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Abstract

We construct a martingale which has the same marginals as the arithmetic average of geometric

Brownian motion. This provides a short proof of the recent result due to P. Carr et al [7] that

the arithmetic average of geometric Brownian motion is increasing in the convex order. The

Brownian sheet plays an essential role in the construction. Our method may also be applied

when the Brownian motion is replaced by a stable subordinator.
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1 Introduction and Main Result

To (Bt , t ¾ 0) a 1-dimensional Brownian motion, starting from 0, we associate the geometric Brow-

nian motion:

Et = exp(Bt −
t

2
), t ¾ 0

and its arithmetic average:

1

t
At =

1

t

∫ t

0

ds Es, t ¾ 0

A recent striking result by P. Carr et al [7] is the following:

Theorem 1. i) The process (1

t
At , t ¾ 0) is increasing in the convex order, that is: for every convex

function g : R+→ R, such that E
�

|g
�

1

t
At

�

|
�

<∞ for every t > 0, the function:

t → E
�

g

�

1

t
At

��

is increasing

ii) In particular, for any K ¾ 0, the call and put prices of the Asian option which we define as:

C+(t, K) = E

�

�

1

t
At − K

�+
�

and C−(t, K) = E

�

�

K −
1

t
At

�+
�

are increasing functions of t ¾ 0.

Comments on Theorem 1

a) One of the difficulties inherent to the proof of ii), say, is that the law of At for fixed t, is compli-

cated, as can be seen from the literature on Asian options.

b) A common belief among practitioners is that any “decent” option price should be increasing with

maturity. But examples involving “strict local martingales” show that this need not be the case. See

e.g. Pal-Protter [1], Delbaen-Schachermayer [2]. On the other hand Theorem 1 offers a proof of

the increase in maturity for Asian options.

The proof of Theorem 1 as given in [7] (see also [8] for a slight variation) is not particularly easy, as

it involves the use of either a maximum principle argument (in [7]) or a supermartingale argument

(in [8]). We note that the proofs given in [7] and [8] show that for any individual convex function g,

the associated function G(t) = E[g(1

t
At)] is increasing. In contrast, in the present paper we obtain

directly the result of Theorem 1 as a consequence of Jensen’s inequality, thanks to the following

Theorem 2. i)There exists a filtered probability space (Ω,G ,Gt ,Q) and a continuous martingale

(Mt , t ¾ 0) on this space such that:

for every fixed t ¾ 0, 1

t
At

(law)
= Mt

ii)More precisely, if (Wu,t ,u ¾ 0, t ¾ 0) denotes the standard Brownian sheet and Fu,t = σ{Wv,s, v ¶

u, s ¶ t} its natural increasing family of σ-fields, one may choose:

Mt =

∫ 1

0

duexp(Wu,t −
ut

2
) , t ≥ 0

which is a continuous martingale with respect to (F∞,t , t ¾ 0)
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We note that in [9] several methods have been developed to construct martingales with given

marginals, an important problem considered by Strassen, Doob, Kellerer among others. See, e.g.,

references in [9]. Theorem 2 may also be considered in this light, providing a martingale whose

one-dimensional marginals are those of (1

t
At , t ¾ 0 ). In Section 2, we give our (very simple!) proof

of Theorem 2, and we comment on how we arrived gradually at the formulation of Theorem 2. We

also obtain a variant of Theorem 2 when (exp(Bt − t

2
), t ¾ 0) is replaced by (exp(Bt − at), t ¾ 0)

for any a ∈ R.

In Section 3, we study various possible extensions of Theorem 2, i.e. : when the original Brownian

motion (Bt , t ¾ 0) is replaced by certain Lévy processes, in particular stable subordinators and

self-decomposable Lévy processes. In Section 4, we study some consequences of Theorem 1.

2 Proof of Theorem 2, and Comments

(2.1) We first make the change of variables: u= vt, in the integral

At =

∫ t

0

duexp(Bu−
u

2
)

We get: 1

t
At =
∫ 1

0
dv exp(Bvt − vt

2
)

It is now immediate that since, for fixed t,

(Bvt , v ¾ 0)
(law)
= (Wv,t , v ¾ 0), then:

for fixed t,
1

t
At

(law)
=

∫ 1

0

dv exp(Wv,t −
vt

2
)

Denoting by (Mt) the right-hand side, it remains to prove that it is a

(F∞,t , t ¾ 0) martingale. However, let s < t, then:

E
�

Mt

�

�F∞,s

�

=

∫ 1

0

dv E

�

exp(Wv,t −
vt

2
)
�

�F∞,s

�

.

