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Abstract

A continuous one-dimensional scenery is a double-infinite sequence of points (thought of as
locations of bells) in R. Assume that a scenery X is observed along the path of a Brownian
motion in the following way: when the Brownian motion encounters a bell different from
the last one visited, we hear a ring. The trajectory of the Brownian motion is unknown,
whilst the scenery X is known except in some finite interval. We prove that given only the
sequence of times of rings, we can a.s. reconstruct the scenery X entirely. For this we take
the scenery X to be a local perturbation of a Poisson scenery X ′. We present an explicit
reconstruction algorithm. This problem is the continuous analog of the “detection of a defect
in a discrete scenery”. Many of the essential techniques used with discrete sceneries do not
work with continuous sceneries.
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1 Introduction

Suppose that countably many bells are placed on R. Start a Brownian motion from 0; each
time it hits a bell different from the last one visited, we hear a ring. During this process all
the bells remain in the same position. The set of locations of the bells in R is referred to as
the scenery. Suppose now that we cannot observe the trajectory of the Brownian motion, and
that the scenery is not completely known either. On the other hand, let the sequence of time
occurrences of the rings be known to us.

The detection of a local perturbation problem can be formulated as follows: is it possible to
recover the exact scenery a.s. given only the sequence of rings and the scenery up to a local
perturbation?

In this paper, we answer this question affirmatively provided that the scenery is a local pertur-
bation of a random realization of a one-dimensional Poisson process with bounded rate. The
realization of the one-dimensional Poisson process is known to us but we do not know in which
way and where it was perturbed.

This problem is the continuous analog of the problem of detecting a defect in a scenery seen
along the path of a random walk. In the discrete case (which is not the case of this paper) one
considers a discrete scenery ξ : Z → {0, 1, . . . , C − 1} and a random walk {St}t∈N. The discrete
scenery is a coloring of the integers with C colors. One observes the discrete scenery seen along
the path of the random walk, i.e. the sequence χ0, χ1, . . ., where χi := ξ(Si). From this one tries
to infer about ξ. For more information about discrete scenery reconstruction and distinguishing
see e.g. (1; 4; 5; 9; 10; 11) and references therein.

It is worth noticing that in the case of the present paper, i.e. in the case of a continuous scenery,
there are no “colors”: all the bells ring in the same way. Hence, we have to use the time length
between successive rings to estimate where the Brownian motion is. It turns out that bells close
to each other tend to confer a lot of information. In discrete scenery reconstruction it is usually
the opposite: long blocks of only one color are the essential “markers”.

The continuous case considered here contains one of the major difficulties still open in discrete
scenery reconstruction. Roughly speaking, in any part of the scenery one can obtain any finite
set of observations in the continuous case. Some finite sets of observations might be untypical
but are never impossible. In all the discrete cases, where scenery reconstruction has been proven
possible, there exist patterns which can appear in the observations only when the random walk
dwells in some specific regions of the scenery. This is one more reason which makes it worthwhile
studying the continuous case.

Also, we should mention that one of the main techniques used in discrete reconstruction does
not work here. This is the “going in a straight path from x to y” as is used in a majority of
discrete reconstruction papers. Instead we use an estimate of the probability to hear a ring a
certain amount of time after being at a marker.

There exists one other related continuous problem solved by Burdzy (3). He takes an iterated
Brownian motion and shows that the path of the outer one can be a.s. reconstructed. This is the
continuous analog of reconstructing a random walk path given an iterated random walk path.
Matzinger (9) proved that the reconstruction of a 3-color scenery seen along a simple random
walk is equivalent to this problem.
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Figure 1: Local perturbation of a scenery

1.1 Notations and the main result

Let us start with the formal definitions used in this paper. A scenery is a double infinite sequence
X = (. . . ,X−1,X0,X1, . . .), such that Xn < Xn+1 for all n ∈ Z and limn→−∞Xn = −∞,
limn→+∞Xn = +∞. The last condition guarantees that the number of points of X in any finite
interval is finite.

With some abuse of notation, we denote the set of points in the scenery by the same letter,
X = {. . . ,X−1,X0,X1, . . .}. Let M be the set of all such sceneries. Let ξ(n) := Xn −Xn−1 for
all n ∈ Z. The sequence ξ is thus the sequence of distances between the successive bell-locations.

Definition 1.1. Scenery X̃ is a local perturbation of X if they coincide everywhere except
possibly in a finite interval, i.e., there exist a, b ∈ R such that X̃ \ [a, b] = X \ [a, b] (see Figure 1).

We emphasize here that all sceneries considered in this paper are locally finite (that is, one is
not allowed to perturb a scenery by placing an infinite number of points on a finite interval).
So, an equivalent formulation of Definition 1.1 would be: scenery X̃ is a local perturbation of X
if (X̃ \X)∪ (X \ X̃) is finite. Note also that if X̃ is a local perturbation of X, then X is a local
perturbation of X̃ .

Let (Wt, t ≥ 0) be the standard Brownian motion (starting from 0, unless otherwise indicated).
When it is necessary to consider a Brownian motion starting from an arbitrary x ∈ R, we use
the notations P

x,Ex for the corresponding probability and expectation. Let M+ be the set of all
infinite sequences U = (0 = U0, U1, U2 . . .), such that Un < Un+1 for all n ∈ Z+, and such that
limn→+∞ Un = +∞. Using the scenery X and the trajectory of the Brownian motion Wt, we
define the specific sequence of stopping times Y = (0 = Y0, Y1, Y2 . . .) ∈ M+ that corresponds
to the sequence of ringing-times. More precisely (see Figure 2, the marks on the horizontal line
correspond to the bells, the marks on the vertical line correspond to the rings):

Yn+1 := inf
{

t ≥ Yn : Wt ∈ X \ {WYn}
}

, n ≥ 0

(note that the sequence Y always begins with 0, regardless of whether 0 ∈ X or not). From
the fact that X ∈ M it is elementary to obtain that Yn < Yn+1 < ∞ for all n ∈ Z+, and that
limn→+∞ Yn = +∞ a.s., so indeed Y ∈ M+. Denote by χ(n), n = 1, 2, 3, . . ., the sequence of
time lapses between successive rings. Hence, χ(n) := Yn − Yn−1.

