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Abstract

Rates of molecular evolution along phylogenetic trees are influenced by mutation, selection
and genetic drift. Provided that the branches of the tree correspond to lineages belonging to
genetically isolated populations (e.g., multi-species phylogenies), the interplay between these
three processes can be described by analyzing the process of substitutions to the common
ancestor of each population. We characterize this process for a class of diffusion models from
population genetics theory using the structured coalescent process introduced by Kaplan et
al. (1988) and formalized in Barton et al. (2004). For two-allele models, this approach allows
both the stationary distribution of the type of the common ancestor and the generator of
the common ancestor process to be determined by solving a one-dimensional boundary value
problem. In the case of a Wright-Fisher diffusion with genic selection, this solution can be
found in closed form, and we show that our results complement those obtained by Fearnhead
(2002) using the ancestral selection graph. We also observe that approximations which ne-
glect recurrent mutation can significantly underestimate the exact substitution rates when
selection is strong. Furthermore, although we are unable to find closed-form expressions for
models with frequency-dependent selection, we can still solve the corresponding boundary
value problem numerically and then use this solution to calculate the substitution rates to
the common ancestor. We illustrate this approach by studying the effect of dominance on
the common ancestor process in a diploid population. Finally, we show that the theory can
be formally extended to diffusion models with more than two genetic backgrounds, but that
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it leads to systems of singular partial differential equations which we have been unable to
solve.

Key words: Common-ancestor process, diffusion process, structured coalescent, substitu-
tion rates, selection, genetic drift.
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1 Introduction

One of the key insights to emerge from population genetics theory is that the effectiveness
of natural selection is reduced by random variation in individual survival and reproduction.
Although the expected frequency of a mutation will either rise or fall according to its effect
on fitness, evolution in finite populations also depends on numerous chance events which affect
individual life histories in a manner independent of an individual’s genotype. Collectively, these
events give rise to a process of stochastic fluctuations in genotype frequencies known as genetic
drift (Gillespie 2004). For example, a mutation which confers resistance to a lethal infection will
still decline in frequency if, by chance, disproportionately many of the individuals carrying that
mutation are killed in a severe storm. Moreover, if the mutation is initially carried by only a
few individuals, then it may be lost altogether from the population following such a catastrophe.
Because it is counterintuitive that populations may evolve to become less fit, there has been
much interest in the consequences of stochasticity for other aspects of adaptive evolution, such
as the origin of sex (Poon and Chao 2004; Barton and Otto 2005), genome composition (Lynch
and Conery 2003), and speciation and extinction (Whitlock 2000; Gavrilets 2003).

Testing these theories requires quantifying genetic drift and selection in natural populations.
Although selection and drift can sometimes be inferred from historical changes in the distribution
of a trait (Lande 1976) or genotype frequencies (O’Hara 2005), population genetical processes
are mainly investigated using sets of contemporaneously sampled DNA sequences. For our
purposes, it is useful to distinguish two scenarios. On the one hand, sequences sampled from
a single population will usually share a common history shaped by selection and drift, and
must be analyzed using models which take that shared history into account. One approach is
to reduce the data to a set of summary statistics whose distribution can be predicted using
population genetical models (Sawyer and Hartl 1992; Akashi 1995; Bustamante et al. 2001).
Alternatively, more powerful analyses can be designed by using coalescent models and Monte
Carlo simulations to estimate the joint likelihood of the data and the unobserved genealogy
under different assumptions about selection and drift (Stephens and Donnelly 2003; Coop and
Griffiths 2004). In both cases, the selection coefficients estimated with these methods will reflect
the combined effects of selection and genetic drift in the population from which the sample was
collected.

In contrast, when the data consists of sequences sampled from different species, then the time
elapsed since any of the ancestors last belonged to a common population may be so great that
the genealogy of the sample is essentially unrelated to the population genetical processes of
interest. In this case, the genealogy is usually inferred using purely phylogenetic methods, and
evolutionary inferences are facilitated by making certain simplifying assumptions about the way
in which natural selection influences the substitution process along branches of this tree, i.e.,
the process of mutations to the ancestral lineages of the members of the sample. It is usually
assumed that the substitution process along each branch of the tree is a Markov process, and
that substitutions by beneficial or deleterious mutations occur at rates which are either greater
than or less than the neutral mutation rate (Yang 1996). While the first assumption is true only
when evolution is neutral, i.e., mutations do not affect fitness, the latter assumption reflects
the fact that mutations which either increase or decrease the likelihood of a lineage persisting
into the future are likely to be over- or under-represented, respectively, on lineages which do
in fact persist. For example, it is often possible to identify proteins which are under unusually
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strong selection simply by comparing the rates of substitutions which change the amino acid
composition of the protein with those which do not (Nielsen and Yang 1998).

An important limitation of purely phylogenetic analyses of selection is that the relationship
between the phylogenetic rate parameters and population genetical quantities is usually obscure.
One exception is when less fit variants are in fact lethal, so that selection is fully efficient and
certain substitutions are never observed in live individuals. Alternatively, if the mutation rates
are small enough that each new mutation is either rapidly lost or fixed in the population, then
under some circumstances the substitution rate can be approximated by the flux of mutations
which go to fixation (Kimura 1964). This approach has been used by McVean and Vieira (2001)
to estimate the strength of selection on so-called silent mutations (i.e, those which do not change
amino acid sequences) in several Drosophila species.

The common ancestor process can be used to describe the relationship between phylogenetic
substitution rates and population genetical processes when the preceding approximations do
not hold. The common ancestor of a population is any individual which is ancestral to the
entire population. For the models which will be studied in this paper, such an individual will be
guaranteed to exist at some time sufficiently (but finitely) far into the past and will be unique
at any time at which it does exist. Denoting the type of the common ancestor alive at time
t by zt, we will define the substitution process to the common ancestor to be the stochastic
process (zt : t ∈ R) and the common ancestor distribution to be the stationary distribution of
zt. This process will be a good approximation to the substitution process along the branches
of a phylogenetic tree provided that the time elapsed along each branch is large in comparison
with the coalescent time scales of the populations containing the sampled individuals and their
ancestors. In particular, the divergence between the sequences in the sample should be much
greater than the polymorphism within the populations from which the sample was collected.
As is customary in modeling molecular evolution (Zharkikh 1994), we will assume that these
populations are at equilibrium and that evolutionary processes such as mutation and selection
do not vary along ancestral lineages. Although common ancestor processes could also be defined
for non-equilibrium and time-inhomogeneous models, characterization of such processes will be
substantially more difficult than in the idealized cases considered here.

Common ancestor distributions were first described for supercritical multitype branching pro-
cesses by Jagers (1989, 1992), who showed that the distribution of the type of an individual
spawning a branching process which survives forever has a simple representation involving the
leading left and right eigenvectors of the first moment generator of the branching process. Be-
cause such an individual gives rise to infinitely many lineages which survive forever, but which
individually do not give rise to the entire future population, it is not meaningful to speak of the
common ancestor process in this setting. Instead, we must study what Georgii and Baake (2003)
call the retrospective process, which characterizes the substitution process along lineages which
survive forever. This process was also first described by Jagers (1989, 1992), who showed it
to be a stationary time-homogeneous Markov process having the common ancestor distribution
as its stationary measure. Extensive results concerning the retrospective process and common
ancestor distribution can be found in Georgii and Baake (2003) and Baake and Georgii (2007).

Much less is known about the common ancestor process for traditional population genetical
models such as the Moran and Wright-Fisher processes in which the population size remains
constant. For neutral models, the fact that the substitution process decouples from the genealogy
of a sample can be used to deduce that the common ancestor process is simply the neutral
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mutation process and that the common ancestor distribution is the stationary measure of this
process. That this also holds true in the diffusion limit can be shown using the look-down
construction of Donnelly and Kurtz (1996), which provides a particle representation for the
Wright-Fisher diffusion. The key idea behind this construction is to assign particles to levels and
then introduce look-down events which differ from (and replace) the usual neutral two-particle
birth-death events of the Moran model in the requirement that it is always the particle occupying
the higher level which dies and is then replaced by an offspring of the particle occupying the
lower level. In the absence of selection, the common ancestor is the particle occupying the lowest
level, as this individual never dies and it can be shown that all particles occupying higher levels
have ancestors which coalesce with this lowest level in finite time.

In contrast, when selection is incorporated into the look-down process, particles can jump to
higher levels and the common ancestor is no longer confined to the lowest level (Donnelly and
Kurtz 1999). Furthermore, because the effect of selection depends on the frequencies of the types
segregating in the population, e.g., selection has no effect if the population is monomorphic, we
do not expect the non-neutral common ancestor process to be a Markov process. However, the
mathematical difficulties which this creates can be overcome with the same technique that is used
to characterize the genealogical processes of such models, namely by enlarging the state space
of the process of interest until we obtain a higher dimensional process which does satisfy the
Markov property. One such enlargement is the ancestral selection graph of Krone and Neuhauser
(1997), which augments the ancestral lineages of the genealogy with a random family of ‘virtual’
lineages which are allowed to both branch and coalesce backwards in time. Fearnhead (2002)
uses a related process to identify the common ancestor process for the Wright-Fisher diffusion
with genic selection. His treatment relies on the observation that when there is only a single
ancestral lineage, certain classes of events can be omitted from the ancestral selection graph so
that the accessible particle configurations consist of the common ancestor, which can be of either
type, plus a random number of virtual particles, all of the less fit type. This allows the common
ancestor process to be embedded within a relatively tractable bivariate Markov process (zt, nt),
where zt is the type of the common ancestor and nt is the number of virtual lineages.

In this article, we will use a different enlargement of the non-neutral coalescent. Our treatment
relies on the structured coalescent introduced by Kaplan et al. (1988) and formalized by Barton
et al. (2004), which subdivides the population into groups of exchangeable individuals sharing
the same genotype and records both the types of the lineages ancestral to a sample from the
population and the past frequencies of those types. With this approach, the common ancestor
process of a population segregating two alleles can be embedded within a bivariate process (zt, pt),
where pt is the frequency at time t of one of the two alleles. We will show that both the stationary
distribution and the generator of this process can be expressed in terms of the solution to a simple
boundary value problem (Eq. 9) which determines the distribution of the type of the common
ancestor conditional on the frequency at which that type occurs within the population. In certain
cases we can solve this problem exactly and obtain an analytical characterization of the common
ancestor process. However, one advantage of the diffusion-theoretic approach described here is
that even when we cannot write down an explicit solution, we can still solve the corresponding
boundary problem numerically. This makes it possible to calculate the substitution rates to the
common ancestor for a much more general set of population genetical models than can be dealt
with using the ancestral selection graph, including models with frequency-dependent selection,
which we illustrate in Section 5, as well as fluctuating selection and genetic hitchhiking which
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will be described elsewhere.

The remainder of the article is structured as follows. In Section 2 we describe the class of diffusion
processes to be studied and we briefly recall the construction of the structured coalescent in a
fluctuating background as well as its restriction to a single ancestral lineage, which we call the
structured retrospective process. Using calculations with generators, we describe the stationary
distribution of the structured retrospective process and identify the common ancestor process
by reversing the retrospective process with respect to this measure. We also give an alternative
probabilistic representation for the conditional distribution of the type of the common ancestor,
and in Section 3 we use this to derive asymptotic expressions for the substitution rates to the
common ancestor when the mutation rates are vanishingly small. Sections 4 and 5 are concerned
with applications of these methods to concrete examples, and we first consider the Wright-Fisher
diffusion with genic (frequency-independent) selection. In this case we can write the density of
the common ancestor distribution in closed form (Eq. 23), and we show that this quantity is
related to the probability generating function of a distribution which arises in the graphical
representation of Fearnhead (2002). Notably, these calculations also show that approximations
which neglect recurrent mutation (e.g., the weak mutation limits) can underestimate the true
substitution rates by an order of magnitude or more when selection is strong. In contrast, few
explicit calculations are possible when we incorporate dominance into the model in Section 5,
and we instead resort to numerically solving the associated boundary value problem to determine
the substitution rates to the common ancestor. In the final section we show that some of these
results can be formally extended to diffusion models with more than two genetic backgrounds,
but that the usefulness of the theory is limited by the need to solve boundary value problems
involving systems of singular PDE’s.

2 Diffusions, coalescents and the common ancestor

We begin by recalling the structured coalescent process introduced by Kaplan et al. (1989) and
more recently studied by Barton et al. (2004) and Barton and Etheridge (2004). Consider a
closed population, of constant size N , and let P and Q be two alleles which can occur at a
particular locus. Suppose that the mutation rates from Q to P and from P to Q are µ1 and
µ2, respectively, where both rates are expressed in units of events per N generations. Suppose,
in addition, that the relative fitnesses of P and Q are equal to 1 + σ(p)/N and 1, respectively,
where p is the frequency of P . For technical reasons, we will assume that the selection coefficient
σ : [0, 1] → ∞ is the restriction of a function which is smooth on a neighborhood of [0, 1], e.g.,
σ(p) could be a polynomial function of the frequency of P . If we let pt denote the frequency
of P at time t and we measure time in units of N generations, then for sufficiently large N the
time evolution of pt can be approximated by a Wright-Fisher diffusion with generator

Aφ(p) =
1

2
p(1 − p)φ′′(p) +

(

µ1(1 − p) − µ2p+ σ(p)p(1 − p)
)

φ′(p), (1)

where φ ∈ C2([0, 1]). If we instead consider a diploid population, then the time evolution of the
frequency of P can be modeled by the same diffusion approximation if we replace N by 2N .

