable.

We now consider a financial market which consists of one risk-free asset, whose price process is
assumed for simplicity to be equal to 1 at any date, and one risky asset with price process S which
admits a discontinuity at time τ (we give the results for n assets and p default times in Section 7.1).
Throughout the sequel, we consider that the price process S evolves according to the equation

dSt = St−(µt d t +σt dWt + βt dNt) , (2.3)

with the classical assumptions:

Assumption 2.1.
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(i) µ, σ and β are G-predictable processes such that σt > 0 and

∫ T

0

�

|µt |+ |σt |2+λt |βt |2
�

d t < ∞ a.s.

(ii) β satisfies βτ >−1.

The condition (ii) ensures that the process S is positive. This condition is equivalent to βt > −1 for
any 0≤ t ≤ T a.s. (see Jeanblanc et al. [17]).

We also suppose that E[exp(−
∫ T

0
αsdWs −

1
2

∫ T

0
α2

t d t)] = 1 where αt = (µt + λtβt)/σt , which
ensures the existence of a martingale probability measure and hence the absence of arbitrage.

Throughout the sequel, a process π is called a trading strategy if it is a G-predictable process and

if
∫ T

0
πt

St−
dSt is well defined e.g.

∫ T

0
|πtσt |2d t +

∫ T

0
λt |πtβt |2d t <∞ a.s. In this case, πt describes

the amount of money invested in the risky asset at time t. Under the assumption that the trading
strategy is self-financing, the wealth process X x ,π associated with the trading strategy π and an
initial capital x satisfies

¨

dX x ,π
t = πt

�

µt d t +σt dWt + βt dNt
�

,

X x ,π
0 = x .

(2.4)

For a given initial time t and an initial capital x , the wealth process associated with a trading strategy
π is denoted by X t,x ,π.
We assume that the investor in this financial market faces some liability, which is modeled by a
GT -measurable random variable ξ (for example, ξ may be a contingent claim written on a default
event, which itself affects the price of the underlying asset). We suppose that ξ ∈ L2(GT ) and is
non-negative (all the results still hold under the assumption that ξ is only bounded from below).

Our aim is to study the classical optimization problem

V (x ,ξ) = sup
π∈D

E
�

U(X x ,π
T + ξ)

�

, (2.5)

where D is a set of admissible strategies (independent of x) which will be specified throughout the
sequel and U is the utility function

U(x) = −exp(−γx) , x ∈ R ,

where γ > 0 is a given constant, which can be seen as a coefficient of absolute risk aversion. The
optimization problem (2.5) can be written as

V (x ,ξ) = e−γx V (0,ξ) .

Hence, it is sufficient to study the case x = 0. To simplify notation, we will denote Xπ (resp. X t,π)
instead of X 0,π (resp. X t,0,π). Also, we have

V (0,ξ) = − inf
π∈D

E
�

exp
�

− γ(XπT + ξ)
��

. (2.6)
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3 Strategies valued in a compact set in the case of bounded coeffi-
cients

In this section, we consider the particular case of bounded coefficients and strategies valued in a
compact set, which has been already studied by Morlais ([28]). In her paper, by using quite sophis-
ticated techniques of quadratic BSDEs, Morlais shows that the value function (or more precisely its
logarithm) is the unique solution of a BSDE. Throughout the sequel, we propose another method
which gives a very short proof of this result. This result will be used in Section 5 to provide a
characterization of the value function in the case of general constraints.

As in [28], the coefficients of the model are supposed to be bounded and the strategies are con-
strained to take their values in a given non empty compact set C of R. The set of admissible
strategies denoted by C is thus defined as the set of predictable processes π taking their values in
C .

This case cannot be solved by using the dual approach because the set of admissible strategies is
not necessarily convex. In this context, we address the problem of characterizing dynamically the
value function associated with the exponential utility maximization problem. We give a dynamic
extension of the initial problem (2.6) (with D = C ). For any initial time t ∈ [0, T], we define the
value function J(t,ξ) (also denoted by J(t)) by the following random variable

J(t,ξ) = ess inf
π∈Ct

E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

, (3.1)

where Ct is the set of all restrictions to [t, T] of the strategies of C . We have V (0,ξ) =−J(0,ξ).

Throughout the sequel, we want to characterize this dynamic value function J(.) as the solution of a
BSDE. Since the coefficients are supposed to be bounded and the strategies are constrained to take
their values in a compact set, it is possible to solve very simply this problem by using a verification
principle. For that, for any π ∈ C , we introduce the process Jπ satisfying

Jπt = E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

, ∀ t ∈ [0, T] .

By classical techniques of linear BSDEs (see El Karoui et al. [14] in the Brownian case), this process
can be easily shown to be the solution of a linear Lipschitz BSDE. More precisely, there exist Zπ ∈
L2(W ) and Uπ ∈ L2(M), such that (Jπ, Zπ, Uπ) is the unique solution in S +,∞× L2(W )× L2(M) of
the linear BSDE with bounded coefficients

− dJπt = f π(t, Jπt , Zπt , Uπt )d t − Zπt dWt − Uπt dMt ; JπT = exp(−γξ) , (3.2)

where f π(s, y, z, u) = γ2

2
|πsσs|2 y − γπs(µs y +σsz)−λs(1− e−γπsβs)(y + u).

Using the fact that J(t) = ess infπ∈Ct
Jπt for any 0 ≤ t ≤ T , we show that J(.) corresponds to the

solution of a BSDE, whose generator is the essential infimum over π of the generators of (Jπ)π∈C .
More precisely,

Proposition 3.1. The following properties hold:

– Let (Y, Z , U) be the solution in S +,∞× L2(W )× L2(M) of the following BSDE










− dYt =ess inf
π∈C

nγ2

2
|πtσt |2Yt − γπt(µt Yt +σt Zt)−λt

�

1− e−γπtβt
�

(Yt + Ut)
o

d t

− Zt dWt − Ut dMt ,

YT =exp(−γξ) .

(3.3)
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Then, J(t) = Yt for any 0≤ t ≤ T a.s.

– There exists an optimal strategy for J(0) = infπ∈C E[exp(−γ(XπT + ξ))]. Moreover, π̂ is optimal
if and only if π̂t attains the essential infimum in (3.3) d t ⊗ dP− a.e.

Proof. Let us introduce the generator f which satisfies ds⊗ dP− a.e.

f (s, y, z, u) = ess inf
π∈C

f π(s, y, z, u) .

Since the generator f is written as an infimum of linear generators f π w.r.t. (y, z, u) with uniformly
bounded coefficients, f is Lipschitz. That is true since the supremum of affine functions, whose
coefficients are bounded by a constant c > 0, is Lipschitz and the Lipschitz constant can be taken to
be equal to c. Hence, by Tang and Li’s results [36], BSDE (3.3) with Lipschitz generator f

− dYt = f (t, Yt , Zt , Ut)d t − Zt dWt − Ut dMt ; YT = exp(−γξ)

admits a unique solution (Y, Z , U) ∈ S 2× L2(W )× L2(M).
Since we have

f π(t, y, z, u)− f π(t, y, z, u′) = λt(u− u′)γt , (3.4)

with γt = e−γπtβt − 1, and since there exist some constants −1 < C1 ≤ 0 and 0 ≤ C2 such that
C1 ≤ γt ≤ C2, the comparison theorem in case of jumps (see for example Theorem 2.5 in Royer
[34]) can be applied. It implies that Yt ≤ Jπt , ∀ t ∈ [0, T] a.s. As this inequality is satisfied for any
π ∈ C , it follows that Yt ≤ ess infπ∈C Jπt a.s.
Also, by applying a measurable selection theorem (see for e.g. [9] or Benes [1]), one shows that
there exists π̂, π̂ ∈ C , such that d t ⊗ dP-a.s.

ess inf
π∈C

nγ2

2
|πtσt |2Yt − γπt(µt Yt +σt Zt)−λt

�

1− e−γπtβt
�

(Yt + Ut)
o

=
γ2

2
|π̂tσt |2Yt − γπ̂t(µt Yt +σt Zt)−λt

�

1− e−γπ̂tβt
�

(Yt + Ut) .