Now, we formulate our main result. Suppose that (the known scenery) X ′ is a realization of a
one-dimensional inhomogeneous Poisson process with intensity bounded away from 0 and +∞.
Let us denote by P the probability measure that refers to X ′, and by E the corresponding
expectation. The main result of this paper is that P-almost all sceneries have the following
property: every local perturbation of the scenery is P-a.s. reconstructable by using only the
sequence of rings and the unperturbed scenery. More precisely:
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Figure 2: Constructing the sequence of rings
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Theorem 1.1. There exists a measurable function Ψ : M×M+ 7→ M such that for P-almost
all sceneries X ′ we have the following. Let X be any local perturbation of X ′ and Y be the
sequence of rings defined above. Then P[Ψ(X ′, Y ) = X] = 1.

2 Proof of Theorem 1.1

In the proof of this theorem we will suppose for definiteness that X ′ is a realization of a Poisson
process with rate 1, the general case is completely analogous.

The idea of the proof is, roughly speaking, the following: we use couples of bells which are
untypically close to each other. The distance to neighbouring bells in the scenery should be
much larger. The Brownian motion is likely to produce a long sequence of rings separated by
short time intervals when visiting such a couple of bells (as illustrated in Figure 2). In other
words, the Brownian motion tends to visit the two bells many times before moving on to another
bell in the scenery.

So, when we hear many rings shortly after one another, then this is likely to be caused by two
bells at short distance from each other in the scenery. Hence, a sequence of many rings in a short
time permits us to estimate the distance between the underlying two bells (provided the sequence
was really generated on only two bells close to each other, which is likely). We discuss this in
Section 2.1. Then, for a given (large) n, we define a location ζn (with a bell there) and construct

a sequence of stopping times τ
(n)
i depending only on Y and X ′ (i.e., on known information) such

that, with overwhelming probability W
τ
(n)
i

= ζn, whenever i is not too large. In other words,

with large probability we are able to tell whether we are back to the same place. For this we
use the information provided by the estimated distances between couple of bells close to each
other. This is done in Section 2.2 (see Lemma 2.5). In Section 2.3, we present an algorithm
for reconstructing the local perturbation with a high precision, then we consider a sequence of
such algorithms which permits us to reconstruct X exactly; however, this is done supposing
that the interval where the perturbation took place is known. In Section 2.4 we explain the
reconstruction procedure in the case when the interval of perturbation is unknown.

2.1 The main idea: trills and couples

Fix some ε0, δ0, δ1 > 0 such that

ε0 + δ0 + δ1 < 1/2, (1)

12ε0 < δ0. (2)

Let z0 be such that
+∞
∫

z0

(2πu3)−1/2 exp
(

− 1

2u

)

du =
1

2
(3)

(z0 exists and is positive because the above integral taken from 0 to +∞ equals 1, cf. (6) below).
Denote also

A
k
n =

(

z−1
0 median{χ(k + 1), . . . , χ(k + ⌊nδ0/2⌋)}

)1/2
.

The next two definitions play an important role in our construction.
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Definition 2.1. We say that there is a level-n trill at the mth position of the sequence Y , if
χ(m+ k) ≤ n−2+2ε0+2δ0+δ1 for all k = 1, . . . , ⌊nδ0/2⌋.

Definition 2.2. Suppose that there is a level-n trill at the mth position of the sequence Y . We
say that this trill is good, if A

m
n ≤ n−1+ε0.

The main idea is that if there is a good level-n trill in the kth position of the sequence Y , it is
very probable that it was produced by the alternating visits of the Brownian motion to some
two neighboring points from X that are roughly A

k
n away from each other (by alternating visits

we mean here that the rings in the piece of the sequence Y under consideration were caused by
only two bells). Consider the following

Definition 2.3. A pair of two consecutive points (Xk,Xk+1) is called true level-n couple if

ξ(k + 1) = Xk+1 −Xk ≤ n−1+ε0(1 − z−1
0 n−δ0/6), (4)

and
min{ξ(k), ξ(k + 2)} ≥ n−1+ε0+δ0+δ1 . (5)

It is called almost level-n couple if (5) holds, (4) does not hold, but Xk+1 − Xk ≤ n−1+ε0(1 +
z−1
0 n−δ0/6). A pair which is either true level-n couple or almost level-n couple is called level-n

couple.

Let Tr = inf{t ≥ 0 : Wt = r} be the hitting time of r > 0 by Brownian motion. Then, provided
that the Brownian motion starts at 0, the density fr(s) of Tr is given by (see (2), formula 1.2.0.2)

fr(s) = r(2πs3)−1/2 exp
(

− r2

2s

)

. (6)

We recall also the following elementary fact: if a < b < c, then (see (2), formula 1.3.0.4)

P
b[Ta < Tc] =

c− b

c− a
. (7)

Let us consider now a level-n couple (Xk,Xk+1). Abbreviate for a moment a := Xk−n−1+ε0+δ0 ,
b := Xk, c := Xk+1, d := Xk+1 +n−1+ε0+δ0 . Note that, by Definition 2.3, it holds that Xk−1 < a
and that Xk+2 > d. By (7), there is C1 > 0 such that

min{Pb[Tc < Ta],P
c[Tb < Td]} ≥ 1 − C1n

−δ0,

so for any x ∈ {b, c}(= {Xk,Xk+1})

P[WYm+s ∈ {b, c} for any 1 ≤ s ≤ ⌊nδ0/2⌋ |WYm = x] ≥ 1 − C1n
−δ0/2, (8)

i.e., with a large probability the Brownian motion will commute between the points of a level-n
couple at least ⌊nδ0/2⌋ times. Now, it is elementary to see that

P
b[min{Ta, Tc} ≤ n−2+2ε0+2δ0+δ1 | Tc < Ta] ≥ 1 − exp(−C2n

δ1) (9)

and that the same bound holds if b, a, c are substituted by c, d, b (in this order). Indeed, since
the conditional density of min{Ta, Tc} is known (see 1.3.0.6 of (2)), it is possible to obtain (9)
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by a direct (although not so simple) computation. It is easier, however, to argue as follows.
Using (7), write

P
b[min{Ta, Tc} ≤ n−2+2ε0+2δ0+δ1 | Tc < Ta] ≤

c− a

b− a
P
b[min{Ta, Tc} ≤ n−2+2ε0+2δ0+δ1 ]. (10)

For any starting point within the interval [a, c], the probability that the Brownian motion hits
{a, c} in time at most n−2+2ε0+2δ0 is bounded away from 0 (say, by a constant κ1). The time
interval [0, n−2+2ε0+2δ0+δ1 ] contains ⌊nδ1⌋ non-intersecting intervals of length n−2+2ε0+2δ0 , so we
have at least ⌊nδ1⌋ tries to enter {a, c}:

P
b[min{Ta, Tc} ≤ n−2+2ε0+2δ0+δ1 ] ≤ (1 − κ1)

⌊nδ1⌋. (11)

Since for all n large enough c−a
b−a ≤ 2, we obtain (9) from (10) and (11).