We note that because the drift and variance coefficients are smooth, Theorem 2.1 of Ethier and
Kurtz [(1986), Chapter 8] tells us that the set C∞

0 ([0, 1]) of infinitely differentiable functions
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with support contained in the interior of (0, 1) is a core for A. Furthermore, provided that both
mutation rates µ1 and µ2 are positive, then the diffusion corresponding to (1) has a unique
stationary measure π(dp) on [0, 1], with density (Shiga 1981, Theorem 3.1; Ewens 2004, Section
4.5),

π(p) = Cp2µ1−1(1 − p)2µ2−1 exp

(

2

∫ p

0
σ(q)dq

)

, (2)

where C is a normalizing constant. Unless stated otherwise (i.e., when we consider weak mutation
limits in Section 3), we will assume throughout this article that both mutation rates are positive.

Although the structured coalescent can be fully characterized for this diffusion model, for our
purposes it will suffice to consider only the numbers of ancestral lineages of type P or Q, which
we denote ñ1(t) and ñ2(t), respectively. Here, and throughout the article, we will use the tilde,
both on random variables and on generators, to indicate a stochastic process which is running
from the present (usually the time of sampling) to the past. Then, as shown in Barton et al.
(2004), the generator G̃ of the structured coalescent process (ñ1(t), ñ2(t), p̃t) can be written as

G̃φ(n1, n2, p) =

(

n1

2

)(

1

p

)

[φ(n1 − 1, n2, p) − φ(n1, n2, p)] + (3)

(

n2

2

)(

1

1 − p

)

[φ(n1, n2 − 1, p) − φ(n1, n2, p)] +

n1µ1

(

1 − p

p

)

[φ(n1 − 1, n2 + 1, p) − φ(n1, n2, p)] +

n2µ2

(

p

1 − p

)

[φ(n1 + 1, n2 − 1, p) − φ(n1, n2, p)] +Aφ(n1, n2, p),

where for each (n1, n2) ∈ N ×N , we have φ(n1, n2, ·) ∈ C2([0, 1]). Barton et al. (2004) prove that
a Markov process corresponding to this generator exists and is unique, and moreover that this
process is the weak limit of a suitably rescaled sequence of Markov processes describing both
the sample genealogy and the allele frequencies in a population of size N evolving according
to a Moran model. One particularly convenient property of biallelic diffusion models is that
the process p̃(t) governing the evolution of allele frequencies backwards in time in a stationary
population has the same law as the original Wright-Fisher diffusion p(t) corresponding to the
generator A. In fact, this property is shared by one-dimensional diffusions in general, which
satisfy a detailed balance condition with respect to their stationary distributions (Nelson 1958).
This will not be true (in general) of the multidimensional diffusion models considered in Section
6, where we will characterize the common ancestor process at a locus which can occur in more
than two genetic backgrounds which can change either by mutation or by recombination.

Because we are only concerned with substitutions to single lineages, we need only consider sample
configurations (n1, n2) which are either (1, 0) or (0, 1), and so we can replace the trivariate process
(ñ1(t), ñ2(t), p̃t) with a bivariate process (z̃, p̃t) taking values in the space E = ({1} × (0, 1]) ∪
({2} × [0, 1)), where z̃t = 1 if the lineage is of type P and z̃t = 2 if it is of type Q. We will refer to
(z̃t, p̃t) as the structured retrospective process to emphasize the fact that it describes evolution
backwards in time. (In contrast, Georgii and Baake (2003) define a retrospective process for a
multitype branching process which runs forwards in time.) With this notation, the generator of
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the structured retrospective process can be written as

G̃φ(1, p) = µ1

(

1 − p

p

)

[φ(2, p) − φ(1, p)] +Aφ(1, p)

G̃φ(2, p) = µ2

(

p

1 − p

)

[φ(1, p) − φ(2, p)] +Aφ(2, p), (4)

for functions φ ∈ D(G̃) ≡ C2
c (E) which are twice continuously differentiable on E and have com-

pact support. For future reference we note that D(G̃) is dense in the space Ĉ(E) of continuous
functions on E vanishing at infinity and that D(G̃) is an algebra. The key step in proving the
existence and uniqueness of a Markov process corresponding to this generator is to show that the
ancestral lineage is certain to jump away from a type before the frequency of that type vanishes,
e.g., the ancestor will almost surely mutate from P to Q before the diffusion p̃t hits 0. This will
guarantee that the jump terms appearing in G̃, which diverge at the boundaries of the state
space, are in fact bounded along trajectories of the process over any finite time interval [0, T ].
That the jumps do happen in time is a consequence of Lemma 4.4 of Barton et al. (2004), which
we restate below as Lemma 2.1.

We also supply a new proof of this lemma to replace that given in Barton et al. (2004), which
contains two errors (Etheridge 2005). One is that the variance σ(Ws) appearing in the time
change of the Wright-Fisher diffusion needs to be squared, so that the exponent α in the integral
displayed in Eq. (16) of that paper is 2 rather than 1+ 1

2(1−2µ2) . The second is that the divergence

of this integral requires α ≥ 2 rather than α ≥ 1. Although this condition is (just barely)
satisfied, we cannot deduce the divergence of the integral from the Engelbert-Schmidt 0-1 law
(Karatzas and Shreve, 1991, Chapter 3, Proposition 6.27; see also Problem 1 of Ethier and
Kurtz, 1986, Chapter 6) because this result applies to functionals of a Brownian path integrated
for fixed periods of time rather than along sample paths which are stopped at a random time,
as is the case in Eq. (16).

Lemma 2.1. Let pt be the Wright-Fisher diffusion corresponding to the generator A shown in
(1). Then, for any real number R <∞,

lim
k→∞

Pp

{
∫ τk

0

(

1

ps

)

ds > R

}

= 1

lim
k→∞

Pp

{∫ τ
k′

0

(

1

1 − ps

)

ds > R

}

= 1,

where τk = inf{t > 0 : pt = 1/k} and τk′ = inf{t > 0 : pt = 1 − 1/k}.

Proof. For each positive integer k choose φk ∈ C(2)([0, 1]) such that φk(p) = − ln(p) on [1/k, 1]
and observe that on this restricted set,

Aφ(p) =
1

2p
−

1

2
−
b(p)

p
,

where b(p) = µ1(1 − p) − µ2p+ σ(p)p(1 − p) is the infinitesimal drift coefficient in A. Then, for
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each k > p−1
0 , the stopped process

Mt∧τk
= φk(pt∧τk

) − φk(p0) −

∫ t∧τk

0
Aφk(ps)ds

= − ln(pt∧τk
) + ln(p0) −

1

2

∫ t∧τk

0

1 − 2b(ps)

ps
ds+

1

2
(t ∧ τk)

is a continuous martingale with quadratic variation

〈M〉t∧τk
=

∫ t∧τk

0
ps(1 − ps)(φ

′
k(ps))

2ds =

∫ t∧τk

0

ds

ps
− (t ∧ τk).

In particular, on the set {τk <∞}, we have

Mτk
= ln(k) + ln(p0) −

1

2

∫ τk

0

1 − 2b(ps)

ps
ds−

1

2
τk

〈M〉τk
=

∫ τk

0

ds

ps
− τk,

which in turn implies that, for any R <∞, the following three inequalities

τk < R

〈M〉τk
< R

Mτk
> ln(k) + ln(p0) −

(

1

2
+ ||b||∞

)

R

are satisfied on the set

ΩR,k =

{
∫ τk

0

ds

ps
< R

}

.

Now, because M·∧τk
is a continuous, one-dimensional martingale, there is an enlargement Ω′

of the probability space Ω on which the diffusion pt is defined and there is also a standard
one-dimensional Brownian motion Bt, defined on Ω′, such that

Mt∧τk
= B〈M〉t∧τ

k

.

[See Karatzas and Shreve (1991), Chapter 3, Theorem 4.6 and Problem 4.7.] Thus, in view of
the conditions holding on ΩR,k, we obtain the following bound

P{ΩR,k} ≤ P

{

sup
t≤R

Bt > ln(k) + ln(p0) − CR

}

,

where C = 1
2 + ||b||∞ is independent of k. The first half of the proposition then follows from the

fact that the probability on the right-hand side of the preceding inequality goes to 0 as k → ∞
with R fixed. The second half can be proved using a similar argument, with φk(p) = − ln(1− p)
on [0, 1 − 1/k].

With Lemma 2.1 established, the next proposition is a special case of the existence and unique-
ness results for structured coalescents proved in Barton et al. (2004).
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Proposition 2.2. For any ν ∈ P(E), there exists a Markov process (z̃t, p̃t), which we call the
structured retrospective process, which is the unique solution to the DE [0,∞)-martingale problem
for (G̃, ν).

Proof. Because the operator G̃ is a Feller generator when restricted to twice continuously dif-
ferentiable functions on each of the sets Ek =

(

{1} × [k−1, 1]
)

∪
(

{2} × [0, 1 − k−1]
)

, we can
show that a stopped version of the process exists on each of these sets and that this process is
the unique solution of the corresponding stopped martingale problem. Then, using the Lemma
2.1 and noting that the diffusions pt and p̃t are identical in distribution, we can show that
the sequence of hitting times of the boundaries of the sets Ek is almost surely unbounded as
k → ∞. Consequently, Theorem 4.2 and Proposition 4.3 of Barton et al. (2004) imply the
existence of a Markov process (z̃t, p̃t) defined on all of E which is the unique solution to the
DE [0,∞)-martingale problem for G̃.

Of course, as the name indicates, the process (z̃t, p̃t) describes the retrospective behavior of a
lineage sampled at random from the population rather than forward-in-time evolution of the
common ancestor of the entire population. However, because Kingman’s coalescent comes down
from infinity (Kingman 1982), we know that, with probability one, all extant lineages, including
that ancestral to the sampled individual, will coalesce with the common ancestor within some
finite time. That this is still true when we incorporate genetic structure into the coalescent
is evident from the fact that the coalescent rates within a background are accelerated by the
reciprocal of the frequency of that background; see Eq. (3). Furthermore, because lineages move
between genetic backgrounds at rates which are bounded below by the (positive) mutation rates,
lineages cannot be permanently trapped in different backgrounds.

These observations lead to the following strategy for identifying the common ancestor process
in a stationary population. First, because the asymptotic properties of the retrospective process
in the deep evolutionary past coincide with those of the common ancestor process itself, any
stationary distribution of G̃ will also be a stationary distribution of the common ancestor process.
Indeed, we will call this distribution (assuming uniqueness) the common ancestor distribution.
Secondly, given such a distribution, it is clear that we can construct a stationary version of the
retrospective process (z̃t, p̃t) which is defined for all times t ∈ R. However, because this lineage
persists indefinitely, it is necessarily the common ancestor lineage for the whole population.
Accordingly, we can characterize the joint law of the stationary process of substitutions to the
common ancestor and the forward-in-time evolution of the allele frequencies by determining the
law of the time reversal of the retrospective process with respect to its stationary distribution.
(Observe that by time reversing the retrospective process, which runs from the present to the
past, we obtain a process which runs from the past to the present.)

2.1 The common ancestor distribution

In this section we show that the common ancestor distribution, which we denote π(z, dp), can
be found by solving a simple boundary value problem. We begin by observing that because
D(G̃) = C2

c (E) is an algebra which is dense in Ĉ(E) and because the martingale problem for G̃
is well-posed, any distribution π(z, dp) which satisfies the condition,

∫ 1

0
G̃φ(1, p)π(1, dp) +

∫ 1

0
G̃φ(2, p)π(2, dp) = 0 (5)
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for all φ ∈ D(G̃), is a stationary distribution for G̃ [Ethier and Kurtz (1986), Chapter 4,
Proposition 9.17]. Assuming that we can write π(z, dp) = π(z, p)dp for z = 1, 2, where π(z, ·) ∈
C2((0, 1)), integration-by-parts shows that this condition will be satisfied if

A∗π(1, p) + µ2

(

p

1 − p

)

π(2, p) − µ1

(

1 − p

p

)

π(1, p) = 0

A∗π(2, p) + µ1

(

1 − p

p

)

π(1, p) − µ2

(

p

1 − p

)

π(2, p) = 0. (6)

Here A∗ is the formal adjoint of A with respect to Lebesgue measure on [0, 1] and is defined by
the formula

A∗φ(p) =
1

2
(p(1 − p)φ(p))′′ −

(

(µ1(1 − p) − µ2p+ σ(p)p(1 − p))φ(p)
)′
. (7)

Because the marginal distribution over z ∈ {1, 2} of the stationary measure π(z, dp) is just the
stationary measure π(p)dp of the diffusion process itself, it is convenient to write π(z, dp) in the
form

π(1, dp) = π(1, p)dp = h(p)π(p)dp

π(2, dp) = π(2, p)dp = (1 − h(p))π(p)dp, (8)

where h(p) is the conditional probability that the common ancestor is of type P given that the
frequency of P in the population is p. Substituting this expression into (6) leads to the following
boundary value problem (BVP) for h(p),

Ah(p) −

(

µ1

(

1 − p

p

)

+ µ2

(

p

1 − p

))

h(p) = −µ2

(

p

1 − p

)

,

h(0) = 0, h(1) = 1. (9)

We show below that the smoothness of the selection coefficient σ(p) is sufficient to guarantee
the existence of a solution h(p) to (9) which is smooth in (0, 1) and which has a derivative h′(p)
that can be continuously extended to [0, 1], and that this implies that the common ancestor
distribution can always be represented in the form (8), with h(p) the unique solution to (9).
However, we first make two observations concerning equation (9) itself. First, if σ(p) ≡ 0, i.e.,
P and Q are selectively neutral, then h(p) = p solves (9) and the distribution of the common
ancestor is the same as that of an individual sampled randomly from the population. Of course,
this claim can also be deduced directly from the look-down formulation of Donnelly and Kurtz
(1996): under neutrality, the common ancestor is the individual occupying the lowest level
and, by exchangeability, the distribution of the type of this individual is given by the empirical
measure carried by all of the particles, which is just pδ1 + (1 − p)δ0 for a biallelic model.

