Translator Disclaimer
2009 Concentration inequalities for $s$-concave measures of dilations of Borel sets and applications
Matthieu Fradelizi
Author Affiliations +
Electron. J. Probab. 14: 2068-2090 (2009). DOI: 10.1214/EJP.v14-695

Abstract

We prove a sharp inequality conjectured by Bobkov on the measure of dilations of Borel sets in the Euclidean space by a $s$-concave probability measure. Our result gives a common generalization of an inequality of Nazarov, Sodin and Volberg and a concentration inequality of Guédon. Applying our inequality to the level sets of functions satisfying a Remez type inequality, we deduce, as it is classical, that these functions enjoy dimension free distribution inequalities and Kahane-Khintchine type inequalities with positive and negative exponent, with respect to an arbitrary $s$-concave probability measure

Citation

Download Citation

Matthieu Fradelizi. "Concentration inequalities for $s$-concave measures of dilations of Borel sets and applications." Electron. J. Probab. 14 2068 - 2090, 2009. https://doi.org/10.1214/EJP.v14-695

Information

Accepted: 28 September 2009; Published: 2009
First available in Project Euclid: 1 June 2016

zbMATH: 1198.46008
MathSciNet: MR2550293
Digital Object Identifier: 10.1214/EJP.v14-695

Subjects:
Primary: 46B07
Secondary: 26D05, 46B09, 52A20, 60B11

JOURNAL ARTICLE
23 PAGES


SHARE
Vol.14 • 2009
Back to Top