Thus, using (9), we obtain that

P[χ(m+ s) ≤ n−2+2ε0+2δ0+δ1 for any 1 ≤ s ≤ ⌊nδ0/2⌋
|WYm = x,WYm+s ∈ {b, c} for any 1 ≤ s ≤ ⌊nδ0/2⌋]

≥ 1 − nδ0/2 exp(−C2n
δ1). (12)

for any x ∈ {b, c}. This shows that if the Brownian motion commutes between b and c (without
hitting other points of X) at least ⌊nδ0/2⌋ times, then, with overwhelming probability, we obtain
a level-n trill. To show that (for true level-n couples) this trill should normally be good, we have
to work a bit more.

First, let us recall Chernoff’s bound for the binomial distribution:

Lemma 2.1. [see e.g. (12), p. 68.] Let {ζi, i ≥ 1} be i.i.d. random variables with P[ζi = 1] = θ
and P[ζi = 0] = 1 − θ. Then for any 0 < θ < α < 1 and for any s ≥ 1 we have

P

[1

s

s
∑

i=1

ζi ≥ α
]

≤ exp{−sH(α, θ)}, (13)

where

H(α, θ) = α log
α

θ
+ (1 − α) log

1 − α

1 − θ
> 0.

If 0 < α < θ < 1, then (13) holds with P[s−1
∑s

i=1 ζi ≤ α] in the left-hand side.

Now, we define another sequence of stopping times (Y ′
m,m ≥ 0), constructed in a similar way

as the sequence Y , this time supposing, however, that the only bells are in b and c (i.e., in Xk

and in Xk+1):

Y ′
0 = 0, and

Y ′
n+1 = inf

{

t ≥ Y ′
n : Wt ∈ {b, c} \ {WY ′

n
}
}

.

Analogously, define χ′(i) = Y ′
i − Y ′

i−1 and

A
′
n =

(

z−1
0 median{χ′(1), . . . , χ′(⌊nδ0/2⌋)}

)1/2
.
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Lemma 2.2. There is a positive constant γ1 such that for all n large enough we have

P
[

β2(z0 − n−δ0/6) ≤ median{χ′(1), . . . , χ′(⌊nδ0/2⌋)} ≤ β2(z0 + n−δ0/6)
]

≥ 1 − exp(−γ1n
−δ0/6) (14)

and also

P
[

A
′
n(1 − z−1

0 n−δ0/6) ≤ β ≤ A
′
n(1 + z−1

0 n−δ0/6)
]

≥ 1 − exp(−γ1n
−δ0/6), (15)

where β := c− b = Xk+1 −Xk.

Proof. Abbreviate
Z := median{χ′(1), . . . , χ′(⌊nδ0/2⌋)},

and for any y ∈ (0, 1) let M̂y be such that

M̂y
∫

0

β(2πs3)−1/2 exp
(

− β2

2s

)

ds = y. (16)

Fix a number p ∈ (0, 1/2) (to be chosen later), and define the random variable ηi =
1{χ′(i) ≥ M̂ 1

2
+p}, so that, by (6), P[ηi = 1] = 1 − P[ηi = 0] = 1

2 − p. Now, we have

P[Z ≥ M̂ 1
2
+p] = P

[

⌊n−δ0/2⌋
⌊nδ0/2⌋
∑

i=1

ηi ≥
1

2

]

. (17)

Let us use Lemma 2.1 with s = ⌊nδ0/2⌋, α = 1/2, θ = 1
2 − p. It holds that

H(α, θ) =
1

2
ln

1

1 − 2p
+

1

2
ln

1

1 + 2p

=
1

2
ln

1

1 − 4p2

≥ p2

for all p small enough. So, by (17) and Lemma 2.1 we obtain that

P[Z ≥ M̂ 1
2
+p] ≤ exp(−p2⌊nδ0/2⌋).

By symmetry, the same estimate holds for P[Z ≤ M̂ 1
2
−p], so we obtain

P[M̂ 1
2
−p ≤ Z ≤ M̂ 1

2
+p] ≥ 1 − 2 exp(−p2⌊nδ0/2⌋). (18)

To proceed, we notice that it is straightforward to obtain from (3) and (6) that M̂1/2 = z0β
2.

Since, by (6), fβ(y) is of order β−2 when y is of order β2, there exist positive constants C4, C5

such that

M̂ 1
2
+p ≤ z0β

2 + C4pβ
2,
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M̂ 1
2
−p ≥ z0β

2 − C5pβ
2,

for all p small enough. Now, it remains only to take p = (max{C4, C5})−1n−δ0/6 and use (18)
to obtain (14). In order to obtain (15), note that

{β2(z0 − n−δ0/6) ≤ Z ≤ β2} = {A′
n(1 + z−1

0 n−δ0/6)−1 ≤ β ≤ A
′
n(1 − z−1

0 n−δ0/6)−1},

and that (1 + z−1
0 n−δ0/6)−1 = 1 − z−1

0 n−δ0/6 + o(n−δ0/6), (1 − z−1
0 n−δ0/6)−1 = 1 + z−1

0 n−δ0/6 +
o(n−δ0/6), so (15) can be obtained in exactly the same way as (14). The proof of Lemma 2.2 is
completed. 2

Consider the events

Rn,m = {χ(m+ s) ≤ n−2+2ε0+2δ0+δ1 for any 1 ≤ s ≤ ⌊nδ0/2⌋}

and
Dn,m = {Amn (1 − z−1

0 n−δ0/6) ≤ β ≤ A
m
n (1 + z−1

0 n−δ0/6)}, (19)

where, as before, β := c− b = Xk+1 −Xk. We are going to estimate the conditional probability
P[Dn,m | Rn,m,WYm = b] from below. To this end, define also the events

D′
n,m = {A′

n(1 − z−1
0 n−δ0/6) ≤ β ≤ A

′
n(1 + z−1

0 n−δ0/6)},

and
En,m =

{

Ym+s ∈ {b, c} for all 0 ≤ s ≤ ⌊nδ0/2⌋
}

.