Since (Wv,t −Wv,s) is independent from F∞,s, we get:

E

�

exp(Wv,t −
vt

2
)
�

�F∞,s

�

= exp(Wv,s −
vs

2
)

so that, finally: E
�

Mt

�

�F∞,s

�

= Ms.

This ends the proof of Theorem 2.

Remark: The same argument of independence allows to show more generally that, if f : R×R+→ R
is space-time harmonic, i.e. ( f (Bt , t), t ¾ 0) is a martingale, then:

M
( f )
t

de f
=

∫ 1

0

du f (Wu,t ,ut)
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is a (F∞,t , t ¾ 0) martingale. Thus in particular, for any n ∈ N, one gets:

for fixed t,
1

t

∫ t

0

du Hn(Bu,u)
(law)
= M

(n)
t

where: M
(n)
t =

∫ 1

0

du Hn(Wu,t ,ut)

and Hn(x , t) = tn/2hn(
xp
t
) denotes the nth Hermite polynomial in the two variables (x , t) ∈ R×R+

Consequently, in that generality,

(
1

t

∫ t

0

du f (Bu,u), t ¾ 0)

is increasing in the convex order sense.

(2.2) At this point, we feel that a few words of comments on how we arrived gradually at

the statement of Theorem 2 may not be useless.

(2.2.1) We first recall the basic result of Rothschild and Stiglitz [5]. The notation ¶cv means

domination in the convex order sense; see [3], [4].

Proposition 1. Two variables X and Y on a probability space satisfy:

X ¶cv Y if and only if on some (other) probability space, there exists X̂ and Ŷ such that:

(i) X
(law)
= X̂ (ii) Y

(law)
= Ŷ (iii) E

�

Ŷ
�

�X̂
�

= X̂

For discussions, variants, amplifications of the RS result, we refer the reader to the books of Shaked-

Shantikumar ([3], [4]). Thus in order to show that a process (Ht , t ¾ 0) is increasing in the convex

order sense, one is led naturally to look for a martingale (M H
t , t ¾ 0) such that:

for fixed t, Ht

(law)
= M H

t

In fact the papers of Strassen, Doob and Kellerer, refered in [9], show that there exists such a

martingale (M H
t , t ≥ 0).

(2.2.2) The following variants of Proposition 1 shall lead us to consider properties of the process:

1

t
A
(a)
t ≡

1

t

∫ t

0

ds exp(Bs − as)

for any a ∈ R.

The notation [icv], resp. [dcv] used below indicates the notion of "increasing convex ", resp. "de-

creasing convex" order. (See e.g. [3], [4] for details; in particular, Theorem 2.A.3 in [3] and

Theorem 3.A.4 in [4])

Proposition 2. Two variables X and Y on a probability space satisfy:

X ¶[icv] Y if and only if there exists on some (other) probability space, a pair (X̂ , Ŷ ) such that:

(i) X
(law)
= X̂ (ii) Y

(law)
= Ŷ (iii)↑ X̂ ¶ E

�

Ŷ
�

�X̂
�
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Proposition 3. Same as Proposition 2, but where [icv] is replaced by [dcv], and (iii)↑ by: (iii)↓ X̂ ¾

E
�

Ŷ
�

�X̂
�

We now apply Propositions 2 and 3 to the process (1

t
A
(a)
t , t ¾ 0)

Theorem 3. 1) Let a ¶ 1

2
. Then the process (1

t
A
(a)
t , t ¾ 0) increases in the [icv] sense

2) Let a ¾ 1

2
. Then, the process (1

t
A
(a)
t , t ¾ 0) increases in the [dcv] sense.

We leave the details of the proof of Theorem 3 to the reader as it is extremely similar to that of

Theorem 2.

(2.2.3) The following statement is presented here in order to help with our explanation of

how we arrived gradually at the statement of Theorem 2.

Proposition 4. Let (Zu) and (Z
′
u) denote two processes. Then under obvious adequate integrability

assumptions, we have:

∫ 1

0

du Zu E
�

Z
′

u

�

�Z
�

¶cv

∫ 1

0

du Zu Z
′

u

Again, the proof is an immediate application of Jensen’s inequality.