Secondly, if we write h(p) = p+ ψ(p), then a simple calculation shows that h(p) will satisfy the
BVP (9) if and only if ψ(p) satisfies the following BVP:

Aψ(p) −

(

µ1

(

1 − p

p

)

+ µ2

(

p

1 − p

))

ψ(p) = −σ(p)p(1 − p),

ψ(0) = ψ(1) = 0. (10)
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This result is useful when numerically calculating h(p) because it replaces the divergent inho-
mogeneous term on the right-hand side of (9) with a term which is smooth on [0, 1]. Even so,
because the inhomogeneous equation is singular at p = 0, 1, the usual shooting method (Press
et al. (1992)) used to solve such two-point BVP’s must be modified as we discuss briefly in the
appendix. More importantly, we can use the BVP (10) to prove the existence and regularity of
the conditional probability h(p).

Lemma 2.3. Suppose that A is the generator of a Wright-Fisher diffusion as in (1). Then
there exists a function ψ(p) satisfying the BVP (10) which is holomorphic on (0, 1) and its first
derivative ψ′(p) can be continuously extended to [0, 1]. Furthermore, the function h(p) = p+ψ(p)
is the unique solution to the BVP (9) sharing these regularity properties.

Proof. We begin by noting that p = 0 and p = 1 are regular singular points for the corresponding
homogeneous equation and that the indicial equations have roots λ = 1,−2µ1 at p = 0 and
λ = 1,−2µ2 at p = 1. Because the coefficients are smooth in (0, 1), Theorems 7 and 8 of
Chapter 9 of Birkhoff and Rota (1989) can be used to deduce the existence of four functions,
u0,1(·) and u0,2(·), analytic in a neighborhood of p = 0, and u1,1(·), and u1,2(·), analytic in a
neighborhood of p = 1, as well as two constants C0 and C1 such that the following two pairs of
functions,

ψ0,1(p) = pu0,1(p) and ψ0,2(p) = p−2µ1u0,2(p) + C0pu0,1(p) ln(p)

and

ψ1,1(p) = (1 − p)u1,1(p) and ψ1,2(p) = (1 − p)−2µ2u1,2(p) +C1(1 − p)u1,1(p) ln(1 − p),

each constitutes a set of linearly independent solutions to the homogeneous equation. Further-
more, because the diffusion operator A is uniformly elliptic on any interval (ǫ, 1 − ǫ) for any
ǫ > 0, these solutions can be analytically continued to (0, 1).

Consequently, by taking suitable linear combinations of the ψij(·), we can construct a pair of
linearly independent solutions, ψ0(·) and ψ1(·), analytic on (0, 1), such that for any ǫ > 0,

ψ0(0) = 0, ψ′
0(0) = 1, lim

p→1
(1 − p)2µ2+ǫψ0(p) = 0, lim

p→1
(1 − p)2µ2+1+ǫψ′

0(p) = 0

ψ1(1) = 0, ψ′
1(1) = −1, lim

p→0
p2µ1+ǫψ1(p) = 0, lim

p→0
p2µ1+1+ǫψ′

1(p) = 0.

A solution to the inhomogeneous equation can then be obtained by the method of variation of
parameters, which gives:

ψ(p) = ψ0(p)

∫ 1

p

(

σ(q)q(1 − q)

W (q)

)

ψ1(q)dq + ψ1(p)

∫ p

0

(

σ(q)q(1 − q)

W (q)

)

ψ0(q)dq,

where W (p) is the Wronskian of the homogeneous equation

W (p) = exp

[

−2

∫ p

p0

µ1(1 − q) − µ2q + σ(q)q(1 − q)

q(1 − q)
dq

]

,

and p0 is an arbitrary point in (0, 1). Furthermore, in light of the boundary behavior of the
functions ψ1(·) and ψ0(·), it is easy to check that ψ(·) is smooth in (0, 1), that ψ(0) = ψ(1) = 0,
and that the limits

lim
p→0

ψ′(p) =

∫ 1

0

(

σ(q)q(1 − q)

W (q)

)

ψ1(q)dq and lim
p→1

ψ′(p) = −

∫ 1

0

(

σ(q)q(1 − q)

W (q)

)

ψ0(q)dq
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exist and are finite. Clearly, these statements also hold for h(p) = p + ψ(p) and a simple
calculation verifies that h(p) solves the BVP (9).

By combining this result with the formal calculations leading from Eq. (5) to (9), as well as
Proposition 9.17 of Chapter 4 of Ethier and Kurtz (1986), we can deduce the existence of a
stationary distribution for G̃. Our next proposition asserts that this distribution is also unique.

Proposition 2.4. The retrospective process (z̃t, p̃t) has a unique stationary distribution π(z, dp)
of the form (8), where π(p) is the density (2) of the stationary distribution for the Wright-Fisher
diffusion generated by A and h(p) is the unique solution to the BVP (9).

Proof. Since we have already demonstrated the existence of a stationary distribution correspond-
ing to Eq. (8)-(9), we need only show that this measure is unique. To do so, we will prove that
G̃ is strongly connected (see Donnelly and Kurtz 1999, Section 9): if Pν(t) denotes the one-
dimensional distribution at time t of the solution to the martingale problem for (G̃, ν), then for
any pair of distributions ν1, ν2 ∈ P(E) and all times T > 0, Pη1(T ) and Pη2(T ) are not mutually
singular. Uniqueness of the stationary distribution will then follow from Lemma 5.3 of Ethier
and Kurtz (1993), which implies that if the embedded Markov chain, ((z̃nT , p̃nT ) : n ≥ 1), has
two distinct stationary distributions (as it will if the continuous time process has two distinct
stationary distributions), then it also has two mutually singular stationary distributions.

Let (z̃
(1)
t , p̃

(1)
t ) and (z̃

(2)
t , p̃

(2)
t ) be solutions to the DE[0,∞)-martingale problem for G̃ with initial

distributions ν1 and ν2, respectively. Because the marginal processes p̃
(1)
t and p̃

(2)
t are Wright-

Fisher diffusions corresponding to A, the positivity of the mutation rates µ1, µ2 implies that for

any t > 0, the one-dimensional distributions of p̃
(1)
t and p̃

(2)
t are mutually absolutely continuous

with respect to Lebesgue measure on [0, 1]. (In particular, these distributions do not have atoms
at 0 or 1.) Furthermore, for every δ ∈ (0, 1/2) and every T > 0, there exists an ǫ > 0 such

that the probabilities P{p̃
(i)
t ∈ [δ, 1 − δ] for all t ∈ [T/2, T ]} > ǫ for i = 1, 2. Combining this

observation with the fact that for fixed δ ∈ (0, 1/2), the jump rates of the component z̃t are
uniformly bounded above 0 and below ∞ whenever the frequency process p̃t is in [δ, 1 − δ], it
follows that Pν1(T ) and Pν2(T ) are each mutually absolutely continuous with respect to the
product measure (δ1(dz) + δ2(dz)) ×m(dp) on E, where m(dp) is Lebesgue measure restricted
to (0, 1). Since this implies that Pν1(T ) and Pν2(T ) are mutually absolutely continuous with
respect to one another for every T > 0, the proposition follows.

We can also rewrite the inhomogeneous differential equation in (9) in a form which leads to an
alternative probabilistic representation of h(p). Because h(0) = 0 and h(1) = 1, the solution
h(p) to the BVP (9) is a harmonic function for the operator Â, defined as

Âφ(p) = Aφ(p) + µ1

(

1 − p

p

)

(φ(0) − φ(p)) + µ2

(

p

1 − p

)

(φ(1) − φ(p)). (11)

Setting
D(Â) = {φ ∈ C2([0, 1]) : lim

p→1
Âφ(p) = lim

p→0
Âφ(p) = 0},

we see that Â is the generator of a jump-diffusion process, p̂t, which diffuses in (0, 1) according to
the law of the Wright-Fisher diffusion corresponding to A until it jumps to one of the boundary
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points {0, 1} where it is absorbed. It follows from Lemma 2.1 that if the process does reach 0
or 1, then it is certain to have arrived there via a jump rather than by diffusing, even if that
boundary is accessible to the pure diffusion process. Indeed, the existence of a unique Markov
process p̂t corresponding to Â can be deduced from Lemma 2.1 in precisely the same way that the
existence and uniqueness of the structured coalescent was obtained, although it is now essential
that p̂t be absorbed once it hits the boundary. Furthermore, because the total rate of jumps to
either boundary point from any point in the interior is bounded below by µ1 ∧ µ2, the process
is certain to jump to the boundary in finite time. Taken together these observations lead to the
following representation for h(p).

Proposition 2.5. Let p̂(t) be the jump-diffusion process corresponding to the generator Â, and
let τ = inf{t > 0 : p̂t = 0 or 1} be the time of the first (and only) jump to the boundary {0, 1}.
Then the solution h(p) to the BVP (9) is the probability that p̂t is absorbed at 1 when starting
from initial value p:

h(p) = Pp{p̂τ = 1}. (12)

Proof. Because h(p) is in D(Â) and Âh(p) = 0 for all p ∈ [0, 1], it follows that h(p̂t) is a bounded
martingale with respect to the natural filtration of p̂t. Moreover, Ep[τ ] < (µ1 ∧µ2)

−1 <∞, and
so we can use the optional sampling theorem and the fact that h(0) = 0 and h(1) = 1 to calculate
h(p) = Ep[h(p̂τ )] = Pp{p̂τ = 1}.

Proposition 2.5 has several interesting consequences. First, by comparing the generator Â shown
in (11) with the generator of the structured coalescent (3) for a sample of size two with one
P allele and one Q allele, it is evident that the type of the common ancestor has the same
distribution as the type of the sampled lineage which is of the more ancient mutant origin. In
other words, the quantity h(p) is the probability that if we sample a P allele and a Q allele from
a population in which P occurs at frequency p, then the Q allele has arisen from a mutation
to an ancestral P individual more recently than the P allele in the sample has arisen from a
mutation to an ancestral Q individual.

Secondly, because the rate at which p̂t jumps to 1 is a strictly increasing function of p while the
rate at which p̂t jumps to 0 is strictly decreasing, (12) implies that h(p) is a strictly increasing
function of p. While we would expect such a relationship to hold if the selection coefficient
σ(p) is either non-decreasing or non-negative, it is noteworthy that h(p) is increasing even with
negative frequency-dependent selection, e.g., under balancing selection, with σ(p) = s · (p0 − p)
for s > 0 and p0 ∈ (0, 1).

Another consequence of Proposition 2.5 is that the probability that the common ancestor is of
a particular genotype is an increasing function of the fitness of that genotype. To make this
precise, suppose that A(1) and A(2) are a pair of Wright-Fisher generators as in (1) with drift
coefficients bi(p) = µ1(1 − p) − µ2p + σ(p)p(1 − p) which differ only in their (smooth) fitness
functions, σ1(p) and σ2(p), respectively, let Â(i), i = 1, 2 be the generators of the jump-diffusion
processes obtained by taking A = A(i) in (11), and let h1(p) and h2(p) be the corresponding
conditional probabilities that the common ancestor is of type P .

Proposition 2.6. If σ1(p) ≤ σ2(p) for all p ∈ [0, 1], then h1(p) ≤ h2(p) for all p ∈ [0, 1].