Write

P[Dn,m | Rn,m,WYm = b]

≥ P[Dn,mEn,m | Rn,m,WYm = b]

= P[D′
n,mEn,m | Rn,m,WYm = b]

≥ 1 − P[(D′
n,m)c | Rn,m,WYm = b] − P[Ecn,m | Rn,m,WYm = b]

≥ 1 −
P[(D′

n,m)c |WYm = b]

P[Rn,m |WYm = b]
− P[Ecn,m | Rn,m,WYm = b]. (20)

Recall that {b, c} is a level-n couple, so that min{ξ(k), ξ(k + 2)} ≥ n−1+ε0+δ0+δ1. Using (6), we
obtain (changing the variables u = sn2−2ε0−2δ0−2δ1) that for some C6 > 0 and all n it holds that

P[Tn−1+ε0+δ0+δ1 ≤ n−2+2ε0+2δ0+δ1 ] ≤
n−δ1
∫

0

(2πu3)−1/2 exp
(

− 1

2u

)

du

≤ exp
(

− n−δ1

4

)

n−δ1
∫

0

(2πu3)−1/2 exp
(

− 1

4u

)

du

≤ γ̃ exp
(

− n−δ1

4

)

, (21)
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so

P[Ecn,m | Rn,m,WYm = b] ≤ γ̃nδ0/2 exp
(

− n−δ1

4

)

. (22)

By (12), P[Rn,m |WYm = b] ≥ 1/2 for all n large enough, and we can bound P[(D′
n,m)c |WYm = b]

from above by using Lemma 2.2. So, using (20) and (22), we obtain

P[Dn,m | Rn,m,WYm = b] ≥ 1 − 2 exp(−γ1n
−δ0/6) − γ̃nδ0/2 exp

(

− n−δ1

4

)

(23)

(clearly, the same estimate is valid if we substitute “WYm = b” by “WYm = c” in the above
calculations). In words, the above equation shows that if a true level-n couple causes a level-n
trill, then, with a very high probability, that trill will be good and that one will be able to obtain
the distance between the points in the couple with a high precision. Also, by (8) and (12), we
obtain that

P[Rn,m | H∗
m] ≥ 1 − C6n

−δ0/2, (24)

where the event H∗
m is defined by

H∗
m = {WYm is a point of some level-n couple}.

Now, we have to figure out how likely it is to produce good level-n trills elsewhere, not in level-n
couples. First, we observe that, since the interval between any two consecutive rings in a level-
n trill are at most n−2+2ε0+2δ0+δ1 , the bells where the rings were produced should not be at
distance more than n−1+ε0+δ0+δ1 from each other (otherwise the probability of producing such
closely placed rings would be at least stretched-exponentially small). On the other hand, if we
have three or more close bells (with distance of order n−1+ε0 from each other), then such a group
of bells is, in principle, capable to produce a good level-n trill as well.

Suppose, however, that we know that we are in some region where there are no triples of
close points (bells). More precisely, suppose that there are bells in points a, b, c, d ∈ R, and
|b− c| < n−1+ε0+δ0+δ1 , while min{|a− b|, |c− d|} > n−1+ε0+δ0+δ1 ; however, b is not close enough
to c to form a level-n couple. Then, one can obtain that

P[there is a good level-n trill at m |H∗
m(b)] ≤ exp(−γ1n

−δ0/6) + γ̃nδ0/2 exp
(

− n−δ1

4

)

, (25)

where H∗
m(b) = {WYm = b}. Indeed, let H ′ be the event that the good level-n trill in m was

produced only in {b, c}. Then, as in Lemma 2.2, we show that

P[{there is a good level-n trill at m} ∩H ′ |H∗
m(b)] ≤ exp(−γ1n

−δ0/6).

On the other hand, if the event H ′ does not occur, this means that, at some stage during this
trill, the particle should cover the distance at least n−1+ε0+δ0+δ1 in time at most n−2+2ε0+2δ0+δ1 .
Applying (21), we obtain

P[{there is a good level-n trill at m} ∩ (H ′)c |H∗
m(b)] ≤ γ̃nδ0/2 exp

(

− n−δ1

4

)

.

Now, for the sake of convenience we introduce some definitions concerning trills and couples:
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Definition 2.4. A level-n trill is compatible with a level-n couple with the distance β between the
points, if (supposing for definiteness that the trill begins at the mth position of the sequence Y )
the event Dn,m, defined in (19), occurs.

Definition 2.5. We say that a level-n trill was produced by a level-n couple, if all the rings of
the trill occurred in the bells of the couple.

For what follows (abbreviating for a moment vn := z−1
0 n−δ0/6), we suppose that n is such that

max
{

− 1 − vn
1 + vn

+ 1,
1 + vn
1 − vn

− 1
}

< 3vn, (26)

and

min
{(1 + 6vn)(1 − vn)

1 + vn
− 1,− 1 + vn

(1 + 6vn)(1 − vn)
+ 1,

−(1 − 6vn)(1 + vn)

1 − vn
+ 1,

1 − vn
(1 − 6vn)(1 + vn)

− 1
}

> 3vn (27)

(clearly, this holds for all but finitely many positive integers n).

Definition 2.6. (i) Two level-n couples with the distances between their points being respec-
tively β1, β2 are called n-similar if

min{|β1β
−1
2 − 1|, |β−1

1 β2 − 1|} ≤ 6z−1
0 n−δ0/6. (28)

(ii) Two level-n trills (in positions m1,m2) are called n-similar if

min{|Am1
n (Am2

n )−1 − 1|, |(Am1
n )−1

A
m2
n − 1|} ≤ 3z−1

0 n−δ0/6.

Two level-n couples (trills) are called n-different, if they are not n-similar.

From (26) it is straightforward to obtain that if two level-n trills are both compatible with a
level-n couple, then they are n-similar, and also if two level-n couples are compatible with a
level-n trill, then they are n-similar. Also, two almost level-n couples are always n-similar. Using
the above definition, we summarize the results of this section in the following

Lemma 2.3. There is a positive constant γ2 such that:

(i) With probability at least 1 − 2 exp(−γ1n
−δ0/6) − γ̃nδ0/2 exp(−n−δ1

4 ), given that a level-n
couple produces a level-n trill, the former will be compatible with the latter.