We now explain how we arrived at Theorem 2:

we first showed that, for 0< σ
′
< σ, there is the inequality:

I
σ
′ ≡
∫ 1

0

duexp(σ
′
Bu−

σ
′2

2
u)¶cv

∫ 1

0

duexp(σBu−
σ2u

2
)≡ Iσ (2)

Indeed, to obtain (2) as a consequence of Proposition 4, it suffices to write: (σBu,u ¾ 0)
(law)
=

(σ
′
Bu+ γβu,u¾ 0) where (βu,u¾ 0), is a BM independent from (Bu,u¾ 0)

and σ2 = (σ
′
)2+ γ2, i.e. γ=

p

σ2− (σ′)2
Once we had made this remark, it seemed natural to look for a "process" argument (with respect to

the parameter σ), and this is how the Brownian sheet comes naturally into the picture.

3 Variants involving stable subordinators and self-decomposable Lévy

processes

(3.1) Here is an analogue of Theorem 1 when we replace Brownian motion by a (α)-stable

subordinator (Tt), for 0< α < 1, whose law is characterized by:

E
�

exp(−λTt)
�

= exp(−tλα) , t ¾ 0, λ ¾ 0

Theorem 4. The process 1

t
A
(α)
t

de f
= 1

t

∫ t

0
ds exp(−λTs + sλα) is increasing for the convex order.

1536



We prove Theorem 4 quite similarly to the way we proved Theorem 1, namely: there exists a

α-stable sheet (Ts,t , s ¾ 0, t ¾ 0) which may be described as follows:

(T (A),A∈B(R2
+), |A|<∞) is a random measure such that:

i) for all A1, ...,Ak disjoint Borel sets with |Ai |<∞,

T (A1), .., T (Ak) are independent random variables,

ii) E
�

exp(−λT (Ai))
�

= exp(−|Ai |λα),λ ≥ 0.

(T (Ai) is an α-stable random variable)

Then we denote Ts,t = T (Rs,t), with Rs,t ≡ [0, s]× [0, t]

See, e.g., [6] for the existence of such measures. The result of Theorem 4 is a consequence of:

Theorem 5. The process M
(α)
t =
∫ 1

0
duexp(−λTu,t + utλα) is a F (α)∞,t ≡ σ{Th,k,h¾ 0, k ¶ t} martin-

gale, and for fixed t:
1

t
A
(α)
t

(law)
= M

(α)
t

(3.2) We now consider a self-decomposable Lévy process.

(See e.g., Jeanblanc-Pitman-Yor [11] for a number of properties of these processes.)

Assuming that: ∀α > 0, E
�

exp(αXu)
�

<∞, then:

E
�

exp(αXu)
�

= exp(uϕ(α)), for some function ϕ.

In this framework, we show the following.

Theorem 6. The process (Iα =
∫ 1

0
duexp(αXu− uϕ(α)), α¾ 0) is increasing in the convex order.

Proof. Since (Xu,u ¾ 0) is self-decomposable, there exists, for any c ∈ (0,1), another Lévy process

(η(c)u ,u¾ 0) such that:

(Xu,u ¾ 0)
(law)
= (cXu + η

(c)
u ,u ¾ 0), with independence of X and η(c). Consequently, we obtain, for

any (α, c) ∈ (0,∞)× (0,1)

Iα
(law)
=

∫ 1

0

duexp(αcXu− uϕ(αc))exp(αη(c)u − uϕc(α)) (3)

where on the RHS of (3), X and η(c) are assumed to be independent.

Denote by I
′
α the RHS of (3), then :

E
�

I
′

α

�

�X
�

=

∫ 1

0

duexp(αcXu− uϕ(αc)) = Iαc

which implies, from Jensen’s inequality: for every convex function g,

E
�

g(Iαc)
�

¶ E
�

g(Iα)
�
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However we have not found, in this case, a martingale (µα, α¾ 0) such that:

for every fixed α, Iα
(law)
= µα

Remark: We note that the above argument is a particular case of the argument presented in Propo-

sition 4, which involves two processes Z and Z
′
.