Thus, (Y, Z , U) is a solution of BSDE (3.2) associated with π̂. By uniqueness of the solution of BSDE
(3.2), we have Yt = J π̂t , 0 ≤ t ≤ T a.s. Hence, Yt = ess infπ∈Ct

Jπt = J π̂t , 0 ≤ t ≤ T a.s., and π̂ is an
optimal strategy.

Remark 3.1. Let us make the following change of variables: yt =
1
γ

log(Yt) , zt =
1
γ

Zt

Yt
, ut =

1
γ

log
�

1+ Ut

Yt−

�

. One can verify that the process (y, z, u) is the solution of the following quadratic
BSDE

− d yt = g(t, zt , ut)d t − zt dWt − ut dMt ; yT =−ξ , (3.5)

where

g(s, z, u) = ess inf
π∈C

�γ

2

�

�

�πsσs−
�

z+
µs +λsβs

γ

�
�

�

�

2
+|u−πsβs|γ

�

−(µs +λsβs)z−
|µs +λsβs|2

2γ
,
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with |u−πβt |γ = λt
exp(γ(u−πβt ))−1−γ(u−πβt )

γ
. Hence, our result yields the existence and the unique-

ness of the quadratic BSDE (3.5) and also gives that the logarithm of the value function is the
solution of this BSDE. This corresponds exactly to Morlais’s result [28].

Recall that the proof given in [28] consists in showing first an existence and uniqueness result
for BSDE (3.5) by using a sophisticated approximation method in the vein of Kobylanski [22] but
adapted to the case of jumps. Then, by using a verification theorem quite similar to Hu et al.’
theorem [18], the logarithm of the value function is proved to be the solution of the quadratic BSDE
(3.5).

The proof given here is thus much shorter. It is based on a verification principle via BSDEs in the
vein of [14].

The previous result will be used in Section 5, devoted to the case of bounded coefficients and general
constraints, in order to prove that the value function is the maximal solution of a BSDE (see Theorem
5.4).

4 The general case

Throughout the sequel, we consider the utility maximization problem in the case of unbounded
coefficients and general constraints on the admissible strategies. More precisely, the admissible
strategies are required to take their values in a set which is not necessarily compact. Recall that
since the utility function is the exponential utility function, the set of admissible strategies is not
standard in the literature. The next subsection studies the choice of a suitable set of admissible
strategies which will allow to dynamize the problem and to characterize the associated dynamic
value function.

4.1 The set of admissible strategies

Recall that in the case of the power or logarithmic utility functions defined (or restricted) on R+, the
strategies are required to make the associated wealth positive. Since we consider the exponential
utility function which is finitely valued for all x ∈ R, the wealth process is no longer required to be
positive. However, from a financial point of view, it is natural to consider strategies such that the
associated wealth process is uniformly bounded from below (see for example Schachermayer [35])
or even such that any increment of the wealth is bounded from below.

More precisely, let D be a closed subset of R which contains 0. We introduce the set of admissible
trading strategies D which consists of all G-predictable processes π which take their values in D and

satisfy
∫ T

0
|πtσt |2d t +

∫ T

0
λt |πtβt |2d t < ∞ a.s. and such that for any fixed π and any s ∈ [0, T],

there exists a real constant Ks,π such that

Xπt − Xπs ≥ −Ks,π , s ≤ t ≤ T , a.s. (4.1)

Our aim is to give a characterization of the value function V (0,ξ) associated with D defined by

V (0,ξ) = − inf
π∈D

E
�

exp
�

− γ(XπT + ξ)
��

. (4.2)
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Our approach consists in giving a dynamic extension of this optimization problem and in providing
a characterization of the dynamic value function. The set D (in particular condition (4.1)) has been
chosen so that it is closed by binding, that is: if π1,π2 are two strategies of D and if s ∈ [0, T], then
the strategy π3 defined by

π3
t =

(

π1
t if t ≤ s ,

π2
t if t > s ,

belongs to D. Let us now give a dynamic extension of the initial problem: for any initial time
t ∈ [0, T], the value function J(t,ξ) is defined by

J(t,ξ) = ess inf
π∈Dt

E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

, (4.3)

where the set Dt is the set of the restrictions to [t, T] of the strategies of D. We have
J(0,ξ) =−V (0,ξ).
For the sake of brevity, we shall denote J(t) instead of J(t,ξ). The random variable J(t) is defined
uniquely only up to P-almost sure equivalent. The process J(.) will be called the dynamic value
function. This process is adapted but not necessarily rcll and not even progressive.

However, there exist some other possible sets which are closed by binding as for example the set

D
′

defined as the set of G-predictable processes π, with
∫ T

0
|πtσt |2d t +

∫ T

0
λt |πtβt |2d t <∞ a.s. ,

which are valued in D and such that for any t ∈ [0, T] and for any p > 1, the following integrability
condition holds

E
h

sup
s∈[t,T]

exp
�

− γpX t,π
s

�i

< ∞ . (4.4)

We have D ⊂ D
′
.

The property of closedness by binding of the set D
′

can be verified by using the assumption of
p-integrability (4.4) and Cauchy-Schwarz inequality (see Appendix C for details).

From a mathematical point of view, the set D
′

is a relevant admissibility set which ensures the
closedness property by binding, the dynamic programming principle in the multiplicative form of
Proposition 4.1 below (see Remark 4.1) and also the characterization of the dynamic value function
via a BSDE (see Remark 4.5), for which a uniformly integrability condition is required. Some
additional comments on this point are given in Appendix A.

As for D, a dynamic extension of the value function associated with D′ can be given. Using a
localization argument, one verifies (see Appendix B) that

Lemma 4.1. If β is bounded, then the dynamic value function J(.) associated with D coincides a.s.
with the one associated with D′.

Hence, concerning the dynamic study of the value function, one can choose D or D′ as set of
admissible strategies. The choice of D is justified since it appears as the natural set of admissible
strategies from a financial point of view. However, all the results in this paper still hold with D′

instead of D.

After this dynamic extension of the value function, the aim is to characterize the dynamic value
function via a BSDE. It is no longer possible to use a verification theorem like the one in Section
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3 because the associated BSDE is no longer Lipschitz and there is no existence result for it. One
could think to use a verification theorem as the on of [18], but it is no longer possible since there
is no existence and uniqueness results for the associated BSDE because of the presence of jumps.
Therefore, as it seems not possible to derive a sufficient condition so that a given process corresponds
to the dynamic value function, we will now provide some necessary conditions satisfied by J(.) and
more precisely a dynamic programming principle. Then, using this property, we will derive a first
characterization of the value function via a BSDE.

4.2 First properties of the dynamic value function

In this section, we provide a first characterization of the dynamic value function and also an opti-
mality criterium.

Proposition 4.1. The process J(.) is the largest G-adapted process such that e−γXπJ(.) is a submartin-
gale for any admissible strategy π ∈ D with J(T ) = exp(−γξ). More precisely, if Ĵ is a G-adapted
process such that exp(−γXπ)Ĵ is a submartingale for any π ∈ D with ĴT = exp(−γξ), then we have
J(t)≥ Ĵt a.s., for any t ∈ [0, T].

Also, for each π̂ ∈ D, the strategy π̂ ∈ D is optimal for J(0) if and only if the process exp(−γX π̂)J(.) is
a martingale.

Proof. We introduce the family of random variables (Jπt )π∈Dt
such that

Jπt = E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

.

The proof is divided in 4 steps.
We introduce the family of random variables (Jπt )π∈Dt

such that

Jπt = E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

.

Step 1: The set {Jπt , π ∈ Dt} is stable by pairwise minimization for any t ∈ [0, T]: for every

π1, π2 ∈ Dt there exists π ∈ Dt such that Jπt = Jπ
1

t ∧ Jπ
2

t . Indeed, if we fix t ∈ [0, T] and

introduce the set E = {Jπ
1

t ≤ Jπ
2

t } which belongs to Gt , we can define π for any s ∈ [t, T] by

πs = π1
s1E + π2

s1Ec . By construction of π, we get Jπt = Jπ
1

t ∧ Jπ
2

t a.s. Moreover, π ∈ Dt because

X t,π
s = X t,π1

s 1E + X t,π2

s 1Ec and the sum of two random variables bounded from below is bounded
from below.
Using the classical results on the essential infimum (see Neveu [29]), there exists a sequence
(πn)n∈N ∈ Dt such that

J(t) = lim
n→∞

↓ Jπ
n

t a.s.