(ii) With probability at least 1 − 4 exp(−γ1n
−δ0/6) − 2γ̃nδ0/2 exp(−n−δ1

4 ), n-different couples
produce n-different trills.

(iii) Suppose that WYm = b, where b is not from a level-n couple, and in the interval [b −
2n−1+ε0+δ0+δ1 , b + 2n−1+ε0+δ0+δ1 ] there are at most two bells (including the one in b).

Then, with probability at least 1− exp(−γ1n
−δ0/6) + γ̃nδ0/2 exp

(

− n−δ1

4

)

, there is no good

level-n trill at the mth position of the sequence Y .
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Proof. Item (i) follows from (23). By Definition 2.6 and (27), if two level-n couples are n-different
and two level-n trills are compatible with the first and the second couple correspondingly, then
the trills are n-different. So, (ii) follows from (i).

To see that (iii) holds, consider two cases. First, suppose that b is the only bell in the interval
[b−n−1+ε0+δ0+δ1 , b+n−1+ε0+δ0+δ1 ]. In this case, even the time interval χ(m+1) will be greater

than n−2+2ε0+2δ0+δ1 with probability at least γ̃ exp(−n−δ1

4 ) (this is by (21)), so that there will
be no level-n trill at the mth position. On the other hand, if there is another bell in the interval
[b− n−1+ε0+δ0+δ1 , b+ n−1+ε0+δ0+δ1 ], then (iii) follows from (25). 2

2.2 Localization test

The purpose of this section is to construct a test which, with high probability, is able to tell us
if the Brownian motion is back to the same place.

Suppose that the local perturbation of the scenery X ′ was made in the interval [−ℓ, ℓ], in other
words, the “real” scenery X is known precisely in R \ [−ℓ, ℓ]. We construct now a localization
test depending on parameters n and ℓ. Define the events

G
(n)
i,1 =

{

in the interval [in1−
ε0
2 , (i+ 1)n1−

ε0
2 ) there are at most n

3ε0
4

pairs Xk,Xk+1 such that Xk+1 −Xk ≤ n−1+ε0(1 + z−1
0 n−δ0/6)

}

,

G
(n)
i,2 =

{

in the interval [in1−
ε0
2 , (i+ 1)n1−

ε0
2 ) there are at least n

ε0
4 true level-n

couples which are n-different from all the level-n couples in [ℓ, 5n]
}

,

and let G
(n)
i = G

(n)
i,1 ∩G(n)

i,2 .

Now, we define the values of n for which the localization test will be constructed.

Definition 2.7. We say that n > 2ℓ is good, if:

(i) On the interval [n/2, πn] there are at least nε0/3 true level-n couples, and the same holds
for the interval [πn, 5n].

(ii) All the level-n couples on the interval [ℓ, 5n] are n-different true level-n couples.

(iii) Any subinterval of [ℓ, 5n] of length 4n−1+ε0+δ0+δ1 contains at most two bells. Note that
this implies that any pair of consecutive bells Xk,Xk+1 such that Xk+1 −Xk ≤ n−1+ε0(1−
z−1
0 n−δ0/6) and {Xk,Xk+1} ⊂ [ℓ, 5n] is a level-n couple.

(iv) for any i ∈ Z such that [in1−
ε0
2 , (i + 1)n1−

ε0
2 ) ∩ [ℓ, πn] = ∅ and that |i| < exp(n

ε0
8 ) the

event G
(n)
i holds.

(v) On any interval of length n1−
ε0
2 , which is contained in [ℓ, 5n], there are at least n

ε0
4 true

level-n couples.

(vi) In the set [−n2, n2] \ [−ℓ, ℓ], the minimal distance between two neighboring bells is at
least n−3.
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Here we have chosen π just for definiteness, it could be another transcendental number which is
between 1/2 and 5. The reason why we need a transcendental number there will become clear
in Section 2.3, see the argument between (52) and (53). The following lemma ensures that there
is an infinite sequence of good ns:

Lemma 2.4. There exists C > 0 such that P[n is good] ≥ 1 − n−C for all n large enough.

Proof. We obtain lower bounds on the probabilities of the events described in items (i)–(vi) of
Definition 2.7.

Item (i). If j > ℓ then for all large enough n

P[there exists k such that Xk−1 < j, {Xk,Xk+1} ⊂ (j, j + 1),Xk+1 > j + 1,

min{Xk − j, j + 1 −Xk+1} ≥ n−1+ε0+δ0+δ1 , {Xk,Xk+1} is a true level-n couple]

= e−1n−1+ε0(1 − z−1
0 n−δ0/6)(1 − 2n−1+ε0+δ0+δ1) (29)

(note that the probability that there are exactly two points of X ′ on a unit interval is (2e)−1).
Since each of the intervals [n/2, πn] and [πn, 5n] contains more than n nonintersecting subinter-
vals of length 1, using Lemma 2.1, we obtain that

P[event in (i) occurs] ≥ 1 − exp(−L1n
ε0) (30)

for some L1.

Item (ii). First, let us prove that, with large probability, the total number of level-n couples on
the interval [ℓ, 5n] isO(nε0). Let k0 = min{k : Xk > ℓ}, and define V1 = Xk0−ℓ, Vi = ξ(k0+j−1),
i ≥ 2. The random variables Vi, i ≥ 1 are i.i.d. exponentials with parameter 1. Note that there
exists L2 > 0 such that (since EVi = 1)

P
[

6n
∑

i=1

Vi ≤ 5n− ℓ
]

≤ exp(−L2n), (31)

so that with a very large probability the scenery in [ℓ, 5n] is determined by (Vi, i = 1, . . . , 6n).
Then, since P[Vi ≤ n−1+ε0] = O(n−1+ε0), using Lemma 2.1, we obtain that for large enough L3

and some L4 > 0

P
[

6n
∑

i=1

1{Vi ≤ 2n−1+ε0} ≥ L3n
ε0

]

≤ exp(−L4n
ε0) (32)

for all n.