Proof. In view of the smoothness of the coefficients of the diffusion generators A(i), i = 1, 2, there
exists a probability space (Ω,F ,P), a Brownian motion (Wt, t ≥ 0), and diffusion processes
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(p
(i)
t , t ≥ 0), i = 1, 2 corresponding to these generators such that the stochastic differential

equation

p
(i)
t = p+

∫ t

0
bi(p

(i)
s )ds+

∫ t

0

√

p
(i)
s (1 − p

(i)
s )dWs t ≥ 0

is satisfied a.s. for i = 1, 2 and all p ∈ [0, 1]. (For example, such a coupling can be constructed
using a sequence of coupled Markov chains which converge weakly to these diffusions.) Further-
more, because the drift coefficients satisfy the inequality b1(p) ≤ b2(p) for all p ∈ [0, 1], while
the infinitesimal variance satisfies the regularity condition |

√

p(1 − p)−
√

q(1 − q)| < 2|p− q|1/2

for all p, q ∈ [0, 1], we can use Lemma 3.4 in Shiga (1981) to conclude that

Pp{p
(1)
t ≤ p

(2)
t ,∀t ≥ 0} = 1. (13)

To relate this inequality to the jump-diffusion processes generated by the Â(i), i = 1, 2, observe
that because each process jumps exactly once, we can construct coupled versions of these pro-

cesses, denoted p̂
(i)
t , i = 1, 2, by taking the motion of p̂

(i)
t in the interior (0, 1) to be that of the

coupled diffusions p
(i)
t and arranging for p̂

(i)
t to jump to the boundary points 1 or 0, respectively,

at the first time τ (i) when

µ1

∫ τ (i)−

0

(

1 − p
(i)
s

p
(i)
s

)

ds ≥ Z1 or µ2

∫ τ (i)−

0

(

p
(i)
s

1 − p
(i)
s

)

ds ≥ Z2.

Here, Z1 and Z2 are unit mean exponential random variables which are independent of each

other and of the diffusions p
(i)
t , but which are shared in common by the two jump-diffusions.

(Note that the independence of Z1 and Z2, the continuity of the sample paths of the diffusions

p
(i)
t , and the local boundedness of the jump rates in (11) guarantee that p̂

(i)

τ (i) is almost surely
well-defined.)

Since the rate function governing jumps from (0, 1) to 1 is an increasing function of p ∈ [0, 1],
while that governing jumps from (0, 1) to 0 is a decreasing function of p, the inequality in (13)

implies that, with probability one, if the process p̂
(1)
t jumps to 1, then the process p̂

(2)
t must also

have jumped to 1, possibly at an earlier time. Consequently,

h1(p) = P{p̂
(1)

τ (1) = 1} ≤ P{p̂
(2)

τ (2) = 1} = h2(p),

and the proposition follows upon noting that the initial condition p ∈ [0, 1] is arbitrary.

In particular, taking σ2(p) ≥ σ1(p) ≡ 0, we can use Proposition 2.6 to conclude that h2(p) ≥

h1(p) = p. Furthermore, if σ2(p) is strictly positive on [0, 1], then the fact that the diffusions p
(1)
t

and p
(2)
t have continuous sample paths which differ in distribution on every interval [0, T ], T > 0

can be combined with (13) to deduce that with positive probability the set {t ∈ [0, T ] : p
(2)
t >

p
(1)
t } has positive Lebesgue measure whenever the initial condition p ∈ (0, 1), and therefore that
h2(p) > h1(p) for every p ∈ (0, 1). In other words, if P is unconditionally more fit than Q, then
the common ancestor will be more likely to be of type P than an individual sampled at random
from the population, both on average and when conditioned on the frequency p at which P is
segregating in the population. Furthermore, this property implies that the mean fitness of the
common ancestor is greater than the mean fitness of an individual chosen at random from the
population, and generalizes Theorem 2 of Fearnhead (2002) which applies when P has a fixed
(frequency-independent) advantage over Q.
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2.2 The common ancestor process

Having found the common ancestor distribution, our next task is to identify the common ancestor
process, which we will do by determining the time-reversal of the retrospective process (z̃t, p̃t)
with respect to its stationary distribution. Because Proposition 2.4 asserts that this distribution
is unique, the common ancestor process, at least in a stationary population, is also unique. We
recall that time reversal preserves the Markov property, and that the generator G of the Markov
process obtained by time reversal of the stationary process corresponding to G̃ has the property
that it is adjoint to G̃ with respect to the measure π(z, dp) (Nelson 1958), i.e.,

∑

z=1,2

∫ 1

0

(

G̃φ(z, p)
)

ψ(z, p)π(z, p)dp =
∑

z=1,2

∫ 1

0
φ(z, p)

(

Gψ(z, p)
)

π(z, p)dp, (14)

for any ψ ∈ D(G̃) and φ ∈ D(G) (which is to be determined). A calculation making repeated
use of the product rule and integration-by-parts, along with the characterization of the common
ancestor distribution π(z, p)dp provided by Proposition 2.4 and the fact that A∗π(p) = 0, with
the density π(p) given by (2) and the adjoint operator A∗ given by (7), shows that this condition
will be satisfied if

Gψ(1, p) = Aψ(1, p) + p(1 − p)

(

h′(p)

h(p)

)

ψ′(1, p) + µ2

(

p(1 − h(p))

(1 − p)h(p)

)

(ψ(2, p) − ψ(1, p)) (15)

Gψ(2, p) = Aψ(2, p) − p(1 − p)

(

h′(p)

1 − h(p)

)

ψ′(2, p) + µ1

(

(1 − p)h(p)

p(1 − h(p))

)

(ψ(1, p) − ψ(2, p)),

with ψ ∈ D(G) ≡ {ψ : {1, 2} × [0, 1] → R such that ψ(z, ·) ∈ C2([0, 1]) for z = 1, 2}.

In the proof of the next proposition we show that the existence of a Markov process corresponding
to G is a consequence of the continuity of h(p) and h′(p) (Lemma 2.3). Recall that the state
space of the retrospective process is E = ({1} × (0, 1]) ∪ ({2} × [0, 1)).

Proposition 2.7. For any ν ∈ P({1, 2} × [0, 1]), there exists a Markov process (zt, pt), which
we call the common ancestor process, which is the unique solution to the martingale problem for
(G, ν). Furthermore, (zt, pt) ∈ E for all t > 0.

Proof. Since h(0) = 0 and h(1) = 1, the continuity of h′(p) on [0, 1] implies the existence of
constants C1 < C2 such that C1p < h(p) < C2p and C1(1 − p) < 1 − h(p) < C2(1 − p) for
all p ∈ [0, 1]. Consequently, all of the terms appearing on the right-hand side of (15) can be
continuously extended (as functions of p) to [0, 1], and we define Gψ(z, p) accordingly if (z, p) =
(1, 0) or (z, p) = (2, 1). In particular, the operators A1ψ(p) = Aψ(p)+ p(1− p)(h′(p)/h(p))ψ′(p)
and A2ψ(p) = Aψ(p) − p(1 − p)(h′(p)/(1 − h(p)))ψ′(p), with ψ ∈ C2([0, 1]), are the generators
of a pair of diffusion processes on [0, 1] (Ethier and Kurtz 1986, Chapter 8, Theorem 1.1), and
so there exists a diffusion process on the space {1, 2} × [0, 1] corresponding to the generator
Aψ(z, p) ≡ Azψ(z, p) for ψ ∈ D(G). The existence of a process (zt, pt) corresponding to G
then follows from Theorem 7.1 of Ethier and Kurtz (1986, Chapter 1) and the fact that G is a
bounded perturbation of A, i.e., the jump rates are bounded. Furthermore, the uniqueness of
solutions to the martingale problem for (G, ν) is then a consequence of Theorem 4.1 of Ethier
and Kurtz (1986, Chapter 4).
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To prove that (zt, pt) ∈ E for all t > 0, we observe that boundary points inconsistent with
the type of the common ancestor are entrance boundaries for the frequency component of the
common ancestor process. For example, if the type of the common ancestor is P , i.e., if z = 1,
then because h(p) is continuously differentiable on [0, 1] (Lemma 2.3) and because p/h(p) ≈
1/h′(0) when p ≈ 0 we can write the drift coefficient of A1 as

b1(p) ≡ b(p) + p(1 − p)

(

h′(p)

h(p)

)

= (µ1 + 1) +O(p),

where b(p) is the drift coefficient of A. That p = 0 is an entrance boundary for the diffusion
corresponding to A1 can then be shown using Feller’s boundary classification (Ewens 2004,
Section 4.7) and the fact that µ1 + 1 > 1/2. Similar remarks apply to the boundary p = 1 and
the diffusion corresponding to A2.

If A is the generator of a neutral Wright-Fisher diffusion (i.e., σ(p) ≡ 0), then h(p) = p and the
generator of the common ancestor process is just

Gψ(1, p) = Aψ(1, p) + (1 − p)ψ′(1, p) + µ2(ψ(2, p) − ψ(1, p))

Gψ(2, p) = Aψ(2, p) − pψ′(2, p) + µ1(ψ(1, p) − ψ(2, p)).

As expected, the process governing the change of type of the common ancestor decouples from
the frequency process and coincides with the mutation process itself. The only novel feature
of the neutral common ancestor process is the presence of the additional drift terms in the
diffusion which reflect the fact that because the common ancestor contributes more offspring to
the population than an individual chosen at random, the population has a tendency to evolve
towards the type of the common ancestor. Indeed, these extra births can be made explicit by
formulating a finite population model (z(N), p(N)) which combines the usual Moran resampling
with a neutral look-down process that operates only on the lowest level (i.e., birth-death events
involving the lowest level always assign the birth to the lowest level, but all other birth-death
events are resolved by choosing the parent at random from the two participating individuals).
It is then straightforward to show that as N → ∞, suitably rescaled versions of (z(N), p(N))
converge weakly to the jump-diffusion process generated by G.

When there are fitness differences between the two alleles, in general h(p) 6= p and the sub-
stitution rates to the common ancestor depend on the allele frequency p, i.e., the substitution
process to the common ancestor zt is not a Markov process. In this case, the substitution rates
will differ from the corresponding mutation rates for most values of p. Moreover, because Propo-
sition 2.6 shows that h(p) > p for all p ∈ (0, 1) whenever P is unconditionally more fit than Q
(i.e., σ(p) > 0 for all p ∈ [0, 1]), Eq. (15) shows that the rate of substitutions from the less fit
allele to the more fit allele is greater than the corresponding mutation rate, and vice versa. A
less intuitive property of the generator of the common ancestor process is that for each value
of p the geometric mean of the two substitution rates is the same as that of the two neutral
mutation rates. While it is unclear what biological interpretation this invariant might have,
one mathematical consequence is that for each fixed value of p only one of the two substitution
rates can exceed the corresponding neutral mutation rate, while the other is necessarily less than
it. However, the direction of these two inequalities may differ according to the frequency p if
selection is frequency-dependent or fluctuates in time.
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3 Weak mutation limits

Because single nucleotide mutation rates in DNA sequences are typically on the order of 10−8

mutations per site per generation, while most effective population size estimates are less than
107 (Lynch and Connery 2003), the asymptotic properties of the common ancestor process in
the limit of vanishing mutation rates are of special interest. (Here we temporarily relax our
earlier assumption that the mutation rates are positive.) We first observe that if µ1 and µ2 are
both zero, then the BVP (9) simplifies to the equation Ah(p) = 0, with h(0) = 0 and h(1) = 1,
and the solution,

h0(p) =

∫ p
0 e

−2S(q)dq
∫ 1
0 e

−2S(q)dq
, (16)

is just the fixation probability of P when its initial frequency is p (Ewens 2004, Section 4.3).
Furthermore, if we substitute this expression into the generator of the common ancestor process
(15), then because both jump rates vanish, we are left with a pair of operators,

Gψ(1, p) = Aψ(1, p) + p(1 − p)

(

h′0(p)

h0(p)

)

ψ′(1, p)

Gψ(2, p) = Aψ(2, p) − p(1 − p)

(

h′0(p)

1 − h0(p)

)

ψ′(2, p), (17)

which we recognize to be the generators of the diffusion process corresponding to A conditioned
to absorb either at 1 (top line) or at 0 (lower line) (Ewens 2004, Section 4.6). That the limiting
generator takes this form reflects the fact that in the absence of mutation, any population which
is descended from the common ancestor will also be fixed for the type of that individual.

A more useful observation is that if the mutation rates are small enough that mutations occur
rarely on the coalescent time scale, then we can approximate the non-Markovian substitution
process to the common ancestor by a continuous time two state Markov chain. Although ap-
proximate, such a process would greatly simplify the numerical or Monte Carlo computations
needed to infer selection coefficients and other model parameters from a set of DNA sequences.
One possibility is to define the transition rates of the Markov chain to be equal to the mean
substitution rates obtained by averaging the frequency-dependent substitution rates of the bi-
variate process (15) over the conditional distribution of the allele frequencies given the type of
the common ancestor,

µCA
2 ≡ µ2

∫ 1

0

(

p(1 − h(p))

(1 − p)h(p)

)

h(p)π(p)dp/

∫ 1

0
h(p)π(p)dp

µCA
1 ≡ µ1

∫ 1

0

(

(1 − p)h(p)

p(1 − h(p))

)

(1 − h(p))π(p)dp/

∫ 1

0
(1 − h(p))π(p)dp, (18)

e.g., µCA
2 is the mean substitution rate to the common ancestor given that the type of that

individual is P (which mutates to Q). Indeed, the ergodic properties of Wright-Fisher diffusions
(Norman 1977) offer some justification for this approximation. Provided that the mutation rates
are sufficiently small, the time elapsed between successive substitutions to the common ancestor
will with very high probability be large enough for the allele frequencies to have relaxed to their
stationary distribution well in advance of the next mutation. Moreover, because Lemma 2.3
guarantees that the jump rates appearing in the generator G in (15) are continuous functions
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of the frequency p, the time averages of the jump rates along paths of the diffusion will be
approximately equal to the product of the time elapsed and the mean substitution rates shown
above. Of course, for this approximation to be relevant to data, we will also need the phylogenetic
tree describing the relationships among the sequences to be deep enough that the ergodic averages
of the substitution rates are approached along each branch of the tree.