Step 2: For each π ∈ D, the process exp(−γXπ)J(.) is a submartingale. Indeed, from Step 1, there
exists a sequence (πn)n∈N ∈ Dt such that J(t) = lim

n→∞
↓ Jπ

n

t a.s.

Without loss of generality, we can suppose that π0 = 0. Thus, for each n ∈ N, we have Jπ
n

t ≤ Jπ
0

t ≤ 1
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a.s. Moreover, the integrability property E[exp(−γX s,π
t )] <∞ holds because π ∈ D. Together with

the Lebesgue theorem, it gives

E
h

lim
n→∞

exp(−γX s,π
t )J

πn

t

�

�

�Gs

i

= lim
n→∞

E
h

exp(−γX s,π
t )J

πn

t

�

�

�Gs

i

. (4.5)

Recall that X s,π
t =

∫ t

s
πu

Su−
dSu. Now, we have a.s.

exp
�

− γ
∫ t

s

πu

Su−
dSu

�

Jπ
n

t = E
h

exp
�

− γ
�

∫ T

s

π̃n
u

Su−
dSu+ ξ

��
�

�

�Gt

i

, (4.6)

where the strategy π̃n is defined by

π̃n
u =

(

πu if 0≤ u≤ t ,

πn
u if t < u≤ T .

From the closedness property by binding, π̃n ∈ D for each n ∈ N. By (4.5) and (4.6), we have a.s.

E
h

exp
�

− γ
∫ t

s

πu

Su−
dSu

�

J(t)
�

�

�Gs

i

= lim
n→∞

E
h

exp
�

− γ
�

∫ T

s

π̃n
u

Su−
dSu+ ξ

��
�

�

�Gs

i

= lim
n→∞

J π̃
n

s ≥ J(s) ,

from the definition of J(s). Hence, the process exp(−γXπ)J(.) is a submartingale for any π ∈ D.

Step 3: The process J(.) is the largest G-adapted process satisfying the property of Step 2 and such
that J(T ) = exp(−γξ). Indeed, suppose a process Ĵ such that for any t ∈ [0, T] and π ∈ D, we have

E
�

exp
�

− γXπT
�

ĴT

�

�Gt
�

≥ exp
�

− γXπt
�

Ĵt a.s.

Then, we have

ess inf
π∈Dt

E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

≥ Ĵt a.s. ,

which implies that J(t)≥ Ĵt a.s.

Step 4: Suppose that π̂ is optimal for J(0). Hence,

J(0) = inf
π∈D

E
�

exp
�

− γ(XπT + ξ)
��

= E
�

exp
�

− γ(X π̂T + ξ)
��

.

Since the process exp(−γX π̂)J(.) is a submartingale and since J(0) = E[exp(−γ(X π̂T + ξ))], the
process exp(−γX π̂)J(.) is a martingale.
Suppose now that the process exp(−γX π̂)J(.) is a martingale. Then, E[exp(−γX π̂T )J(T )] = J(0).
Also, since for any π ∈ D, the process exp(−γXπ)J(.) is a submartingale and J(T ) = exp(−γξ), it is
clear that J(0)≤ inf

π∈D
E[exp(−γ(XπT + ξ))]. Consequently,

J(0) = inf
π∈D

E
�

exp
�

− γ(XπT + ξ)
��

= E
�

exp
�

− γ(X π̂T + ξ)
��

.

In other words, π̂ is an optimal strategy.
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Remark 4.1. The integrability property E[exp(−γX s,π
t )] <∞ is required in the proof of this prop-

erty. Indeed, if it is not satisfied, equality (4.5) does not hold since the Lebesgue theorem (and the
monotone convergence theorem) cannot be applied. We stress on that the importance of the integra-
bility condition is due to the fact that we study an essential infimum of positive random variables. In
the case of an essential supremum of positive random variables, the dynamic programming principle
holds without any integrability condition (see for example the case of the power utility function in
Lim and Quenez [25]). Consequently, the set of G-predictable processes π such that for any p > 1,
for any s ∈ [0, T] and for any t ∈ [s, T], E[exp(−γpX s,π

t )]<∞, appears as a set of strategies which
allows to have the closedness property by binding and the above dynamic programming principle.
The set D

′
is nearly the same but with an integrability condition which is uniform w.r.t. t ∈ [s, T]

(see (4.4)). This uniform integrability in time will be useful to ensure a characterization of the
dynamic value function via a BSDE (see Remark 4.5).

With this property, it is possible to show that there exists a rcll version of the dynamic value function
J(.). More precisely, we have:

Proposition 4.2. There exists a G-adapted rcll process J such that for any t ∈ [0, T],

Jt = J(t) a.s.

Moreover, the two processes are indistinguishable.

A direct proof is given in Appendix D.

Remark 4.2. Proposition 4.1 can be written under the form: J is the largest G-adapted rcll process
such that the process exp(−γXπ)J is a submartingale for any π ∈ D with JT = exp(−γξ).

Moreover, the process J is bounded.

Lemma 4.2. The process J verifies

0≤ Jt ≤ 1 , ∀ t ∈ [0, T] a.s.

Proof. Fix t ∈ [0, T]. The first inequality is easy to prove, because it is obvious that

0 ≤ E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

a.s. ,

for any π ∈ Dt , which implies 0≤ Jt .
Since the strategy defined by πs = 0 for any s ∈ [t, T] is admissible, we can see that Jt ≤
E[exp(−γξ)|Gt] a.s. Moreover, as the contingent claim ξ is supposed to be non negative, we have
Jt ≤ 1 a.s.

Remark 4.3. If ξ is only bounded from below by a real constant −K , then J is still upper bounded
but by exp(γK) instead of 1.
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4.3 Characterization of the dynamic value function via a BSDE

Using the previous characterization of the dynamic value function (see Proposition 4.1), we prove
that this one is characterized by a BSDE. Since we work in terms of necessary conditions satisfied
by the dynamic value function, the study is more technical than in the cases where a verification
theorem can be applied.
Since J is a bounded rcll submartingale, it admits a unique Doob-Meyer decomposition (see Del-
lacherie and Meyer [9], Chapter 7)

dJt = dmt + dAt ,

where m is a square integrable martingale and A is an increasing G-predictable process with A0 = 0.
From the martingale representation theorem (see Lemma 2.1), the previous Doob-Meyer decompo-
sition can be written under the form

dJt = Zt dWt + Ut dMt + dAt , (4.7)

with Z ∈ L2(W ) and U ∈ L2(M).
Using the dynamic programming principle (Proposition 4.1), we precise the process A of (4.7). This
allows to show that the dynamic value function J is a subsolution of a BSDE. For that let us introduce
the setA 2 consisting in all the nondecreasing adapted rcll processes K with K0 = 0 and E|KT |2 <∞.

Theorem 4.1.
− There exists a process K ∈A 2 such that the process (J , Z , U , K) ∈ S +,∞× L2(W )× L2(M)×A 2 is
a solution of the following BSDE











− dJt =ess inf
π∈D

nγ2

2
|πtσt |2Jt − γπt(µt Jt +σt Zt)−λt(1− e−γπtβt )(Jt + Ut)

o

d t

− dKt − Zt dWt − Ut dMt ,

JT =exp(−γξ) .

(4.8)

− Also, (J , Z , U , K) is the maximal solution in S +,∞× L2(W )× L2(M)×A 2 of BSDE (4.8) that is, for
any solution (J̄ , Z̄ , Ū , K̄) of the BSDE in S +,∞ × L2(W )× L2(M)×A 2, we have J̄t ≤ Jt , ∀ t ∈ [0, T]
a.s.
− Moreover, an admissible strategy π̂ is optimal for J(0) = infπ∈D E[exp(−γ(XπT + ξ))] if and only if
K = 0 and π̂t attains the essential infimum in (4.8) d t ⊗ dP− a.s.

Remark 4.4. Due to the presence of the nondecreasing process K , the process J is said to be a sub-
solution (and even the maximal one) of the BSDE associated with the terminal condition exp(−γξ)
and the generator given by the above essinf.