Let us call two numbers β1, β2 n-similar, if (28) holds. There exists L5 such that for any
β1 ≤ 2n−1+ε0

∣

∣{β2 ∈ R : min{|β1β
−1
2 − 1|, |β−1

1 β2 − 1|} ≤ 6z−1
0 n−δ0/6}

∣

∣ ≤ L5n
−1+ε0−

δ0
6 .

So, there exists L6 such that

P[there exists j < i such that Vi is n-similar with Vj | V1, . . . , Vi−1]
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≤ L5L6n
−1+ε0−

δ0
6

i
∑

j=1

1{Vi ≤ 2n−1+ε0}. (33)

Now, using (33) together with (31), (32), we obtain that (recall (2))

P[event in (ii) occurs] ≥ 1 − L7n
−(

δ0
6
−2ε0). (34)

Item (iii). One can construct a collection of (at most) 2n2−ε0−δ0−δ1 intervals of length
8n−1+ε0+δ0+δ1 such that any subinterval of [ℓ, 5n] of length 4n−1+ε0+δ0+δ1 is fully contained
in at least one of the intervals of that collection. The probability that there exist more than two
bells in an interval of length 8n−1+ε0+δ0+δ1 is O(n−3+3ε0+3δ0+3δ1), so (recall (1))

P[event in (iii) occurs] ≥ 1 − L8n
−1+2ε0+2δ0+2δ1 . (35)

Item (iv). Analogously to item (i), one can show that for all n large enough

P[G
(n)
i,1 ] ≥ 1 − exp(−L9n

ε0
2 ). (36)

To estimate the probability of G
(n)
i,2 , we first argue, as in (32) and item (i), that with large (as in

the right-hand side of (36)) probability there are O(n
ε0
2 ) true level-n couples. Similarly to (33),

one may obtain that each of these true level-n couples has a good (bounded away from 0) chance
to be different from all those in the interval [ℓ, πn]. This shows that

P[G
(n)
i,2 ] ≥ 1 − exp(−L10n

ε0
2 ), (37)

and so
P[event in (iv) occurs] ≥ 1 − 2 exp(n

ε0
8 )(exp(−L9n

ε0
2 ) + exp(−L10n

ε0
2 )). (38)

Item (v). As in item (i), one can see that, on a fixed interval of length n1−
ε0
2 there are at least

n
ε0
4 true level-n couples with probability at least 1 − exp(−L11n

ε0
2 ). So,

P[event in (v) occurs] ≥ 1 − L12n
ε0
2 exp(−L11n

ε0
2 ). (39)

Item (vi). Again, one can consider a collection of n5 intervals of length 2n−3 such that any two
points within [−n2, n2] which are at most n−3 away from each other belong to (at least) one of
those intervals. Since the probability of having at least two bells in an interval of length 2n−3

is O(n−6), we obtain

P[event in (vi) occurs] ≥ 1 − L13

n
. (40)

Lemma 2.4 now follows from (30), (34), (35), (38), (39), (40). 2

Now, we construct the localization test. Suppose that n is good and consider all the level-n
couples in the interval [n/2, πn]. Let (ζ ′n, ζ

′
n + ∆′

n) be the leftmost (true) level-n couple on that
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interval, (ζn, ζn + ∆n) the rightmost one, and let ψ(n) be the number of other level-n couples
there (note that, by (i) of Definition 2.7, ψ(n) ≥ nε0/3 − 2).

Define τ
(n)
0 = 0 and, for i ≥ 1,

τ
(n)
i = inf{t ≥ τ

(n)
i−1 + 3n2 : t satisfies (A), (B), (C), (D) below}, (41)

where

(A) there exists s ∈ [t− n2, t) and m1 ∈ Z+ such that Ym1 = s and there is a good level-n trill
in m1 compatible with the couple (ζ ′n, ζ

′
n + ∆′

n);

(B) the number of n-different good level-n trills on the time interval [t−n2, t) is at least ψ(n)
2 ;

(C) for any good level-n trill from that interval there exists a level-n couple on [n/2, πn] which
is compatible to that trill;

(D) (suppose without restriction of generality that ⌊nδ0/2⌋ is even) for some m2 ∈ Z+ there
is a good level-n trill in m2 such that it is compatible with the couple (ζn, ζn + ∆n) and
Ym2+⌊nδ0/2⌋ = t.

In words, the above (A)–(D) are what we typically observe when the Brownian motion crosses
the interval [n/2, πn] (see Figure 3).

The main result of this section is the following

Lemma 2.5. There exist δ2, δ3 > 0 such that

P[W
τ
(n)
i

= ζn for all i = 1, . . . , ⌊exp(nδ2)⌋] ≥ 1 − exp(−nδ3). (42)

Proof. Choose a number δ2 > 0 such that

δ2 < min
{δ0

6
, δ1,

ε0
8

}

(43)

(in fact, due to (2), in the above display δ0
6 is redundant; it is included to make it more clear

that δ2 should be less than δ0
6 ).

Let us say that a time interval [t1, t2] is a crossing of the interval [a, b] by the Brownian motion,
if Wt1 = a, Wt2 = b, and Ws /∈ {a, b} for s ∈ (t1, t2). We say that a crossing [t1, t2] of the interval

[n/2, πn] by the Brownian motion is good, if t2 − t1 ≤ n2, and there is j0 such that τ
(n)
j0

∈ [t1, t2]
(see (A)–(D) above). Define the events

U
(n)
1 =

{

up to time exp(3nδ2), there are at least ⌊exp(nδ2)⌋

good crossings of the interval [n/2, πn]
}

,

U
(n)
2 =

{

up to time exp(3nδ2), all the good level-n trills produced when

the Brownian motion was in the interval [ℓ, 5n] correspond

to level-n couples compatible with those trills
}

,
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time

n/2 πn

ζ ′
n

ζn

t

t − n2

Figure 3: A typical crossing of the interval [n/2, πn]; only the level-n couples and the level-n
trills are marked
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U
(n)
3 =

{

up to time exp(3nδ2), on any time interval I of length at least

n2−
ε0
2 and such that {Ws, s ∈ I} ∩ [n/2, πn] = ∅, one finds

at least n
ε0
4 good level-n trills and at least 1

2n
ε0
4 of those trills

are not compatible with any of the couples from [n/2, πn]
}

,

U
(n)
4 =

{

up to time exp(3nδ2), on any time interval I of length at least

n2−
ε0
2 the range of the Brownian motion is at most n1−

ε0
8

}

,

where the range of the Brownian motion on a time interval is the difference between the maximum
and the minimum of the Brownian motion on that interval.