When the mutation rates are very small, the average substitution rates shown in (18) can
be replaced by simpler expressions which depend only on the mutation rates and the fixation
probabilities. Suppose that µi = θνi, i = 1, 2, and write hθ(p), πθ(p), and µCA

i,θ to indicate the
dependence of these quantities on θ. In Proposition 3.2 we evaluate the scaled, weak mutation
limits µCA

i,low ≡ limθ→0 θ
−1µCA

i,θ . However, we first state a technical lemma which will be needed
in the proof of that proposition. Recall that we assume that the selection coefficient σ(p) is
holomorphic on some neighborhood of [0, 1].

Lemma 3.1. The functions hθ(p) and h′θ(p) converge uniformly on [0, 1] to h0(p) and h′0(p),
respectively, as θ → 0.

Proof. We begin by using the probabilistic representation of hθ(p) given in Proposition
2.5 to prove that hθ(p) converges pointwise on [0, 1] to h0(p). For each θ ≥ 0, let
pθ(t) be the diffusion process corresponding to the generator Aθφ(p) = 1

2p(1 − p)φ′′(p) +
(θν1(1 − p) − θν2p+ σ(p)p(1 − p))φ′(p), and if θ > 0, let p̂θ(t) be the jump-diffusion process
corresponding to the generator

Âθφ(p) = Aθφ(p) + θν1

(

1 − p

p

)

(φ(0) − φ(p)) + θν2

(

p

1 − p

)

(φ(1) − φ(p)).

As in the proof of Proposition 2.6, we can construct coupled versions of the two processes
pθ(t) and p̂θ(t) in the following way. Let Z0,θ and Z1,θ be a pair of independent, unit mean
exponentially distributed random variables, define

J0,θ(t) = θν1

∫ t

0

(

1 − pθ(s)

pθ(s)

)

ds, and J1,θ(t) = θν2

∫ t

0

(

pθ(s)

1 − pθ(s)

)

ds,

and let τθ = inf{t > 0 : J0,θ(t) ≥ Z0,θ or J1,θ(t) ≥ Z1,θ}. For t < τθ, define p̂θ(t) = pθ(t),
while for t ≥ τθ, define p̂θ(t) = 0 if J0,θ(τθ) ≥ Z0, and p̂θ(t) = 1 otherwise. Then, according to
Proposition 2.5, hθ(p) = P{p̂θ(τθ) = 1}. Morally, we expect the probabilities hθ(p) to converge
to the fixation probability h0(p) as θ → 0 because the diffusions pθ(t) converge in distribution
to p0(t), and because when θ is small but positive the process p̂θ(t) is likely to jump to the
boundary at 1 only along those sample paths of pθ(t) which hit 1 before they hit 0.

To make this argument precise, let us introduce the hitting times Tq,θ = inf{t > 0 : pθ(t) = q}
for q ∈ [0, 1], with Tq,θ = ∞ if pθ(t) 6= q for all t > 0, and recall that Pp{Tb,θ < Ta,θ} =
(sθ(p) − sθ(a))/(sθ(b) − sθ(a)) for any 0 < a < b < 1, where the scale function sθ(p) for the
Wright-Fisher diffusion pθ(t) is

sθ(p) =

∫ p

c

(q

c

)−2θν1
(

1 − q

1 − c

)−2θν2

e−2(S(q)−S(c))dq,

with S(p) ≡
∫ p
0 σ(q)dq and c some arbitrary point in (0, 1) (Ewens 2004, Section 4.3). Further-

more, if 2θν1 and 2θν2 are both less than 1, then the scale function is finite on [0, 1] and we can
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also allow a = 0 and b = 1 in the previous expression for the hitting probability. Consequently,
for every p ∈ [0, 1], sθ(p) converges pointwise (in fact, uniformly on [0, 1]) to s0(p) as θ → 0,
and for any fixed 0 ≤ a < b ≤ 1, the probabilities Pp{Tb,θ < Ta,θ} converge to Pp{Tb,0 < Ta,0}.
In particular, if we define uθ(p) = Pp{T1,θ < T0,θ} to be the probability that the diffusion pθ(t)
hits 1 before hitting 0, then uθ(p) converges uniformly to h0(p) on [0, 1]. We also observe that
if we let Tθ ≡ T0,θ ∧ T1,θ denote the first hitting time of 0 or 1 by the diffusion pθ(t), then the
expectation Ep[Tθ] is finite whenever 2θν1 and 2θν2 are both less than 1, in which case

Ep[Tθ] = 2(1 − uθ(p))

∫ p

0
q2θν1−1(1 − q)2θν2−1e2S(q)dq

∫ q

0
z−2θν1(1 − z)−2θν2e−2S(z)dz +

2uθ(p)

∫ 1

p
q2θν1−1(1 − q)2θν2−1e2S(q)dq

∫ 1

q
z−2θν1(1 − z)−2θν2e−2S(z)dz,

(Ewens 2004, Section 4.4). A simple calculation shows that Ep[Tθ] converges to Ep[T0] for every
p ∈ [0, 1] as θ → 0.

Now fix p ∈ [0, 1], let ǫ > 0, and use the continuity of the sample paths of p0(t) to choose δ > 0
small enough that

Pp{T1,0 < Tδ,0} > Pp{T1,0 < T0,0} − ǫ = h0(p) − ǫ.

Because the scale functions sθ(p) converge to s0(p) as θ → 0, we can choose θ1 > 0 such that

Pp{T1,θ < Tδ,θ} > Pp{T1,0 < Tδ,0} − ǫ,

for all θ ∈ [0, θ1]. Furthermore, by combining Markov’s inequality with the convergence of Ep[Tθ]
to Ep[T0], we can also choose θ2 > 0 and T <∞ such that

Pp(Tθ < T ) > 1 − ǫ,

for all θ ∈ [0, θ2]. Consequently, if we let

ΩT,δ,θ ≡ {T1,θ < (Tδ,θ ∧ T )}

denote the event that the diffusion pθ(t) hits 1 before time T without first hitting δ and we set
θ3 = θ1 ∧ θ2, then

Pp(ΩT,δ,θ) > h0(p) − 3ǫ,

for all θ ∈ [0, θ3].

To relate these observations to the behavior of the jump-diffusions p̂θ(t), note that Lemma 2.1
implies that on ΩT,δ,θ,

lim
t→T

J1,θ(t) = ∞,

almost surely, and therefore p̂θ(T ) = 1 whenever the sample path of pθ(t) is in this set, unless
p̂θ(t) jumps to 0 before the diffusion pθ(t) hits 1. However, because a jump to 0 can only occur
if J0,θ(T ) > Z0 and because

J0,θ(t) ≤
θν1t

δ
,
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on ΩT,δ,θ, we can bound the probability of this exceptional event by

Pp ({p̂θ(τθ) = 0} ∩ ΩT,δ,θ) < Pp

{

Z0 ≤
θν1T

δ

}

<
θν1T

δ
,

and therefore

hθ(p) > Pp(ΩT,δ,θ) −
θν1T

δ

Thus, if we set θ4 = θ3 ∧
(

δǫ
ν1T

)

, it follows that for all θ ∈ [0, θ4],

hθ(p) ≥ h0(p) − 4ǫ,

and since ǫ > 0 can be taken arbitrarily small, we see that lim infθ→0 hθ(p) ≥ h0(p). Since we
can also show that lim infθ→0(1− hθ(p)) ≥ (1−h0(p)) by considering trajectories of pθ(t) which
hit 0 before hitting 1, it follows that limθ→0 hθ(p) = h0(p) for every p ∈ [0, 1]. Furthermore,
because hθ(p) is continuous and non-decreasing for every θ ≥ 0 (by Lemma 2.3 and Proposition
2.5, respectively), this result implies that hθ(p) converges uniformly to h0(p) on [0, 1] as θ → 0.

To prove that the first derivatives converge uniformly on [0, 1], recall that according to Lemma
2.3 each function hθ(p) is holomorphic on (0, 1). Since hθ(p) converges uniformly to h0(p) on
[0, 1], it follows that h′θ(p) converges uniformly to h′0(p) on the interval [ǫ, 1 − ǫ] for any ǫ > 0.
To extend this result to all of [0, 1], rewrite the differential equation (9) satisfied by hθ(p) in the
form:

h′′θ(p) = −2σ(p)h′θ(p) − 2θν1

(

h′θ(p)

p

)

+ 2θν2

(

h′θ(p)

1 − p

)

+ 2θν1

(

hθ(p)

p2

)

− 2θν2

(

1 − hθ(p)

(1 − p)2

)

.

If we fix c ∈ (0, 1) and integrate this equation over [c, p] for p ∈ (0, 1), we obtain the equation

h′θ(p) − h′θ(c) = −2

∫ p

c
σ(q)h′θ(q)dq − 2θν1

∫ p

c

(

h′θ(q)

q

)

dq + 2θν2

∫ p

c

(

h′θ(q)

1 − q

)

dq +

2θν1

∫ p

c

(

hθ(q)

q2

)

dq − 2θν2

∫ p

c

(

1 − hθ(q)

(1 − q)2

)

dq,

which, by integration-by-parts in the first, fourth and fifth integrals, we can rewrite as

h′θ(p) = h′θ(c) + 2σ(c)hθ(c) − 2σ(p)hθ(p) + 2

∫ p

c
σ′(q)hθ(q)dq + (19)

2θν2

(

1 − hθ(c)

1 − c

)

− 2θν2

(

1 − hθ(p)

1 − p

)

+ 2θν1

(

hθ(c)

c

)

− 2θν1

(

hθ(p)

p

)

.

Since c is fixed and since we know that all of the terms on the right-hand side except possibly
the last one converge uniformly on [0, c] as θ → 0, it follows that the quantity

h′θ(p) + 2θν1

(

hθ(p)

p

)

, (20)

which we extend continuously to p = 0, also converges uniformly on [0, c]. In particular, because
hθ(p) is continuously differentiable on [0, 1] and hθ(0) = 0, we obtain the identity

h′θ(0) =
1

1 + 2θν1

[

h′θ(c) + 2σ(c)hθ(c) − 2

∫ c

0
σ′(q)hθ(q)dq + 2θν2

(

c− hθ(c)

1 − c

)

+ 2θν1

(

hθ(c)

c

)]

,
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and the convergence of the right-hand side as θ → 0 to an expression equal to h′0(0) implies that
h′θ(0) converges to this quantity as well. Thus h′θ(p) is pointwise convergent to h′0(p) on [0, c].
To strengthen this to uniform convergence, we need to show that the second term in Eq. (20)
converges uniformly to 0 as θ → 0, and because this term is non-negative and contains θ as a
factor, it suffices to show that there is a constant M <∞ such that

sup

{

hθ(p)

p
: p ∈ (0, c], θ ∈ [0, 1]

}

< M.

Observe that we can write Eq. (19) as

h′θ(p) = D(θ, p) − 2θν1

(

hθ(p)

p

)

,

where the quantity |D(θ, p)| is bounded by a constant C for all p ∈ [0, c] and all θ ∈ [0, 1]. Since
hθ(p) ≥ 0 and hθ(0) = 0, this implies that h′θ(p) ≤ C and therefore hθ(p) ≤ Cp for all p ∈ [0, c]
and θ ∈ [0, 1], and so we can take M = C. Thus, h′θ(p) converges uniformly to h′0(p) on [0, c] as
θ → 0, and a similar argument shows that this is true on [c, 1] as well.

Proposition 3.2. Let S(p) =
∫ p
0 σ(q)dq. Then the weak mutation limits of the scaled, stationary

substitution rates defined in (18) are

µCA
2,low ≡ lim

θ→0
θ−1µCA

2,θ =
ν2 e

−2S(1)

∫ 1
0 e

−2S(q)dq

µCA
1,low ≡ lim

θ→0
θ−1µCA

1,θ =
ν1

∫ 1
0 e

−2S(q)dq
. (21)

Proof. We first observe that if φ(·) is any continuous function, then by splitting the domain of
integration into the three regions [0, ǫ), [ǫ, 1− ǫ] and (1− ǫ, 1] and taking ǫ > 0 arbitrarily small,
we can show that

lim
θ→0

∫ 1

0
φ(p)πθ(p)dp = πφ(1) + (1 − π)φ(0),

where πθ(p) is determined from (2) and

π ≡
ν1e

2S(1)

ν2 + ν1e2S(1)
,

i.e., the measures πθ(dp) converge weakly to πδ1(dp) + (1 − π)δ0(dp) as θ → 0. Since hθ(0) =
h0(0) = 0 and hθ(1) = h0(1) = 1 for all θ > 0 and since hθ(p) converges uniformly to h0(p), it
follows that

lim
θ→0

∫ 1

0
hθ(p)πθ(p)dp = lim

θ→0

∫ 1

0
(hθ(p) − h0(p))πθ(p)dp+ lim

θ→0

∫ 1

0
h0(p)πθ(p)dp = π.