Proof. We prove the first point of this theorem. Applying first Itô’s formula (see for example [32])
to the semimartingale exp(−Xπ)J , we obtain

d(e−γXπt Jt) = dAπt + dmπt , (4.9)

with Aπ0 = 0 and






dAπt = e−γXπt
h

dAt +
nγ2

2
|πtσt |2Jt −λt

�

1− e−γπtβt
�

(Ut + Jt)− γπt(σt Zt +µt Jt)
o

d t
i

,

dmπt = e−γXπ
t−
�

(Zt − γπtσt Jt)dWt +
�

Ut +
�

e−γπtβt − 1
�

(Ut + Jt−)
�

dMt
�

.
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Using then the DP (see Proposition 4.1), we argue that exp(−Xπ)J is a submartingale for any π ∈ D
which yields

dAt ≥ ess sup
π∈D

n

λt
�

1− e−γπtβt
�

(Ut + Jt) + γπt(σt Zt +µt Jt)−
γ2

2
|πtσt |2Jt

o

d t . (4.10)

We then define the process K by K0 = 0 and

dKt = dAt − ess sup
π∈D

n

λt
�

1− e−γπtβt
�

(Ut + Jt) + γπt(σt Zt +µt Jt)−
γ2

2
|πtσt |2Jt

o

d t .

It is clear that the process K is nondecreasing from (4.10). Since the strategy defined by πt = 0 for
any t ∈ [0, T] is admissible, we have

ess sup
π∈D

n

λt
�

1− e−γπtβt
�

(Ut + Jt) + γπt(σt Zt +µt Jt)−
γ2

2
|πtσt |2Jt

o

≥ 0 .

Hence, 0 ≤ Kt ≤ At a.s. As E|AT |2 < ∞, we have K ∈ A 2. Thus, the Doob-Meyer decomposition
(4.7) of J can be written as follows

dJt = ess sup
π∈D

n

λt
�

1− e−γπtβt
�

(Ut + Jt) + γπt(σt Zt +µt Jt)−
γ2

2
|πtσt |2Jt

o

d t

+ dKt + Zt dWt + Ut dMt ,

with Z ∈ L2(W ), U ∈ L2(M) and K ∈A 2.

We now prove the second point. Let (J̄ , Z̄ , Ū , K̄) be a solution of (4.8) in S +,∞× L2(W )× L2(M)×
A 2. Let us prove that the process exp(−γXπ)J̄ is a submartingale for any π ∈ D.
From the product rule, we get

d
�

e−γXπt J̄t
�

= dM̄π
t + dĀπt + e−γXπt dK̄t , (4.11)

with Āπ0 = 0 and


















dĀt =− ess inf
π∈D

nγ2

2
π2

tσ
2
t J̄t − γπt(µt J̄t +σt Z̄t)−λt

�

1− e−γπtβt
�

(J̄t + Ūt)
o

d t ,

dĀπt =e−γXπt
nhγ2

2
|πtσt |2 J̄t − γπt(µt J̄t +σt Z̄t)−λt

�

1− e−γπtβt
�

(J̄t + Ūt)
i

d t + dĀt

o

,

dM̄π
t =e−γXπ

t−
�

(Z̄t − γπtσt J̄t)dWt +
�

Ūt +
�

e−γπtβt − 1
�

(Ūt + J̄t−)
�

dMt
�

.

Since J̄ is bounded and since the strategy π belongs to D (but it still holds for π ∈ D
′
), we have

E[ sup
t∈[0,T]

exp(−γXπt )J̄t]<+∞ and E[
∫ T

0

exp(−γXπt )dK̄t]<+∞ .

By a classical localization argument and by using (4.11), we derive that

E[ĀπT ]≤ E[ sup
t∈[0,T]

exp(−γXπt )J̄t]<+∞.
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Hence, E[supt∈[0,T] |M̄π
t |] < +∞, which yields that the local martingale M̄π is a martingale. It

follows that the process exp(−γXπ)J̄ is a submartingale.
Recall now that J is the largest process such that exp(−γXπ)J is a submartingale for any π ∈ D with
JT = exp(−γξ) (see Proposition 4.1). Therefore, we get

J̄t ≤ Jt , ∀ t ∈ [0, T] a.s.

It remains to show the third assertion. Suppose that π̂ is an admissible strategy which is optimal for
J(0). Recall that equality (4.9) holds with π replaced by π̂. Thanks to the optimality criterion (see
the second assertion in Proposition 4.1), we argue that exp(−X π̂)J is a martingale, which yields
that Aπ̂ = 0 that is, K = 0 and π̂t attains the essential infimum in (4.8) d t ⊗ dP− a.s. Also, one can
easily verify that the converse holds (by using the fact that E[supt∈[0,T] exp(−γX π̂t )] < +∞). The
proof is thus complete.

Remark 4.5. Note that the integrability property E[supt∈[0,T] exp(−γXπt )] < +∞, for each admis-
sible strategy π, is used in the proof of the second and the third assertions.

4.4 Approximation of the dynamic value function

In this part, the dynamic value function is characterized as the limit of a nonincreasing sequence of
processes (J k)k∈N as k tends to +∞, where for each k, J k corresponds to the dynamic value function
associated with the subset of admissible strategies bounded by k.

For each k, we denote by Dk
t the subset of strategies of Dt uniformly bounded by k, and we consider

the associated dynamic value function J k(.) defined for any t ∈ [0, T] by

J k(t) = ess inf
π∈Dk

t

E
�

exp
�

− γ(X t,π
T + ξ)

�

�

�Gt
�

. (4.12)

By similar argument as for J , there exists a rcll version of J k(.) denoted by J k. As previously, the
following dynamic programming principle holds:

Lemma 4.3. The process exp(−γXπ)J k is a submartingale for any π ∈ Dk.

We show that the sequence (J k)k∈N converges to J . More precisely, we have:

Theorem 4.2. (Approximation of the dynamic value function) For any t ∈ [0, T], we have

Jt = lim
k→∞

↓ J k
t a.s.

Proof. Fix t ∈ [0, T]. From the definition of sets Dt and Dk
t , we have Dk

t ⊂ Dt for each k ∈ N and
hence

Jt ≤ J k
t a.s.

Moreover, since Dk
t ⊂ D

k+1
t for each k ∈ N, the sequence of positive random variables (J k

t )k∈N is
nonincreasing. Let us define the random variable

J̄(t) = lim
k→∞

↓ J k
t a.s.
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From the previous inequality, we get that Jt ≤ J̄(t) a.s., and this holds for any t ∈ [0, T].
It remains to prove that Jt ≥ J̄(t) a.s. for any t ∈ [0, T].
Step 1: Let us prove that the process exp(−γXπ)J̄(.) is a submartingale for any bounded strategy
π ∈ D. Let π be a bounded admissible strategy and fix 0≤ s < t ≤ T . Then, there exists n ∈ N such
that π is uniformly bounded by n. For each k ≥ n, since π ∈ Dk, exp(−γXπ)J k is a submartingale
from Lemma 4.3

E
�

exp(−γXπt )J
k
t

�

�Gs
�

≥ exp(−γXπs )J
k
s ≥ exp(−γXπs )J̄(s) a.s.

The dominated convergence theorem (which can be applied since π ∈ D and 0 ≤ J k
t ≤ 1 for each

k ∈ N) gives

E
�

exp(−γXπt )J̄(t)
�

�Gs
�

= lim
k→∞

E
�

exp(−γXπt )J
k
t

�

�Gs
�

≥ exp(−γXπs )J̄(s) a.s. ,

which gives step 1.

Step 2: The process J̄(.) is a submartingale not necessarily rcll. However, by a theorem of
Dellacherie-Meyer [9] (see VI.18), we know that the nonincreasing limit of a sequence of rcll
submartingales is indistinguishable from a rcll adapted process. Hence, there exists a rcll version of
J̄(.) which will be denoted by J̄ . Moreover, J̄ is still a submartingale.