4 Some consequences

Since the process (1

t
At , t ¾ 0) is increasing in the convex order, we find, by differentiating the

increasing function of t: E[(K − 1

t
At)
+]

for every K ¾ 0 and t ¾ 0, E

�

1(
1

t
At < K) (Et −

1

t
At)

�

¾ 0,

although, it is not true that: E
�

Et

�

�

1

t
At

�

is greater than or equal to 1

t
At , since this would imply

that: 1

t
At = Et , as the common expectation of both quantities is 1.

(4.1) More generally, the following proposition presents a remarkable consequence of the

increasing property of the process (1

t
At , t ≥ 0) in the convex order sense.

Proposition 5. For every increasing Borel function ϕ : R+→ R+ there is the inequality:

E

�

ϕ

�

1

t
At

��

1

t
At

��

≤ E
�

ϕ

�

1

t
At

�

Et

�

. (⋆)

Equivalently,

E

�

ϕ

�

1

t
At

��

1

t
At

��

≤ E
�

ϕ

�

1

t
Ãt

��

, (⋆⋆)

where Ãt =
∫ t

0
duexp(Bu+

u

2
)

Proof. We may assume ϕ bounded. Then, g(x) =
∫ x

0
d yϕ(y) is convex (its derivative is increasing),

and formula (⋆) follows by differentiating the increasing function:

t → E
�

g

�

1

t
At

��

.

Formula (⋆⋆) follows from (⋆) by using the Cameron-Martin relationship between (Bu,u ≤ t) and

(Bu+ u,u≤ t)

(4.2) As a partial check on the previous result (⋆), we now prove directly that, for every integer

n≥ 1, t → E[(1

t
At)

n] is increasing and that: E[(1

t
At)

n]≤ E[(1

t
At)

n−1Et]
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Here are two explicit formulae for: αn(t) = E[(
1

t
At)

n], and βn(t) = E[(
1

t
At)

n−1Et].

αn(t) =
n!

tn
E[

∫ t

0

ds1

∫ t

s1

ds2...

∫ t

sn−1

dsn exp((Bs1
+ ...+ Bsn

)−
1

2
(s1+ ..+ sn))]

=
n!

tn

∫ t

0

ds1

∫ t

s1

ds2...

∫ t

sn−1

dsn exp(
1

2
C(s1, .., sn))

where C(s1, .., sn) = E[(Bs1
+ Bs2

+ ..+ Bsn
)2]− (s1+ ...+ sn)

= 2
∑

1≤i≤n

si(n− i) (¾ 0)

Consequently:

αn(t) = n!

∫ 1

0

du1...

∫ 1

un−1

dun exp(
t

2
C(u1, ...,un)) (3)

from which it follows that αn(t) is increasing in t.

Now βn(t) =
(n− 1)!

tn−1
×

∫ t

0

ds1...

∫ t

sn−1

dsn−1E

�

exp((Bs1
+ ...+ Bsn−1

+ Bt)−
1

2
(s1+ ...+ sn−1+ t))

�

= (n− 1)!

∫ 1

0

du1...

∫ 1

un−2

dun−1 exp(
t

2
C(u1, ...,un−1, 1)) (4)

We have already seen from formula (3), that αn(t) is increasing in t; consequently: α
′
n(t) ≥ 0 and

by definition of αn:

α
′

n(t) = nE

�

�

1

t
At

�n−1�

−
1

t2
At +
Et

t

�

�

=
n

t
{βn(t)−αn(t)}

Hence: βn(t)≥ αn(t).

(4.3) To conclude this paper, let us connect the properties of increase of the functions αn

and βn with our method of proving Theorem 1 using the Wiener sheet, as performed in Theorem 2.

Indeed, the same argument as in Theorem 2 shows that for any positive measure µ(du1, ..., dun) on

[0,1]n the process:

∫

µ(du1, .., dun)

n
∏

i=1

E(ui t)
(5)
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admits the same one-dimensional marginals as the (Wt) submartingale

∫

µ(du1, .., dun)

n
∏

i=1

E (ui)
t (W ) (6)

where E (u)t (W ) = exp(Wu,t − ut

2
).

Hence, the common expectation of (5) and (6) increases with t; αn(t) and βn(t) constitute particu-

lar examples of this.

A final Note: Pushing further the use of the Brownian sheet and a variation from the construction

of the Ornstein-Uhlenbeck process on the canonical path-space C([0,1];R) in terms of that sheet,

Hirsch-Yor [10] obtain a large class of processes, adapted to the brownian filtration, which admit

the one-dimensional marginals of a martingale.
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