Likewise, if we define φθ(p) = (1 − hθ(p))/(1 − p) and φ0(p) = (1 − h0(p))/(1 − p) for p ∈ [0, 1)
and φθ(1) = h′θ(1) and φ0(1) = h′0(1), then Lemma 2.3 guarantees that all of these functions are
continuous on [0, 1], while it follows from Lemma 3.1 that φθ(p) converges uniformly to φ0(p)
on this interval. Consequently,

lim
θ→0

∫ 1

0
pφθ(p)πθ(p)dp = lim

θ→0

∫ 1

0
p(φθ(p) − φ0(p))πθ(p)dp + lim

θ→0

∫ 1

0
pφ0(p)πθ(p)dp = πh′0(1).
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It follows that θ−1µCA
2,θ converges to ν2h

′(1) as θ → 0 and a similar argument shows that θ−1µCA
1,θ

converges to ν1h
′(0) in this same limit. The limiting expressions shown in (21) can then be

derived from the formula for the fixation probability h0(p) shown in (16).

The proof of Proposition 3.2 shows that the weak mutation limits µCA
i,low are closely related to an

approximation commonly used to describe the ‘flux of selected alleles’ (Kimura 1964; Otto and
Whitlock 1997) and incorporated into a phylogenetic framework by McVean and Vieira (2001).
Writing µCA

1,low = ν1h
′
0(0) = Nν1h0(N

−1) + O(ν2
1 ), we see that the limiting substitution rate

of P is approximately equal to the product of the number, Nν1, of new P mutants produced
per generation and the fixation probability, h0(N

−1), of a single such mutant in a population
otherwise fixed for Q. In contrast, if we let uθ(p) denote the fixation probability of P when the
mutation rates are θν1 and θν2, then it is not true that ν1u

′
θ(0) converges to ν1h

′
0(0) as θ → 0

since u′θ(0) = ∞ whenever θ > 0 (see the scale function sθ(p) introduced in the proof of Lemma
3.1). Thus the additional regularization of h′θ(p) afforded by recurrent mutation to the common
ancestor lineage (represented by the ‘jump terms’ in the BVP (9)) appears to be essential to
the existence of the low mutation rate limit. We shall see in the next two sections that the
approximation given by Proposition 3.2 is generally very good when selection and mutation are
both weak, but tends to underestimate the substitution rates if either selection is strong or the
mutation rates are high.

4 Purifying selection in a haploid population

We next show how the theory developed in the preceding section can be used to characterize
the common ancestor process of a haploid population evolving according to a Wright-Fisher
diffusion (1) with frequency-independent fitness differences between the alleles, i.e., σ(p) ≡ s 6= 0.
Because we know from (2) that the density of the stationary distribution of this diffusion is
π(p) = Cp2µ1−1(1 − p)2µ2−1e2sp, our description of the common ancestor distribution will be
complete if we can solve (9) for the conditional probability h(p).

To do so, we begin by supposing that we can expand h(p) in a power series in s

h(p) = p+

∞
∑

n=1

hn(p)sn.

Substituting this expansion into (9) and collecting all terms multiplying sn leads to a recursive
series of BVP’s for the functions hn(·), n ≥ 1,

1

2
p(1 − p)h′′n(p) + (µ1(1 − p) − µ2p)h

′
n(p) −

(

µ2

(

p

1 − p

)

+ µ1

(

1 − p

p

))

hn(p)

= −p(1 − p)h′n−1(p), (22)

subject to the conditions hn(0) = hn(1) = 0. To solve these inhomogeneous equations, we
first need to determine the general solution to the corresponding homogeneous equation. Some
guesswork leads to one solution

ψ1(p) = p−2µ1(1 − p)−2µ2 ,
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and a reduction of order calculation leads to a second linearly independent solution

ψ2(p) = ψ1(p)β(p) ≡ ψ1(p)

∫ p

0
q2µ1(1 − q)2µ2dq.

With these in hand, integration-by-parts and the method of variation of parameters can be used
to find a recursive solution to the boundary value problem given in (22)

hn(p) =
2

β′(p)

[

β(p)

β(1)

∫ 1

0
β′(q)hn−1(q)dq −

∫ p

0
β′(q)hn−1(q)dq

]

.

Defining Hn(p) = β′(p)hn(p) and H(p) = β′(p)h(p), we can rewrite this recursion as

Hn(p) = 2

(

β(p)

β(1)

)∫ 1

0
Hn−1(q)dq − 2

∫ p

0
Hn−1(q)dq,

which, upon differentiating with respect to p, gives

H ′
n(p) = 2

(

β′(p)

β(1)

)
∫ 1

0
Hn−1(q)dq − 2Hn−1(p).

Term-by-term differentiation of the series expansion of H(p) itself leads to the following first-
order differential equation

H ′(p) = β′(p) + pβ′′(p) + 2s

(

β′(p)

β(1)

)∫ 1

0
H(q)dq − 2sH(p),

and to find h(p), we must divide the general solution to this equation by β′(p) and impose the
original boundary conditions h(0) = 0 and h(1) = 1 (which can be jointly satisfied). These
calculations lead to the following expression for the conditional probability that the genotype of
the common ancestor is P ,

h(p) = p+ 2s

∫ p

0
(p̃− q)e2s(q−p)

(

q

p

)2µ1
(

1 − q

1 − p

)2µ2

dq, (23)

where the constant p̃ is the expectation of the allele frequency p with respect to the variance-
biased stationary distribution π̃(p)dp ≡ Csp(1 − p)π(p)dp (where C is a normalizing constant):

p̃ ≡

∫ 1

0
pπ̃(p)dp =

∫ 1
0 e

2sqq2µ1+1(1 − q)2µ2dq
∫ 1
0 e

2sqq2µ1(1 − q)2µ2dq
. (24)

(Observe that p̃ is also the probability that a sample of three individuals from a stationary pop-
ulation contains two P and one Q individual conditional on it containing at least one individual
of each genotype.)

We can calculate the marginal probability, π1, that the common ancestor is of type P by inte-
grating the density of the joint probability π(1, p) = h(p)π(p) over [0, 1]. Because this integral
cannot be evaluated analytically, π1 must be calculated by numerical integration, which can be
done accurately using the method described in the appendix. Furthermore, by interchanging
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the order of integration in the resulting double integral, we arrive at the following intriguing
expression for π1

π1 ≡ P{z = 1} = Eπ[p] + Eπ[2sp(1 − p)]Covπ̃

(

p, ln

(

p

1 − p

))

, (25)

where Covπ̃ (·, ·) denotes the covariance with respect to the variance-biased stationary measure
defined above. Although this expression is reminiscent of Price’s equation (Price 1970), which
states that the change in a trait caused by selection is equal to the covariance between that trait
and fitness, it is not clear how to interpret the terms appearing within the covariance in a way
that would make this correspondence precise.

When s > 0, i.e., P is fitter than Q, it is clear that the integral on the right-hand side of (23)
vanishes at p = 0, 1 and is strictly positive when p ∈ (0, 1). Consequently, h(p) ≥ p, as follows
from Proposition 2.6, and thus the common ancestor is more likely to be of the fitter type than
an individual chosen at random. Plots of h(p) for different values of the (symmetric) mutation
rates and selection coefficients are shown in Figure 1A. For fixed values of the mutation rates,
we see that h(p) is an increasing function of the selection coefficient s, which also follows from
Proposition 2.6. On the other hand, for fixed positive values of s, h(p) is a decreasing function
of the mutation rates, probably because mutation reduces the correlation between the type of
an extant lineage and its probability of surviving into the future.

Although expressions (15) and (23) fully determine the generator G of the common ancestor
process, none of the terms containing h(p) simplify and so we do not reproduce these here. Less
cumbersome, approximate expressions for the substitution rates can be derived with the help of
Proposition 3.2, which shows that the weak mutation limits are

µCA
2,low = µ2

(

2s

e2s − 1

)

and µCA
1,low = µ1

(

2se2s

e2s − 1

)

.

These are also derived in Corollary 3 of Fearnhead (2002) and have been used by McVean
and Vieira (2001) to estimate the strength of selection on codon usage in several Drosophila
species. Of course, we can also use expressions (15) and (23) to calculate the exact common
ancestor substitution rates. Figure 1B shows how the relative deleterious substitution rate,
µCA

2 (p)/µ2 = p(1−h(p))
(1−p)h(p) , varies as a function of the frequency p of P . (As can be seen in (15),

the relative beneficial substitution rate, µCA
1 (p)/µ1, is always the reciprocal of this quantity and

so is not shown.) Note that the mutation rates are symmetric in parts A-C of Figure 1, i.e.,
µ1 = µ2 ≡ µ, and that the substitution rates are scaled by the mutation rate. As expected, the
relative deleterious substitution rate is always less than 1, i.e., the absolute substitution rate is
less than the mutation rate, and this rate decreases as the selective advantage of P increases,
but increases as the mutation rate µ increases. For comparison, we have also plotted the average
deleterious substitution rates, µCA

2 /µ2, calculated using (18) and scaled by µ, as bold horizontal
line segments on the right side of Figure 1B. Examining this figure reveals that for each fixed
pair of values of µ and s, the average deleterious substitution rate is nearly as small as the
smallest frequency-dependent rate (i.e., the bold horizontal lines lie beneath the corresponding
curve for most values of p). Presumably this is because the conditional distribution of p given
that the common ancestor is of type P is concentrated in a small region abutting the boundary
p = 1 whenever P is selectively advantageous and the mutation rate is not too large.
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Figure 1: Stationary distribution and substitution rates of the common ancestor of a haploid
population subject to purifying selection (σ(p) ≡ s) and either symmetric (µ1 = µ2 ≡ µ) (A-
C) or asymmetric (D) mutation. (A) shows the conditional probability h(p) (Eq. 23) that the
common ancestor is of type P , while (B) shows the frequency-dependent deleterious substitution
rates (from Eq. 15) and their stationary averages (bold line segments; Eq. 18). (C) and (D) show
the stationary averages of the beneficial (Q → P ) and deleterious (P → Q) substitution rates,
and C also shows the weak mutation limits (Eq. 21) (bold lines; µ = 0). Note that solid, dashed,
and dotted curves in (A-C) correspond to the symmetric mutation rates µ = 0.01, 0.1, and 0.5,
respectively, while in (D), µ1 = 0.01 is fixed and µ2 varies along dashed lines, and µ2 = 0.01 is
fixed and µ1 varies along solid lines. Note that all substitution rates have been scaled by the
corresponding mutation rate.

Figures 1C and D give a more detailed picture of the variation in substitution rates under
different regimes of mutation and selection. In Figure 1C, we plot the average deleterious and
favorable substitution rates, again scaled by the corresponding (symmetric) mutation rates, as
functions of the selective advantage of P . (Because the conditional distributions used in (18) to
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define these two rates differ, the reciprocity property noted for the frequency-dependent rates no
longer holds.) Also shown are the weak mutation limits, calculated using (21), which are shown
as bold curves. It is notable that except when the mutation rate is very large (µ = 0.5), both
the beneficial and the deleterious substitution rates are greater than their weak mutation limits,
although the discrepancy is greatest for deleterious substitutions and grows as the selection
coefficient s increases. For example, when s = 5 and either µ = 0.01 or µ = 0.1, the average
deleterious substitution rates are approximately 7 and 59-times greater than the corresponding
weak mutation limit, respectively, while the average beneficial substitution rates for these two
cases are approximately 7 and 3 times as large. Furthermore, because Figure 1B shows that the
average substitution rates are nearly as small as the minimum frequency-dependent rates, we can
conclude that the discrepancy between the average substitution rates and their weak mutation
limits arises primarily because the limiting values underestimate the true substitution rates and
not because the average substitution rates are too large. While this difference is small when the
mutation rates are small, it could be as much as an order of magnitude or more in organisms
having either very large effective population sizes or high mutation rates, e.g., in HIV-1 the
mutation rate is approximately 3×10−5 mutations per nucleotide per viral generation, while the
effective viral population size within infected hosts is usually estimated to be between 103 − 104

(Koyous et al. 2006), giving µ ≈ 3 × 10−2 − 3 × 10−1. In such cases, the stationary averages
given by (18) will be much more accurate numerical summaries of the true, frequency-dependent
substitution rates than approximations which neglect recurrent mutation.

To disentangle the effects of the two mutation rates, Figure 1D shows how the two substitution
rates change when one of the mutation rates is held fixed and the other is varied. The behavior
of the deleterious substitution rate is easiest to understand: increasing either mutation rate
increases this substitution rate, although the effect is greatest when the mutation rate to the
favorable allele is increased, presumably because a Q lineage is then more likely to mutate to
P before going extinct. In contrast, the beneficial substitution rate eventually decreases when
either mutation rate is increased, but is initially an increasing function of µ1, possibly because
of mutation-drift interactions, i.e., a larger mutation rate helps drive a rare favorable allele up
to frequencies where selection can be effective compared with genetic drift.