Step 3: Let us show that J̄t ≤ Jt , ∀ t ∈ [0, T] a.s.
The process J̄ is clearly bounded by 1 because for each k ∈ N, J k is bounded by 1. Hence, by
the previous steps, it is a bounded rcll submartingale. It thus admits the following Doob-Meyer
decomposition

dJ̄t = Z̄t dWt + Ūt dMt + dĀt ,

where Z̄ ∈ L2(W ), Ū ∈ L2(M) and Ā is a nondecreasing G-predictable process with Ā0 = 0.
As before, we use that the process exp(−γXπ)J̄ is a submartingale for any bounded strategy π ∈ D
to give some necessary conditions satisfied by the process Ā.
Let π ∈ D be a uniformly bounded strategy. The product rule gives

d(e−γXπt J̄t) = dM̄π
t + dĀπt ,

with Āπ0 = 0 and







dĀπt = e−γXπt
n

dĀt +
hγ2

2
|πtσt |2 J̄t +λt

�

e−γπtβt − 1
�

(Ūt + J̄t)− γπt(µt J̄t +σt Z̄t)
i

d t
o

,

dM̄π
t = e−γXπ

t−
�

(Z̄t − γπtσt J̄t)dWt +
�

Ūt +
�

e−γπtβt − 1
�

(Ūt + J̄t−)
�

dMt
�

.

Let D̄ be the set consisting in all the uniformly bounded admissible strategies. Since the process
e−γXπ J̄ is a submartingale for any π ∈ D̄, we have dĀπt ≥ 0 a.s. for any π ∈ D̄. Hence, there exists
a process K̄ ∈A 2 such that

dĀt = −ess inf
π∈D̄

nγ2

2
|πtσt |2 J̄t − γπt(µt J̄t +σt Z̄t)−λt

�

1− e−γπtβt
�

(J̄t + Ūt)
o

d t + dK̄t .
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The following equality holds d t ⊗ dP− a.e. (see Appendix E for details)

ess inf
π∈D̄

nγ2

2
|πtσt |2 J̄t − γπt(µt J̄t +σt Z̄t)−λt

�

1− e−γπtβt
�

(J̄t + Ūt)
o

= ess inf
π∈D

nγ2

2
|πtσt |2 J̄t − γπt(µt J̄t +σt Z̄t)−λt

�

1− e−γπtβt
�

(J̄t + Ūt)
o

. (4.13)

Hence, (J̄ , Z̄ , Ū , K̄) is a solution of BSDE (4.8), and Theorem 4.1 implies that

J̄t ≤ Jt , ∀ t ∈ [0, T] a.s.

Remark 4.6. By the above proof, it follows that J coincides with the value function associated with
the set consisting in all the bounded admissible strategies.

5 Case of bounded coefficients

In this section, we assume that λ, µ, σ and β are uniformly bounded. We prove that for each
k ∈ N, J k is characterized as the solution of a Lipschitz BSDE. Then, by using this property and the
two previous characterizations of the dynamic value function (Theorem 4.1 and Theorem 4.2), we
derive that this one is the maximal solution of the associated BSDE (4.8) and not only the maximal
subsolution.

5.1 Approximation of the dynamic value function by Lipschitz BSDEs

In the case of bounded coefficients, thanks to Proposition 3.1 and Theorem 4.2, we obtain the
following property:

Theorem 5.3.

– For any t ∈ [0, T], we have

Jt = lim
k→∞

↓ J k
t a.s.

– For each k ∈ N, the process J k is the solution of the Lipschitz BSDE (3.3) with C equal to the set
of all strategies taking their values in the compact set [−k, k]∩ D.

Proof. The first point corresponds to Theorem 4.2. It thus remains to prove the second point, that
is, for each k ∈ N, J k is characterized as the solution of a Lipschitz BSDE.

First, recall that the dynamic value function associated with D
′

is equal to J , the one which is
associated with D. Similarly, the dynamic value function associated with D

′

k, the subset of strategies
of D

′
bounded by k, is equal to J k.

Hence, we can consider that D
′

is the set of admissibility. Using martingale inequalities, one can
easily show that all the bounded strategies belong to D

′
(but not necessarily in D) because the

coefficients are bounded. It follows that D
′

k is equal to the set of all strategies taking their values in
the compact set [−k, k] ∩ D. Thanks to Proposition 3.1 applied to the compact set [−k, k] ∩ D, it
follows that the process J k is the solution of the Lipschitz BSDE (3.3) with C replaced by D

′

k.
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5.2 Characterization of the dynamic value function as the maximal solution of a
BSDE

In this subsection, we add the following assumption:

Assumption 5.1. ξ is bounded.

In this case, the dynamic value function J can be proved to be a solution of a BSDE (and not only a
subsolution). More precisely,

Theorem 5.4. (Characterization of the dynamic value function)
J is the maximal solution in S +,∞× L2(W )× L2(M) of the following BSDE:











− dJt = ess inf
π∈D

nγ2

2
|πtσt |2Jt − γπt(µt Jt +σt Zt)−λt

�

1− e−γπtβt
�

(Jt + Ut)
o

d t

− Zt dWt − Ut dMt ,

JT = exp(−γξ) .

(5.14)

Also, an admissible strategy π̂ is optimal for J0 if and only if π̂t attains the essential infimum in (4.8)
d t ⊗ dP− a.e.

Remark 5.7. Recall that D can be replaced by D′ in the above essential infimum.

Proof. For each k ∈ N, let us denote by (J k, Zk, Uk) the solution of the associated Lipschitz BSDE
(3.3) with C replaced by D′k. We make the following change of variables































yk
t =

1

γ
log(J k

t ) ,

zk
t =

1

γ

Zk
t

J k
t

,

uk
t =

1

γ
log
�

1+
Uk

t

J k
t−

�

.

It is clear that the process (yk, zk, uk) is a solution of the following quadratic BSDE

− d yk
t = gk(t, zk

t , uk
t )d t − zk

t dWt − uk
t dMt ; yk

T = −ξ ,

where

gk(s, z, u) = ess inf
π∈D′k

�γ

2

�

�

�πsσs −
�

z+
µs +λsβs

γ

�
�

�

�

2
+ |u−πsβs|γ

�

− (µs +λsβs)z−
|µs +λsβs|2

2γ

with |u−πβs|γ = λs
exp(γ(u−πβs))−1−γ(u−πβs)

γ
.

Since the sequence (yk)k∈N is nonincreasing, we can use a monotone stability convergence property
for quadratic BSDEs: the sequence (yk, zk, uk)k∈N converges to (y, z, u) in the following sense

E
�

sup
t∈[0,T]

|yk
t − yt |

�

+ |zk − z|L2(W )+ |uk − u|L2(M) → 0 ,
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where (y, z, u) is solution of

− d yt = g(t, zt , ut)d t − zt dWt − ut dMt ; yT = −ξ ,

with

g(s, z, u) = ess inf
π∈D̃

�γ

2

�

�

�πsσs −
�

z+
µs +λsβs

γ

�
�

�

�

2
+ |u−πsβs|γ

�

− (µs +λsβs)z−
|µs +λsβs|2

2γ
,

where D̃ = ∪kD′k. The proof of this result is based on the same arguments as those used in the proof
of Kobylanski’s monotone stability convergence property for quadratic BSDEs [22] adapted to the
case of jumps (as done in [28] in the case D = R).
By localization arguments (as in Appendix E), one can show that in the above essinf, the set D̃ can
be replaced by D (or even by D′).
Let us now define the following processes







J∗t = eγyt ,

Z∗t = γJ∗t zt ,

U∗t = (e
γut − 1)J∗t− .

Then, (J∗, Z∗, U∗) is a solution of BSDE (5.14).
Also, using the above convergence property and our characterization of J as the nonincreasing limit
of (J k)k∈N (see Theorem 4.2), we have

Jt = lim
k→∞

J k
t = lim

k→∞
eγyk

t = eγyt = J∗t a.s.

Moreover, the uniqueness of the Doob-Meyer decomposition (4.7) of J implies that Z∗t = Zt and
U∗t = Ut d t ⊗ dP− a.s. Hence, (J , Z , U) is a solution of BSDE (5.14). In other words, J is not only
a subsolution but a solution of this BSDE. Since by Theorem 4.1, J is the maximal subsolution of
BSDE (5.14), it follows that J is the maximal solution of BSDE (5.14).

6 Case of coefficients satisfying some exponential integrability condi-
tions

In this section, we consider the case of coefficients not necessarily bounded but satisfying some
integrability conditions. We first show that, in the particular case of strategies valued in a convex-
compact set, the value function is the unique solution of a BSDE. From this, we derive that in the
case of a convex set (but not necessarily compact), for each k, the process J k, is characterized as the
unique solution of a BSDE.