First, let us show that on U
(n)
1 ∩ U

(n)
2 ∩ U

(n)
3 ∩ U

(n)
4 the event {W

τ
(n)
i

= ζn for all i =

1, . . . , ⌊exp(nδ2)⌋} occurs. Since each good crossing corresponds to (at least) one occurrence

of τ
(n)
· , on U

(n)
1 we have that τ

(n)

⌊exp(nδ2 )⌋
≤ exp(3nδ2). Now, let us suppose that there exists

i0 ≤ ⌊exp(nδ2)⌋ such that a0 := W
τ
(n)
i0

6= ζn. Consider the two possible cases: a0 ∈ [ℓ, 5n], or

a0 /∈ [ℓ, 5n]. We know that τ
(n)
i0

is at the end of a level-n trill compatible with the level-n couple

(ζn, ζn + ∆n), so on the event U
(n)
2 it is impossible to have a0 ∈ [ℓ, 5n]. On the other hand, if

a0 /∈ [ℓ, 5n], then (since (5 − π)n > n1−
ε0
2 ) on the event U

(n)
4 we have that Ws /∈ [n/2, πn] for

all s ∈ [τ
(n)
i0

− n2−
ε0
2 , τ

(n)
i0

]. Thus, on U
(n)
3 we have that on the time interval [τ

(n)
i0

− n2−
ε0
2 , τ

(n)
i0

]
there will be good level-n trills which are not compatible with any of the level-n couples from
[n/2, πn]; clearly, this contradicts (41).

Now let us estimate the probabilities of the events U
(n)
i , i = 1, 2, 3, 4.

First, we deal with U
(n)
2 . Recall that, by Definition 2.7 (vi), the minimal distance between the

bells in [ℓ, 5n] is at least n−3. So, given that the particle is in some bell there, the time until
the next ring will be greater than n−7 with probability at least 1 − exp(−C1n

1/2) for some
C1 > 0. Thus, up to time exp(3nδ2) we will have at most n7 exp(3nδ2) rings produced by the
bells in [ℓ, 5n], with probability at least

1 − n7 exp(−C1n
1/2 + 3nδ2)

(recall that δ2 < 1/2 by e.g. (1)). Using Lemma 2.3 and (22), one obtains

P[U
(n)
2 ] ≥ 1 − n7 exp(3nδ2)

(

exp(−C1n
1/2) + exp(−γ2n

δ0
6 ) + γ̃ exp(−nδ1/4)

)

. (44)

To estimate the probability of U
(n)
1 , we note that by (24) and Lemma 2.3, the probability that a

crossing of the interval [n/2, πn] is good, is bounded away from 0 by some constant C2. Also, with
probability at least 1 − C3 exp(−nδ2) up to time exp(3nδ2) there will be at least 2C−1

2 exp(nδ2)
crossings of that interval. So,

P[U
(n)
1 ] ≥ 1 − C4 exp(−nδ2) (45)

for some C4 > 0.
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Now, note that the event U
(n)
4 occurs if on each of the intervals (of length 1

2n
2−

ε0
2 ) [(i −

1)n2−
ε0
2 , in2−

ε0
2 ], i = 1, . . . , ⌊2n−2+

ε0
2 exp(3nδ2)⌋, the range of the Brownian motion is at most

n1−
ε0
8 . So, since for each i that happens with probability at least 1 − exp(−n

ε0
8 ), we obtain

P[U
(n)
4 ] ≥ 1 − 2n−2+

ε0
2 exp(−n

ε0
8 + 3nδ2). (46)

The probability of the event U
(n)
3 can be bounded from below in the following way. Note that for

each time interval of length n2−
ε0
2 the range of the Brownian motion on that interval is greater

than 2n1−
ε0
2 with probability at least 1 − exp(−C5n

ε0
4 ). Note also that

P

[

max
s≤exp(3nδ2 )

|Ws| ≤ exp(n
ε0
8 )

]

≥ 1 − exp
(

− n
ε0
8 − 3

2
nδ2

)

.

Then we use Definition 2.7 (iv) and (v) and Lemma 2.3 to obtain that

P[U
(n)
3 ] ≥ 1 − exp(−C6n

ε0
8 ) (47)

for some C6 > 0.

Using (44)–(47) it is straightforward to obtain (42), thus finishing the proof of Lemma 2.5. 2

2.3 Reconstruction algorithm for the case when the interval of perturbation

is known

In this section we describe the algorithm that reconstructs the local perturbation using the
localization test of Section 2.2. As in the previous section, we assume here that it is known that
the perturbation took place on the interval [−ℓ, ℓ].
Let k1 = min{k : Xk ∈ [−ℓ, ℓ]}, k2 = max{k : Xk ∈ [−ℓ, ℓ]}. Denote by m = k2 − k1 + 1 the
number of points of the (true) scenery in the interval [−ℓ, ℓ], and abbreviate by ai = Xk1+i−1 + ℓ
the distance from the left end of the interval to the ith point of the scenery there, i = 1, . . . ,m.
Moreover, for i = 1, 2, 3, . . . denote Ai = ai1 + · · · + aim.

Before plunging into technical details, we give a heuristical explanation of what is going to

happen in this section. By Lemma 2.5, there is a sequence of stopping times τ
(n)
i such that at

those times the Brownian motion is in some known location ζn (which is at distance O(n) from
the interval [−ℓ, ℓ]) for i = 1, . . . , ⌊exp(nδ2)⌋, with large probability. So, one can obtain a good
empirical approximation Z(n) for P

ζn [there is a ring in [n2, n2 + θn]], where θn is some suitably
defined small number. We supposed that outside [−ℓ, ℓ] the scenery is known, so we have also
an empirical approximation Ẑ(n) for

P
ζn [there is a ring in [n2, n2 + θn] caused inside [−ℓ, ℓ]].