4.1 Complementarity of the diffusion and graphical representations

The common ancestor process for a Wright-Fisher diffusion with frequency-independent selection
has also been characterized by Fearnhead (2002) using the ancestral selection graph. This
approach embeds the common ancestor process within a pure jump Markov process (zt, nt)
taking values in the state space E = {0, 1}×N , where nt denotes the number of virtual lineages,
all of the less fit type. Fearnhead (2002) shows that the stationary distribution of this process
is given by

π(1;n) =

(

n
∏

i=1

λi

)

Eπ[p(1 − p)n]

π(0;n) = (1 − λn+1)

(

n
∏

i=1

λi

)

Eπ[(1 − p)n+1], (26)
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where Eπ[·] denotes an expectation with respect to the stationary measure π(dp) and λn =

limk→∞ λ
(k)
n with

λ
(k)
n−1 =

2s

n+ 2(µ2 + µ1) + 2s− (n+ 2µ2)λ
(k)
n

(27)

and λ
(k)
k+1 = 0, and we interpret empty brackets (n = 0) as being equal to 1. (This formula

assumes that s ≥ 0; if P is less fit than Q, then we simply exchange indices. Also note that
(26) and (27) have been rewritten to reflect the scalings of µi and s used in this article rather
than those in Fearnhead (2002).) The transition rates of the common ancestor process can be
calculated by reversing the modified ancestral selection graph with respect to π(z, dn) and also
depend on the λn’s; we refer the reader to Corollary 2 of Fearnhead (2002) for their values.

Because the marginal laws of the genealogical processes embedded within the structured coales-
cent and the ancestral selection graph are identical, it is clear that this will also be true of the
common ancestor processes identified by these two methods. However, deducing this equality
directly from the generators of the bivariate processes appears to be difficult and here we merely
show that the marginal stationary distributions of the type of the common ancestor are the
same.

Lemma 4.1. Let h(p) be the conditional probability defined in (23) and let (λn)n≥1 be the
sequence defined by (27). Then,

h(p) = p+ p
∑

n≥1

(1 − p)n

(

n
∏

i=1

λi

)

Proof. Using recursion (27) and its initial condition, we can show inductively that, for every

n ≥ 1 and every k ≥ 1, λ
(k)
n < s/(s + µ1), and therefore that λn ≤ s/(s + µ1) and an ≡

∏n
i=1 λi ≤ (s/(s + µ1))

n as well. It follows that the function g(p) = p
∑

n≥1 an(1 − p)n is
holomorphic in the open disk D = D(1; 1 + ǫ) for some ǫ > 0 and thus can be differentiated
term-by-term on D. Substituting g(p) into the left-hand side of equation (10), we obtain the
following expression

p(1 − p) [(1 + µ2)a2 − (1 + µ2 + µ1 + s)a1] +

p
∑

n≥2

n

[(

1

2
(n + 1) + µ2

)

an+1 −

(

1

2
(n+ 1) + µ1 + µ2 + s

)

an + san−1

]

(1 − p)n,

and, using recursion (24), which holds with λn in place of λ
(k)
n , we can show that this is equal to

−sp(1 − p) for all p ∈ [0, 1]. Since g(0) = g(1) = 0, the uniqueness of solutions to second-order
boundary value problems with smooth coefficients implies that h(p) = p+ g(p).

The equality of the marginal stationary distributions follows upon integrating both sides of the
identity asserted by the lemma with respect to the stationary measure π(dp),

π1 =

∫ 1

0
h(p)π(p)dp = Eπ[p] + Eπ[

∑

n≥1

p(1 − p)n]

(

n
∏

i=1

λi

)

=
∑

n≥0

π(1, n).
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Another consequence of the lemma is that it provides an explicit formula for the constants λn,

λn = −
v(n)(1)

v(n−1)(1)
, (28)

where v(p) ≡ (h(p) − p)/p. Of course, the algebraic operations needed to analytically evaluate
successive derivatives of v(p) essentially replicate the recursion satisfied by the λn. However, the
one advantage that (28) does have over (27) is that it gives an explicit formula for λ1,

λ1 =

(

2s

1 + 2µ2

)

(1 − p̃),

which allows the recursion to be solved from the bottom-up, starting with the calculated value
of λ1, rather than from the top-down, with the approximation λn ≈ 0 for some large value of n.

5 Selection and dominance in a diploid population

To illustrate the generality of the diffusion theoretic methods, in this section we will consider
a diploid population and explore what effect the degree of dominance of fitness has on the
common ancestor process. Several observations suggest that dominance plays an important
role in molecular evolution. For example, it has long been known that deleterious mutations
in coding sequences are usually recessive, possibly because of complementation by the fully
functional allele or because of structural features of metabolic pathways (Kondrashov and Koonin
2004). Furthermore, even when the different alleles segregating at a locus are not individually
advantageous, non-additive interactions between alleles can cause heterozygous genotypes to
have higher or lower fitness than any of the possible homozygotes, leading to balancing or
disruptive selection (Richman 2000). From classical population genetics theory we know that
dominance relations affecting fitness can profoundly alter fixation probabilities and rates (Ewens
2004; Williamson et al. 2004) and so we would expect the same to be true of the substitution
process of the common ancestor.

We formulate our model by considering a diploid population of effective population size 2Ne

in which the relative fitnesses of the genotypes PP , PQ, and QQ are 1 + 2s : 1 + 2ds : 1,
respectively, and d is a constant which quantifies the dominance (d > 0.5) or recessiveness
(d < 0.5) of P relative to Q. Note that when d > 1, heterozygotes have higher fitness than
either homozygote and are said to be overdominant, whereas when d < 0, heterozygotes have
lower fitness and then are said to be underdominant. By rescaling both the selection coefficient
s and the mutation rates by a factor of 1/2Ne and speeding up time by a factor of 2N , we
can again approximate the changes in the frequency of P by a Wright-Fisher diffusion with
generator (1) where σ(p) = 2s(d − (2d − 1)p). When d = 0.5, σ(p) ≡ s is constant and the
common ancestor process can be characterized using either the results in the preceding section
or those of Fearnhead (2002). However, for any other value of d, σ(p) is frequency-dependent
and neither set of results applies.

Because the ancestral selection graph has been identified for this diffusion model (Neuhauser
1999), one might try to identify the common ancestor process by generalizing the methods
used by Fearnhead (2002). The main obstacle to implementing this approach is that trinary
branchings are required to account for the frequency-dependence of fitness and it is unclear that
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Figure 2: Stationary distribution and substitution rates of the common ancestor in a diploid
population with relative genotypic fitnesses 1 + 2s, 1 + 2ds, and 1 for PP , PQ, and QQ, and
symmetric mutation rates (µ1 = µ2 ≡ µ). (A) shows the conditional probability h(p) that the
common ancestor is of type P , determined numerically by solving BVP (9), while (B) shows
the frequency-dependent P → Q substitution rates (from Eq. 15). (C) shows the stationary
averages (Eq. 18) and weak mutation limits (Eq. 21; bold lines) of the substitution rates, with
P → Q substitution rates falling below 1 and Q→ P substitution rates lying (mainly) above 1.
Note that all substitution rates have been scaled by the corresponding mutation rate, and that
P → Q substitutions are deleterious and Q→ P substitutions are beneficial at all frequencies p
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there is a pruned version of the ancestral selection graph of the kind found in Fearnhead (2002).
However, without such a simplification, the common ancestor process will be embedded within a
trivariate process (zt, n1(t), n2(t)), where ni(t) is the number of virtual lineages of type Ai, and
the stationary distribution will have to be determined by solving a multi-dimensional recursion.

In contrast, the diffusion theory developed in the first part of this article can be applied with-
out modification to the new model. The price we pay for the added complexity of frequency-
dependent selection is that we can no longer write down an explicit formula for h(p): although
we can still solve the BVP (9) recursively as in the previous section, we no longer obtain an
integrating factor for the original equation. On the other hand, it is relatively easy to solve
this problem numerically using the shooting method, even for large values of |s|. (See the ap-
pendix for a description of our numerical methods.) Furthermore, because the density π(p) of
the stationary distribution is known explicitly,

π(p) = Cp2µ1−1(1 − p)2µ2−1e2sp[d−(d−1/2)p],

we can use our numerical estimates of h(p) to evaluate both the density of the common ancestor
distribution and the substitution rates to the common ancestor. Of course, we can also use
Proposition 3.2 to calculate the weak mutation limits to the substitution rates.

Figure 2 shows the results of these calculations. In Figure 2A we have plotted the numerical
solutions themselves to show how h(p) varies as a function of the dominance coefficient d when
selection is moderately strong (s = 5). Qualitatively similar results are obtained both with
weaker (s = 1) and stronger (s = 10) selection and so are not shown. We then substituted these
numerical values into (15) to obtain the frequency-dependent ‘deleterious’ substitution rates
(P → Q) shown in Figure 2B. (Note that these substitutions are unconditionally deleterious
only when the dominance coefficient d lies between 0 and 1.) The patterns evident in both
figures can be interpreted by considering how dominance affects the marginal fitnesses of the
two alleles at high and low frequencies of P . With increasing dominance of P over Q, the
difference between the marginal fitnesses of the two alleles is reduced at high frequencies of P ,
rendering selection less effective and causing both a small decline in h(p) but also a marked
increase in the deleterious substitution rate at frequencies p close to 1. In contrast, because
higher levels of dominance expose heterozygotes to stronger selection in populations which are
nearly fixed for Q, these relationships are reversed when p is close to 0.

Similar considerations apply when heterozygotes are over- or under-dominant. One interesting
feature of Figure 2B is that with disruptive selection (d = −0.5) the relative substitution rate
of P → Q increases above 1 when the frequency of P is sufficiently close to 0. This is because
the deterministic dynamics corresponding to this fitness scheme have an unstable internal equi-
librium below which the marginal fitness of P is less than that of Q and selection favors Q
substitutions. In contrast, when heterozygotes are over-dominant, the corresponding determin-
istic dynamics have a stable internal equilibrium and the marginal fitness of Q is an increasing
function of the frequency of P , leading to the convex substitution rates seen in Figure 2B when
d = 1.5.

An overview of how dominance affects the substitution process can be gleaned from Figure 2C,
which shows plots of the (relative) average substitution rates for different values of d and µ,
as well as the low mutation rate limits. We again see that the weak mutation rate limits (21)
generally underestimate the average substitution rates (18), except when the mutation rate is so
large that the long-term fitness of a lineage is partially decoupled from its current type. Also,
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whereas the deleterious (P → Q) substitution rates are increasing functions of the dominance
coefficient d, the beneficial (Q → P ) substitution rates are either unimodal or decreasing. In
fact, even when µ is as small as 0.01, the beneficial substitution rate is seen to decrease slightly
as d exceeds 1.3, probably because heterozygote advantage favors Q when the frequency of P is
very high.

6 Multiple genetic backgrounds: prospects and problems

In this article we have used the structured coalescent in a fluctuating background to characterize
the common ancestor process associated with a class of diffusion models important in population
genetics theory. In addition to the classical Wright-Fisher diffusion, which can model general
forms of frequency-dependent selection in panmictic populations, one-dimensional diffusions arise
as scaling limits of models incorporating population structure (Cherry and Wakeley 2003), group
selection (Roze and Rousset 2004) and environmental variation (Gillespie 1991). Although a
closed-form solution was found only for the model with genic selection, the theory can also be
used to quantify the influence of selection and genetic drift on the rate of molecular evolution
under more complicated scenarios by first solving the BVP (9) numerically and then substituting
the results into the expressions for the substitution rates which were derived as part of (15).
Furthermore, as the section on the weak mutation limits illustrates, we can also use the theory to
obtain analytical approximations for the substitution rates when selection, mutation or genetic
drift are either very strong or very weak.

The most serious limitation of the diffusion-theoretic approach is that it leads to a much less
tractable description of the common ancestor process when there are more than two genetic
backgrounds. To illustrate both the difficulties and the potential interest of this approach,
consider a locus which we will call the focal locus and which can occur in m different genetic
backgrounds, P1, · · · , Pm, present at frequencies p1, · · · , pm, respectively. Because the frequen-
cies sum to one, we can describe the genetic composition of the population using any m− 1 of
these and so we will consider diffusion processes which take values in the (m − 1)-dimensional
simplex Km−1 = {(p1, · · · , pm−1) : p1, · · · , pm−1 ≥ 0, p1 + · · · + pm−1 ≤ 1}. As before, let Ne

denote the effective population size, let 1 + σi(p)/Ne denote the relative fitness of background
Pi, and suppose that mutations from Pi to Pk occur at rate µik/Ne, and that recombinations (or
gene conversion events) involving individuals of type Pj change the background of the focal locus
from type Pi to type Pk at rate ρ(i, j|k)/Ne. It will also be convenient to define µii = ρ(i, j|i) = 0
for all i, j = 1, · · · ,m. By rescaling the parameters and time in the usual manner and writing
σ̄(p) =

∑m
i=1 piσi(p) for the mean fitness of the population, we obtain a Wright-Fisher diffusion

with generator

Aψ(p) =
1

2

m−1
∑

i,j=1

pi(δij − pj)∂i∂jψ(p) (29)

+

m−1
∑

i=1





m
∑

k=1

(pkµki − piµik) +

m
∑

j,k=1

(pkpjρ(k, j|i) − pipjρ(i, j|k)) + pi(σi(p) − σ̄(p))



 ∂iψ(p),

for ψ ∈ C2(Km−1). Although we allow for recombination in this model, we emphasize that we
are considering the common ancestor process at the focal locus only, and that ρ(i, j|k) is the
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rate at which recombinations involving a non-ancestral lineage in background Pj change the
background of the ancestral lineage from Pi to Pk. We could also define a structured ancestral
recombination graph (Griffiths and Marjoram 1997) and use this to characterize the type of the
common ancestor at several recombining loci, but this process would be even more complicated
than the one we do consider here.