6.1 Case of strategies valued in a convex-compact set

Suppose that the set of admissible strategies is given by C (see Section 3), where C is a convex-
compact set with 0 ∈ C . Here, it simply corresponds to a closed interval of R since we are in the
one dimensional case. However, the following results clearly still hold in the multidimensional case
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(see Section 7.1). Let J(.) be the dynamic value function associated with Ct defined as in Section
3. Using some classical results of convex analysis (see for example Ekeland and Temam [11]), we
derive the following existence property:

Proposition 6.3. There exists a unique optimal strategy π̂ ∈ C for the optimization problem (2.5),
that is

J(0) = inf
π∈C

E
�

exp
�

− γ(XπT + ξ)
��

= E
�

exp
�

− γ(X π̂T + ξ)
��

.

Proof. C is strongly closed and convex in L2([0, T]×Ω). Hence, C is closed for the weak topology.
Moreover, since C is bounded, it is a compact for the weak topology.
We define the function φ(π) = E[exp(−γ(XπT +ξ))] on L2([0, T]×Ω). This function is convex and
continuous for the strong topology in L2([0, T]×Ω). By classical results of convex analysis, it is l.s.c.
for the weak topology. Now, there exists a sequence (πn)n∈N of C such that φ(πn)→minπ∈C φ(π)
as n→∞.
Since C is weakly compact, there exists an extracted sequence still denoted by (πn)n∈N which
converges for the weak topology to π̂ for some π̂ ∈ C . Now, since φ is l.s.c. for the weak topology,
it implies that

φ(π̂) ≤ lim infφ(πn) = min
π∈C

φ(π) .

Therefore, φ(π̂) = infπ∈C φ(π). The uniqueness of the optimal strategy derives from the convexity
property of the set C and the strict convexity property of the function x 7→ exp(−γx).

We now want to characterize the value function J(.) as the unique solution of a BSDE. For that, we
cannot apply the same techniques as in the case of bounded coefficients. Indeed, since the coeffi-
cients are not necessarily bounded, the generators of the associated BSDEs are no longer Lipschitz.
Hence, the existence and uniqueness properties do not a priori hold. Therefore, in order to show
the desired characterization of J(.), we will use the dynamic programming principle and also the
existence of an optimal strategy.
In order to have a dynamic programming principle similar to Proposition 4.1, we suppose that the
coefficients satisfy the following integrability condition:

Assumption 6.2. β is uniformly bounded and

E
h

exp
�

a

∫ T

0

|µt |d t
�i

+E
h

exp
�

b

∫ T

0

|σt |2d t
�i

< ∞ ,

with a = 2γ||C ||∞ and b = 8γ2||C ||2∞.

We remark that such an assumption is satisfied in some stochastic volatility models.

By classical computations, one derives that for any t ∈ [0, T] and any π ∈ Ct , the following integra-
bility property holds

E
�

sup
s∈[t,T]

exp
�

− γX t,π
s

��

< ∞ . (6.15)
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Using this integrability property, the process J(.) can be proved to satisfy the following dynamic
programming principle: J(.) is the largest G-adapted process such that exp(−γXπ)J(.) is a sub-
martingale for any π ∈ C with J(T ) = exp(−γξ), to get this property it is sufficient to mimick the
proof of Proposition 4.1.

We now show the following characterization of the dynamic value function:

Theorem 6.5. (Characterization of the dynamic value function)
There exist Z ∈ L2(W ) and U ∈ L2(M) such that (J , Z , U) is the unique solution in S +,∞× L2(W )×
L2(M) of BSDE (3.3).
Also, the optimal strategy π̂ ∈ C for J(0) is characterized by the fact that π̂t attains the essential
infimum in (3.3), d t ⊗ dP− a.e.

Proof of Theorem 6.5

Step 1: There exists a rcll version of J(.) which will be denoted by J . Let us give the proof,
which is very simple here because we have an existence result. More precisely, by Proposition 6.3,
there exists π̂ ∈ C which is optimal for J(0). Hence, by the optimality criterium (similar to that
of Proposition 4.1 with D replaced by C ), we have J(t) = exp(γX π̂t )E[exp(−γ(X π̂T + ξ))|Gt] for
any t ∈ [0, T] (in other words, π̂ is also optimal for J(t)). By classical results on the conditional
expectation, there exists a rcll version denoted by J .

Step 2: Let us prove that there exist Z ∈ L2(W ) and U ∈ L2(M) such that (J , Z , U) is a solution in
S +,∞× L2(W )× L2(M) of BSDE (3.3).
Note first that since 0 ∈ C , the process J satisfies 0 ≤ Jt ≤ 1, ∀ t ∈ [0, T] a.s. From the Doob-
Meyer decomposition, since the process J is a bounded rcll submartingale, there exist Z ∈ L2(W ),
U ∈ L2(M) and A a nondecreasing process with A0 = 0 such that

dJt = Zt dWt + Ut dMt + dAt .

Since for any π ∈ C the process exp(−γXπ)J(.) is a submartingale, one derives that

dAt ≥ ess sup
π∈C

n

γπt(µt Jt +σt Zt) +λt
�

1− e−γπtβt
�

(Jt + Ut)−
γ2

2
|πtσt |2Jt

o

d t .

Since, by Proposition 6.3, there exists an optimal strategy π̂ ∈ C , the optimality criterion (similar
to that of Proposition 4.1 with D replaced by C ) gives

dAt =
n

γπ̂t(µt Jt +σt Zt) +λt
�

1− e−γπ̂tβt
�

(Jt + Ut)−
γ2

2
|π̂tσt |2Jt

o

d t ,

which implies

dAt = ess sup
π∈C

n

γπt(µt Jt +σt Zt) +λt
�

1− e−γπtβt
�

(Jt + Ut)−
γ2

2
|πtσt |2Jt

o

d t .

Hence, (J , Z , U) is solution of BSDE (3.3).

Using similar arguments as in the proof of Theorem 4.1, one can derive that (J , Z , U) is the maximal
solution in S +,∞× L2(W )× L2(M) of BSDE (3.3).
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Step 3: Let us show that (J , Z , U) is the unique solution of BSDE (3.3). Let (J̄ , Z̄ , Ū) be a solution of
BSDE (3.3). By a measurable selection theorem, we know that there exists at least a strategy π̄ ∈ C
such that d t ⊗ dP− a.e.

ess inf
π∈C

nγ2

2
|πtσt |2 J̄t − γπt(µt J̄t +σt Z̄t)−λt

�

1− e−γπtβt
�

(J̄t + Ūt)
o

=
γ2

2
|π̄tσt |2 J̄t − γπ̄t(µt J̄t +σt Z̄t)−λt

�

1− e−γπ̄tβt
�

(J̄t + Ūt) .

Hence, BSDE (3.3) can be written under the form

dJ̄t =
n

γπ̄t(µt J̄t +σt Z̄t) +λt
�

1− e−γπ̄tβt
�

(J̄t + Ūt)−
γ2

2
|π̄tσt |2 J̄t

o

d t + Z̄t dWt + Ūt dMt .

Let us introduce Bt = exp(−γX π̄t ). Itô’s formula and rule product give

d(Bt J̄t) =
�

Bt Z̄t − γσtπ̄t Bt J̄t
�

dWt +
��

e−γβt π̄t − 1
�

Bt− J̄t + e−γβt π̄t Bt− Ūt
�

dMt .

By Assumption 6.2 and since J̄ is bounded, one can derive that the local martingale BJ̄ satisfies
E[sup0≤t≤T |Bt J̄t |]<∞. Hence, BJ̄ is a martingale and we get

J̄t = E
hBT

Bt
e−γξ

�

�

�Gt

i

= E
�

exp(−γ(X t,π̄
T + ξ))

�

�Gt
�

.

Hence,

J̄t ≥ ess inf
π∈C

E
�

exp(−γ(X t,π
T + ξ))

�

�Gt
�

= Jt .