Unfortunately, when we try to write down the generator for the coalescent process of a sample of
n genes from a population evolving according to this model, we encounter several complications
that do not occur in biallelic models. One is that because the diffusion corresponding to generator
(29) need not be not time-reversible with respect to its stationary distribution, i.e., the detailed
balanced conditions need not hold, the generator Ã of the time-reversed process may differ from
A. If we denote the density of the stationary distribution of A by π(p) (for which we will assume
both existence and uniqueness), then we can use the adjoint condition (Nelson 1958)

∫

Km−1

(

Aψ(p)
)

φ(p)π(p)dp =

∫

Km−1

ψ(p)
(

Ãφ(p)
)

π(p)dp,

for φ,ψ ∈ C2(Km−1), to arrive at the following formal expression

Ãφ(p) =
1

2

m−1
∑

i,j=1

pi(δij − pj)∂i∂jφ(p) +
m−1
∑

i=1

(

1

π(p)

m−1
∑

k=1

∂k (aik(p)π(p)) − bi(p)

)

∂iφ(p), (30)

where bi(·) denotes the drift coefficient associated with ∂iψ(·) in (29). Although π(p) is known
explicitly only in those special cases where the diffusion is in fact reversible (see Li et al. 1999),
(30) does at least provide us with a semi-explicit formula for the generator of the time-reversed
diffusion process which we can use to study the common ancestor process.

When there is only one ancestral lineage, the structured coalescent corresponding to (29) can
be denoted (z̃t, p̃t) ∈ E ≡ {1, · · · ,m} ×Km−1, where z̃t = i if the type of the ancestral lineage
at time t in the past was Ai, and p̃t = (p̃1(t), · · · , p̃m−1(t)) is the time-reversal of the frequency
process. (Recall that we use the tilde to denote processes and generators which run backwards
in time.) The generator of the structured retrospective process can then be written as

G̃φ(z, p) =

m
∑

k=1

µkz

(

pk

pz

)

(φ(k, p) − φ(z, p)) +

m
∑

j,k=1

ρ(k, j|z)

(

pkpj

pz

)

(φ(k, p) − φ(z, p)) +

Ãψ(z, p), (31)

provided that φ(z, ·) ∈ C2(Km−1) for z = 1, · · · ,m. While the first and third terms correspond
to terms appearing in the generator of the biallelic structured coalescent, the second term is
novel and accounts for changes in the type of the common ancestor caused by recombination.

We again define the common ancestor distribution to be the stationary distribution of the ret-
rospective process and we denote this quantity by π(z, p)dp, assuming the existence of a density
with respect to Lebesgue measure on each copy of the simplex Km−1. As in the biallelic case,
π(z, p) can be formally characterized by the condition

m
∑

z=1

∫

Km−1

G̃φ(z, p)π(z, p)dp = 0,
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valid for all φ(z, p) in the domain of G̃, which leads to the following system of coupled partial
differential equations

Ã∗π(z, p) +

m
∑

k=1

[

µzk

(

pz

pk

)

π(k, p) − µkz

(

pk

pz

)

π(z, p)

]

+

m
∑

j,k=1

[

ρ(z, j|k)

(

pzpj

pk

)

π(k, p) − ρ(k, j|z)

(

pkpj

pz

)

π(z, p)

]

= 0, z = 1, · · · ,m; (32)

here Ã∗ denotes the formal adjoint of Ã with respect to Lebesgue measure on Km−1. We have,
of course, little hope of being able to solve these equations, even numerically: not only are we
confronted with a system of singular PDE’s, but to make matters worse, we do not have a fully
explicit expression for Ã∗.

On the other hand, if we write π(z, p) = hz(p)π(p), where hz(p) denotes the conditional prob-
ability that the common ancestor is of type Az given that the backgrounds are segregating at
frequencies p, then we can at least overcome the latter problem. Substituting this expression
into (32) and noting that h1(p)+ · · ·+hm(p) = 1 for every p ∈ Km−1, we find that the functions
hz(p) also satisfy a system of coupled equations,

Ahz(p) +
m
∑

k=1

[

µzk

(

pz

pk

)

hk(p) − µkz

(

pk

pz

)

hz(p)

]

+

m
∑

j,k=1

[

ρ(z, j|k)

(

pzpj

pk

)

hk(p) − ρ(k, j|z)

(

pkpj

pz

)

hz(p)

]

= 0, z = 1, · · · ,m− 1, (33)

but that now the partial differential operator is known explicitly. The boundary conditions for
this system are given by hz(ez) = 1, where ez is the vertex of Km−1 with z’th coordinate equal
to 1 and all other coordinates equal to 0, and hz(p) = 0 for all p ∈ Km−1 such that pz = 0.

This system of equations can also be used to obtain a semi-explicit expression for the generator
G of the common ancestor process associated with the diffusion (29). The adjoint condition on
G and G̃ with respect to π(z, p)dp is now

m
∑

z=1

∫

Km−1

(

G̃φ(z, p)
)

ψ(z, p)π(z, p)dp =

m
∑

z=1

∫

Km−1

φ(z, p)
(

Gψ(z, p)
)

π(z, p)dp,

for any φ ∈ D(G̃) and ψ ∈ D(G), and this in combination with (33) formally implies that the
generator of the common ancestor process is

Gψ(z, p) = Aψ(z, p) +

m−1
∑

i=1

(

m−1
∑

k=1

pi(δik − pk)

(

∂khz(p)

hz(p)

)

)

∂iψ(z, p)+

m
∑

k=1

µzk

(

pzhk(p)

pkhz(p)

)

(ψ(k, p) − ψ(z, p)) +

m
∑

j,k=1

ρ(z, j|k) pj

(

pzhk(p)

pkhz(p)

)

(ψ(k, p) − ψ(z, p)).(34)

As in the biallelic case, the forward diffusion is modified by a drift term which reflects the excess
offspring produced by the common ancestor, while the substitution rates are modified by factors
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(

pzhk(p)
pkhz(p)

)

which account for the effects of selection. One new feature of (34) is that the rate at

which recombination changes the type of the common ancestor is also influenced by selection,
although the effect depends only on the types of the backgrounds Az and Ak of the common
ancestor before and after the recombination event, and not on the type Aj of the individual with
which the common ancestor recombines. This suggests that attempts to quantify recombination
using phylogenetic methods (e.g., Patterson et al. 2006) could be confounded by selection.

There are a few situations in which the multidimensional Wright-Fisher diffusion is reversible
with respect to its stationary distribution, allowing analytical expressions for the conditional
probabilities hk(p) and the generator G to be found (Li et al. 1999). Under complete neutrality
and parent-independent mutation, we have σk(p) ≡ 0 and µik ≡ µk for all i, k = 1, · · · ,m,
and direct substitution into equation (33) shows that hz(p) = pz as expected. In this case, the
stationary distribution of background frequencies is known to be the Dirichlet distribution with
parameters (2µ1, · · · , 2µm). Moreover, under complete neutrality, equation (33) shows that it is
true that hz(p) = pz even when the mutation rates are parent-dependent, although we are then
unable to write down an explicit formula for the density π(p).

If the genetic backgrounds can be partitioned into two fitness classes, say F and U , with fitnesses
1+s and 1, respectively, and mutation is parent-independent, then as in Fearnhead (2002) we can
use the solution from the corresponding biallelic model to determine the stationary distribution
and generator of the multi-allelic common ancestor process. Suppose that F = {P1, · · · , Pl} and
U = {Pl+1, · · · , Pm}, and let µF = µ1 + · · · + µl, µU = µl+1 + · · · + µm, and pF = p1 + · · · + pl.
Then pF (t) evolves according to a Wright-Fisher diffusion with parameters µF , µU , and s, and so
the probability that the common ancestor belongs to the fitness class F given that the frequency
of that class is p is given by equation (23), where we set µ1 = µF and µ2 = µU . Furthermore,
using equation (33), we can show that the multi-allelic conditional distribution of the type of
the common ancestor is given by

hz(p) =

(

pz

pF

)

h(pF ) if z = 1, · · · , l and hz(p) =

(

pz

1 − pF

)

(1 − h(pF )) if z = l + 1, · · · ,m.

(35)
Since the density of the stationary distribution is given by Wright’s formula,

π(p) = Ce2spF

m
∏

k=1

p2µk−1
k ,

it follows that (35) determines both the common ancestor distribution and the generator of the
common ancestor process.

Unfortunately, analytical solutions such as these are rarely available, and thus the difficulty of
numerically solving the system of singular PDE’s in (33) limits the usefulness of this theory.
Extensions to models based on multidimensional diffusions are important for several reasons.
On the one hand, while neutral substitutions at different sites will occur independently of one
another (assuming that the mutation rates are not context-dependent), selection will lead to
correlated substitution processes whenever fitness is determined epistatically or when there is
genetic linkage between polymorphic loci. It is important to understand and to quantify these
correlations not only because they may alter the marginal substitution rates, but also because
of the significant role which they might play in processes such as speciation and the evolution of
recombination. Furthermore, even if we could assume that the substitution processes at different
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sites or different codons were independent, we would still need to consider multidimensional
diffusions in order to correctly describe single nucleotide substitution processes which can involve
any one of four different DNA or RNA bases and which exhibit parent-dependent mutation.
Indeed, as McVean and Vieira (2001) found in their study of codon bias, mutation rates can
exhibit pronounced asymmetries which, if ignored, could be incorrectly interpreted as evidence
of selective constraints. For these reasons, the development of efficient numerical methods to
solve equations such as (33) would greatly enhance the value of this theory.

Appendix

Singular boundary value problems such as (9) and (10) can be solved using the shooting method,
as described in Barton and Etheridge (2004) and Press et al. (1992). Our approach follows that
described in the former paper, but with one modification which is needed to solve problems with
either large mutation rates or large selection coefficients.

The difficulty posed by singular equations is that the gradients of highest order generally diverge
wherever their coefficients vanish. In our case, this means that h′′(p) may diverge as p approaches
0 or 1. Accordingly, it is not possible to integrate directly from the boundary points and instead
shooting proceeds from interior points which are offset from the boundaries by some small
quantity, say ǫ. To do so, the boundary conditions must also be transferred to these interior
points. Often this is done simply by shifting the boundary conditions, unchanged, to the interior
points, which in our case would mean setting h(ǫ) = 0 and h(1− ǫ) = 1. However, we found that
with large values of µ1, µ2 or s, this approach did not produce accurate solutions, as evidenced
by numerical solutions exceeding 1 in the interior (h(p) is a probability and so must always
take values between 0 and 1), and by unacceptably large discrepancies between the numerical
solution and the exact solution (23) for the BVP corresponding to the Wright-Fisher diffusion
with genic selection.

To resolve these problems, we found it necessary to modify the shifted boundary conditions to
account for the displacement of the initial points of the integration, which we were able to do by
expanding h(p) in a Taylor series. This leads to the first-order approximations h(ǫ) ≈ ǫh′(ǫ) and
h′(1 − ǫ) ≈ 1 − ǫh′(1 − ǫ), where the boundary gradients h′(ǫ) and h′(1 − ǫ) are determined by
the shooting algorithm. With these corrections, the numerical solutions satisfied the necessary
upper and lower bounds and in the case of genic selection agreed with the known solution to
four or more decimal places.

Accurate numerical evaluation of the integrals in (18) can also be delicate when the mutation
rates are small (µi < 0.5) because then the density π(p) of the stationary measure diverges at the
boundaries. As with the BVP (9), one cannot numerically integrate all the way to the boundary,
and we found that truncating the domain of integration to (ǫ, 1− ǫ) led to poor approximations
whenever the mutation rates were very small (µi ≤ 0.01) and the selection coefficient was large
(s ≥ 5). Furthermore, we were unable to resolve this simply by taking ǫ to be very small without
exceeding the tolerance of the numerical integration algorithms implemented in Mathematica.
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This problem can be resolved by splitting the singular integrals into three parts,

∫ 1

0
F (p)π(p)dp ≡

∫ 1

0
F (p)G(p)p2µ1−1(1 − p)2µ2−1dp

=

∫ ǫ

0
F (p)G(p)p2µ1−1(1 − p)2µ2−1dp +

∫ 1−ǫ

ǫ
F (p)G(p)p2µ1−1(1 − p)2µ2−1dp

+

∫ 1

1−ǫ
F (p)G(p)p2µ1−1(1 − p)2µ2−1dp,

where ǫ > 0 is chosen small enough that the locally smooth functions F (p)G(p)(1− p)2µ2−1 and
F (p)G(p)p2µ1−1 can be approximated by F (0)G(0) and F (1)G(1) in the first and third integral,
respectively. With this approximation, the boundary integrals can be evaluated analytically,
while the non-singular integral over (ǫ, 1 − ǫ) can be evaluated numerically. The accuracy of
this scheme was tested by comparing the expected substitution rates for the Wright-Fisher
model with genic selection obtained using the diffusion characterization with those reported in
Fearnhead (2002) using an independent characterization, and the two sets of rates were seen
to agree to within the number of digits reported in the latter paper. A Mathematica program
implementing both the shooting and the integration methods described here is available from
the author upon request.
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