Now, by step 2, J is the maximal solution of BSDE (3.3). This yields that for any t ∈ [0, T], Jt ≤ J̄t ,
a.s. Hence, Jt = J̄t , ∀ t ∈ [0, T] a.s. and π̄ is optimal. �

6.2 The non compact convex case

In this part, the set of admissible strategies is given by D, where D is a convex set with 0 ∈ D.
Under some exponential integrability conditions on the coefficients, by applying the result of the
previous section, we derive that for each k ∈ N, the process J k is the unique solution of a BSDE.
More precisely, we make the following integrability assumption.

Assumption 6.3. β is uniformly bounded, E[
∫ T

0
λt d t]<∞ and for any p > 0 we have

E
h

exp
�

p

∫ T

0

|µt |d t
�i

+E
h

exp
�

p

∫ T

0

|σt |2d t
�i

< ∞ .

First, recall that the value function associated with D
′
is equal to J , the one which is associated with

D. Using martingale inequalities and Assumption 6.3, one can show that all the bounded strategies
belong to D

′
(but not necessarily in D). By the same arguments as in the proof of Theorem 5.3, we

have

Proposition 6.4. (Characterization of the dynamic value function)
The value function J is characterized as the nonincreasing limit of the sequence (J k)k∈N as k tends to
+∞, where for each k, J k is the unique solution of BSDE (3.3) with C equal to the set of all strategies
taking their values in [−k, k]∩ D.
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7 Generalizations

In this section, we give some generalizations of the previous results. The proofs are not given,
but they are identical to the proofs of the case with a default time and a stock. In all this section,
elements of Rn, n≥ 1, are identified to column vectors, the superscript ′ stands for the transposition,
||.|| the square norm, 1 the vector of Rn such that each component of this vector is equal to 1. Let U
and V two vectors of Rn, U ∗ V denotes the vector such that (U ∗ V )i = UiVi for each i ∈ {1, . . . , n}.
Let X ∈ Rn, diag(X ) is the matrix such that diag(X )i j = X i if i = j else diag(X )i j = 0.

7.1 Several default times and several stocks

We consider a market defined on the complete probability space (Ω,G ,P) equipped with two
stochastic processes: an n-dimensional Brownian motion W and a p-dimensional jump process
N = (N i , 1 ≤ i ≤ p) with N i

t = 1τi≤t , where (τi)1≤i≤p are p default times. We denote by
G = {Gt , 0 ≤ t ≤ T} the completed filtration generated by these processes. This filtration is sup-
posed to be right-continuous and W is a G-Brownian motion. We make the following assumptions
on the default times:

Assumption 7.1. (i) The defaults do not appear simultaneously: P(τi = τ j) = 0 for i 6= j.

(ii) Each default can appear at any time: P(τi > t)> 0.

We denote by M j the compensated martingale of N j and Λ j its compensator for each j ∈ {1, . . . , p}.
We assume that Λ j is absolutely continuous w.r.t. Lebesgue’s measure, so that there exists a process
λ j such that Λ j

t =
∫ t

0
λ

j
s ds.

We consider a financial market which consists of one risk-free asset, whose price process is assumed
for simplicity to be equal to 1 at any time, and n risky assets, whose price processes (S i)1≤i≤n admit
p discontinuities at times (τ j)1≤ j≤p. Throughout the sequel, we consider that the price process
S := (S i)1≤i≤n evolves according to the equation

dSt = diag(St−)(µt d t +σt dWt + βt dNt) ,

with the classical assumptions:

Assumption 7.2.

(i) µ, σ, β and λ are uniformly bounded G-predictable processes such that σ is nonsingular for
any t ∈ [0, T],

(ii) there exist d coefficients θ1, . . . ,θ d that are G-predictable processes such that

µi
t +

p
∑

j=1

λ
j
tβ

i, j
t =

d
∑

j=1

σ
i, j
t θ

j
t , ∀ t ∈ [0, T] a.s. , 1≤ i ≤ n ,

we suppose that θ j is bounded,

(iii) the process β satisfies β i, j
τ j
>−1 a.s. for each i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.
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Using the same techniques as in the previous sections, all the results stated in the previous sections
can be generalized to this framework. In particular, we have:

Theorem 7.1. There exist Z ∈ L2(W ) and U ∈ L2(M) such that (J , Z , U) is the maximal solution in
S +,∞× L2(W )× L2(M) of the BSDE











− dJt = ess inf
π∈D

nγ2

2
||π′tσt ||2Jt − γπ′t(µt Jt +σt Zt)−

�

1− e−γπ
′
tβt
�

(λt Jt +λt ∗ Ut)
o

d t

− Zt dWt − Ut dMt ,

JT = exp(−γξ) .

7.2 Poisson jumps

We consider a market defined on the complete probability space (Ω,G ,P) equipped with two
independent processes: a unidimensional Brownian motion W and a real-valued Poisson point
process p defined on [0, T] × R\{0}, we denote by Np(ds, d x) the associated counting measure,
such that its compensator is N̂p(ds, d x) = n(d x)ds and the Levy measure n(d x) is positive and
satisfies n({0}) = 0 and

∫

R\{0}(1 ∧ |x |)
2n(d x) < ∞. We denote by G = {Gt , 0 ≤ t ≤ T}

the completed filtration generated by the two processes W and Np. We denote by Ñp(ds, d x)
(Ñp(ds, d x) = Np(ds, d x)− N̂p(ds, d x)) the compensated measure, which is a martingale random
measure.

The financial market consists of one risk-free asset, whose price process is assumed to be equal to 1,
and one single risky asset, whose price process is denoted by S. In particular, the stock price process
satisfies

dSt = St−

�

µt d t +σt dWt +

∫

R\{0}
βt(x)Np(d t, d x)

�

.

µ, σ and β are assumed to be uniformly bounded G-predictable processes. Moreover, the process σ
(resp. β) satisfies σt > 0 (resp. βt(x) > −1 a.s.). This framework corresponds to that considered
in [28].

Using the same techniques as in the previous sections, all the results stated in the previous sections
can be generalized to this framework. In particular, we have:

Theorem 7.2. There exist Z ∈ L2(W ) and U ∈ L2(Ñp) such that (J , Z , U) is the maximal solution in
S +,∞× L2(W )× L2(Ñp) of the BSDE






















− dJt = ess inf
π∈D

nγ2

2
|πtσt |2Jt − γπt(µt Jt +σt Zt)−

∫

R\{0}

�

1− e−γπt x�(Jt + Ut(x))n(d x)
o

d t

− Zt dWt −
∫

R\{0}
Ut(x)Ñp(d t, d x) ,

JT = exp(−γξ) .

Appendix
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A Additional comments on the set of admissibility

We first make some comments concerning the admissibility set D
′
.

We first stress on that the integrability condition E[exp(−γX t,π
s )] < ∞ is required to ensure the

dynamic programming principle in the form of Proposition 4.1 (see Remark 4.1). Note that if,
instead of the p-integrability condition (4.4), we only had the 1-integrability condition, then the
property of closedness by binding would fail. Also, a uniform integrability property as in (4.4) is
required to obtain the characterization of the dynamic value function via a BSDE (see Remark 4.5).
The set D′ thus appears as a relatively large suitable set which ensures the dynamics results and the
characterization of the dynamic value function via a BSDE provided in this paper.

Also, the p-exponential integrability condition (4.4) is not so surprising. Indeed, it is well-known
that the exponential utility maximization problem is related to quadratic BSDEs (see for example
Rouge and El Karoui [33]) and that this type of p-exponential integrability condition is often made
to solve quadratic BSDEs (see for example Briand and Hu [7]).

Moreover, in the case where the coefficients are bounded or satisfy some exponential integrabil-
ity assumption (see Assumption 6.3), by using martingale inequalities, one can show that all the
bounded strategies belong to D

′
(but not necessarily to D). This, with Remark 4.6, yields that the

value function J associated with D is not only equal to that associated with D
′
, but also to that as-

sociated with the set consisting in all the bounded strategies. These properties are interesting from
a financial point of view.

Let us now make some additional remarks concerning the particular case of non constrained strate-
gies that is, the case where D = R.

Recall that in their paper, Delbaen et al. [8] consider the set of strategies Θ2 defined by

Θ2 :=
n

π , E
�

exp
�

− γ(XπT + ξ)
��

<+∞ and Xπ is a Q -martingale for all Q ∈ P f

o

,

where P f is the set of absolutely continuous local martingale measures Q such that its entropy
H(P|Q) is finite.

In general, there is no existence result on the set D neither on D
′

whereas there is one on the set
Θ2. Recall that this existence result has been proven by [8]. More precisely, under the assumption
that the price process is locally bounded, using the dual approach, these authors show the existence
of an optimal strategy on the set Θ2.

We have the following important point: the value function associated with Θ2 coincides with that
associated with D. More precisely,

Lemma A.1. The value function V (0,ξ) associated with D (with D = R) defined by

V (0,ξ) = − inf
π∈D

E
�

exp
�

− γ(XπT + ξ)
��

, (A.1)

is equal to the one associated with Θ2.

Proof. This property follows from the results of [8]. More precisely, let V 2(0,ξ) be the value func-
tion associated with Θ2. Let us introduce Θ3 the set of strategies such that the associated wealth
process is bounded and let V 3(0,ξ) be the value function associated with Θ3. By the results of [8],
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V 2(0,ξ) = V 3(0,ξ). Since Θ3 ⊂ D, we have V (0,ξ)≥ V 3(0,ξ). And by a classical localization argu-
ment (quite similar to the one used in Appendix B), one can show that V (0,ξ) = V 3(0,ξ). Hence,
V (0,ξ) = V 2(0,ξ).

In Section 4.1, we have seen that for the sets D and D
′
, the dynamic extension of the optimization

problem was easy. However, in the case of the set Θ2, things are not so clear. Actually, this is partly
linked to the fact that the sets D and D

′
are closed by binding whereas Θ2 is not because of the

integrability condition E[exp(−γ(XπT + ξ))] < +∞. One could naturally think of considering the
space Θ

′

2 := {π , Xπ is a Q−martingale for all Q ∈ P f } (instead of Θ2) but this set is not really
appropriate here: in particular it does not allow to have the dynamic programming principle (in the
form of Proposition 4.1) because in this case, the Lebesgue theorem cannot be applied (see Remark
4.1).
Recall that the property of closedness by binding of the setD

′
can be verified by using the assumption

of p-integrability (4.4) and Cauchy-Schwarz inequality (see Appendix C for details). We stress on
that the weaker integrability condition E[exp(−γXπT )]<+∞ is not sufficient to ensure this property.

B Proof of Lemma 4.1

We have to prove that the dynamic value function J(.) associated with D coincides a.s. with the one
associated with D′.
Fix t ∈ [0, T]. Put J

′
(t) := ess inf

π∈D′t
E[exp(−γ(X t,π

T +ξ))|Gt], whereD
′

t is the set of the restrictions

to [t, T] of the strategies of D′. Since Dt ⊂ D
′

t , it follows that J
′
(t) ≤ J(t) a.s. To prove the other

inequality, it is sufficient to show that for any π ∈ D
′

t , there exists a sequence (πn)n∈N of Dt such
that πn→ π, d t ⊗ dP a.s. Let us define πn by

πn
s = πs1s≤τn

, ∀ s ∈ [t, T] ,

where τn is the stopping time defined by τn = inf{s ≥ t, |X t,π
s | ≥ n}.

It is clear that for each n ∈ N, πn ∈ Dt . Thus, exp(−γX t,πn

T ) = exp(−γX t,π
T∧τn
)

a.s.−→ exp(−γX t,π
T ) as

n → +∞. By definition of D
′

t , E[sups∈[t,T] exp(−γX t,π
s )] < ∞. Hence, by the Lebesgue theorem,

E[exp(−γ(X t,πn

T + ξ))|Gt]→ E[exp(−γ(X t,π
T + ξ))|Gt] a.s. as n→ +∞. Therefore, we have J(t)≤

J
′
(t) a.s.

C Proof of the closedness by binding of D ′

Lemma C.1. Let π1,π2 be two admissible strategies of D
′
and s ∈ [0, T]. The strategy π3 defined by

π3
t =

(

π1
t if t ≤ s ,

π2
t if t > s ,

belongs to D
′
.

Proof. For any u ∈ [0, T], we have for any p > 1

1459



(i) if u> s, then

E
h

sup
r∈[u,T]

exp
�

− γpX u,π3

r

�

i

= E
h

sup
r∈[u,T]

exp
�

− γpX u,π2

r

�

i

< ∞ ,

(ii) if u≤ s, then

E
h

sup
r∈[u,T]

exp
�

− γpX u,π3

r

�

i

≤ E
h

sup
r∈[u,T]

exp
�

− γpX u,π1

r

�

i

+E
h

sup
r∈[s,T]

exp
�

− γp(X u,π1

s + X s,π2

r )
�

i

.

By Cauchy-Schwarz inequality,

E
h

sup
r∈[s,T]

exp
�

− γp(X u,π1

s + X s,π2

r )
�

i

≤ E
h

sup
r∈[u,T]

exp
�

− 2γpX u,π1

r

�

i1/2

×E
h

sup
r∈[s,T]

exp
�

− 2γpX s,π2

r

�

i1/2
.

Hence, E[supr∈[u,T] exp(−γpX u,π3

r )]<∞.

D Proof of the existence of a rcll modification of J

The proof is not so simple since we do not know if there exists an optimal strategy in D. Let
D = [0, T]∩Q, where Q is the set of rational numbers. Since J(.) is a submartingale, the mapping
t → J(t,ω) defined on D has for almost every ω ∈ Ω and for any t of [0, T[ a finite right limit

J(t+,ω) = lim
s∈D,s↓t

J(s,ω)

(see Proposition 1.3.14 in [21] or Chapter 6 in [9]). It is possible to define J(t+,ω) for any (t,ω) ∈
[0, T]×Ω by J(T+,ω) := J(T,ω) and

J(t+,ω) := lim sup
s∈D,s↓t

J(s,ω) , t ∈ [0, T[ .

From the right-continuity of the filtration G, the process J(.+) is G-adapted. It is possible to show
that J(.+) is a G-submartingale and even that the process exp(−γXπ)J(.+) is a G-submartingale for
any π ∈ D. Indeed, from Proposition 4.1, for any s ≤ t and for each sequence of rational numbers
(tn)n∈N converging down to t, we have

E
�

exp(−γXπtn
)J(tn)

�

�Gs
�

≥ exp(−γXπs )J(s) a.s.

Let n tend to +∞. By the Lebesgue theorem, we have that for any s ≤ t,

E
�

exp(−γXπt )J(t
+)
�

�Gs
�

≥ exp(−γXπs )J(s) a.s. (D.1)
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This implies that for any s ≤ t, E[exp(−γXπt )J(t
+)|Gs] ≥ exp(−γXπs )J(s

+) a.s., which gives the
submartingale property of the process exp(−γXπ)J(.+). Using the right-continuity of the filtration
G and inequality (D.1) applied to π= 0 and s = t, we get

J(t+) = E
�

J(t+)
�

�Gt
�

≥ J(t) a.s.

On the other hand, by the characterization of J(.) (see Proposition 4.1), and since the process
exp(−γXπ)J(.+) is a G-submartingale for any π ∈ D, we have that for any t ∈ [0, T],

J(t+) ≤ J(t) a.s.

Thus, for any t ∈ [0, T],

J(t+) = J(t) a.s.

Furthermore, the process J(.+) is rcll. The result follows by taking Jt = J(t+).

E Proof of equality (4.13)

For any π ∈ D, we define the strategy πk
t = πt1|πt |≤k for each k ∈ N. The strategy πk is uniformly

bounded but not necessarily admissible. For that we define for each (k, n) ∈ N×N the stopping time

τk,n := inf{t ≥ 0, |Xπ
k

t | ≥ n} ,

and the strategy πk,n
t := πk

t1t≤τk,n
. By construction, it is clear that the strategy πk,n ∈ Dk for each

(k, n). Since πt = limk limnπ
k,n
t d t ⊗ dP a.s., the following equality

ess inf
π∈D̄

nγ2

2
π2

tσ
2
t J̄t − γπt(µt J̄t +σt Z̄t)−λt(1− e−γπtβt )(J̄t + Ūt)

o

=

ess inf
π∈D

nγ2

2
π2

tσ
2
t J̄tγπt − (µt J̄t +σt Z̄t)−λt(1− e−γπtβt )(J̄t + Ūt)

o

holds d t ⊗ dP a.s.
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