Consider the quantity B(n) defined in (50), note that it is expressed in terms of the unknown
numbers m,a1, . . . , am. After some technical work (one has to show that it is unlikely that
there are two or more rings in the time interval [n2, n2 + θn]), with the help of Lemma 2.6
it turns out that B(n) is (up to smaller terms) the analitical expression for the probability
in the above display; also, Ẑ(n) and B(n) are typically very close (formula (52)). Then, we
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represent B(n) in terms of the quantities m,A1, A2, A3, . . . (formula (53)). Analysing (53), one
sees that, dividing B(n) by some (known) quantity, we obtain the expression of the form

m+ const
A1

n
+ const′

A2

n2
+ · · ·

(the constants are known as well). Now, the idea is to reconstruct first the quantity m; then,
given m, reconstruct A1; then, given m and A1, reconstruct A2, and so on. As the last step, we
recover the values of a1, . . . , am from A1, . . . , Am.

We need the following technical fact:

Lemma 2.6. Suppose that θ = o(n−3) and x = O(n). Then

P
[

Wt = x for some t ∈ [n2, n2 + θ]
]

=
1√
2πn

exp
(

− x2

2n2

)(2
√

2√
π
θ1/2 +O(n−2θ3/2)

)

. (48)

Proof. By (6) and conditioning on Wn2, the left-hand side of (48) can be written as follows:

+∞
∫

−∞

1√
2πn

exp
(

− (y − x)2

2n2

)

θ
∫

0

|y|√
2πs3/2

exp
(

− y2

2s

)

ds dy

=
1√
2πn

exp
(

− x2

2n2

)

θ
∫

0

1√
2πs3/2

+∞
∫

−∞

|y| exp
(

− y2

2n2
+
xy

n2
− y2

2s

)

dy ds.

Then, in the last integral we change the variables u := y2

2s :

θ
∫

0

1√
2πs3/2

+∞
∫

−∞

|y| exp
(

− y2

2n2
+
xy

n2
− y2

2s

)

dy ds

=

θ
∫

0

1√
2πs

+∞
∫

0

(

exp
(

− su

n2
+
x
√

2su

n2
− u

)

+ exp
(

− su

n2
− x

√
2su

n2
− u

))

du ds

=

θ
∫

0

1√
2πs

(2 + sO(n−2)) ds,

and we arrive at (48). 2

Define θn = exp(−nδ2/2). Let

Z
(n)
i = 1{there is a ring in the interval [τ

(n)
i + n2, τ

(n)
i + n2 + θn]},

and let

Z(n) = exp(−nδ2)
⌊exp(nδ2 )⌋

∑

i=1

Z
(n)
i .
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Let
h(n) = P

ζn [there is a ring in the interval [n2, n2 + θn]].

By Lemma 2.5 and usual large deviation techniques (use e.g. Lemma 2.1), we obtain that

P

[

|Z(n) − h(n)| > exp
(

− nδ2

2

)]

≤ exp
(

− nδ2

4

)

. (49)

Define

µ(n) = P
ζn [there is a ring in the interval [n2, n2 + θn] caused by a bell outside [−ℓ, ℓ]].

Note that, since the scenery outside [−ℓ, ℓ] is completely known to us, µ(n) is known as well. Let
Ẑ(n) = Z(n) − µ(n) and abbreviate also bn = (ζn + ℓ)/n. Let

B(n) =
2θ

1/2
n

πn
exp

(

− b2n
2

)

m
∑

i=1

exp
(

− a2
i

2n2
+
bnai
n

)

. (50)

By Definition 2.7 (vi), if n is large enough, on the interval [−n2, n2] the minimal distance between
any two bells is at least n−3, so

P
ζn [there are at least two rings in the interval [n2, n2 + θn]]

≤ P
ζn [|Wn2 | > n2/2] + P

0[max
s≤θn

|Ws| ≥ n−3]

≤ e−n (51)

for all n large enough. Let S be the number of rings in the time interval [n2, n2 + θn], and define
the events

H̃ = {all the rings in [n2, n2 + θn] were caused by the bells inside [−ℓ, ℓ]},
H̃i = {there is a ring in [n2, n2 + θn] caused by the bell in ai − ℓ},

i = 1, . . . ,m. We have
h(n) = P[S ≥ 1] = µ(n) + P[S ≥ 1, H̃ ],

so Z(n) − h(n) = Ẑ(n) − P[S ≥ 1, H̃ ]. Then, we can write

P[S ≥ 1, H̃ ] ≤
m

∑

i=1

P[H̃i],

and

P[S ≥ 1, H̃ ] ≥
m

∑

i=1

P[H̃i] −mP[S ≥ 2].

By Lemma 2.6 and (49)–(51), we can write for all n large enough

∣

∣

∣
B(n) −

m
∑

i=1

P[H̃i]
∣

∣

∣
≤ C̃mn−3 exp

(

− 3nδ2/22
)

.
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Thus, if n is large enough, we have

P

[
∣

∣

∣
Ẑ(n) −B(n)

∣

∣

∣
> 2 exp(−nδ2/2)

]

≤ exp
(

− nδ2

4

)

. (52)

Consider now the function ϕb(x) = exp
(

− x2

2 + bx
)

and its Taylor series in x = 0:

ϕb(x) = exp
(

− x2

2
+ bx

)

= 1 +

∞
∑

k=1

Mk(b)x
k.

It is easy to see that Mk(b) is a polynomial of kth degree of b, so if b is a transcendental number,
Mk(b) 6= 0 for all k. By Definition 2.7 (v), we have that bn → π as n → ∞, so if n is large
enough, then we have Mi(bn) 6= 0 for all i ≤ m.

Now, we can write

B(n) =
2θ

1/2
n

πn
exp

(

− b2n
2

)(

m+
M1(bn)A1

n
+
M2(bn)A2

n2
+ · · ·

)

. (53)

Let us define the estimator for m (recall that m is the number of points of the scenery X in
[−ℓ, ℓ]):

m̂(n) =
[

Ẑ(n) exp
(b2n

2

) πn

2θ
1/2
n

]

; (54)

here [y] stands for the integer part of y + 1
2 , i.e., [y] is the integer closest to y.

Given m, define the estimator for A1 (cf. (53)):

Â1(n;m) =
(

Ẑ(n) exp
(b2n

2

) πn

2θ
1/2
n

−m
) n

M1(bn)
,

and, for all i ≥ 2, given m and A1, . . . , Ai−1, define the estimator for Ai:

Âi(n;m,A1, . . . , Ai−1) =
(

Ẑ(n) exp
(b2n

2

) πn

2θ
1/2
n

−m−
i−1
∑

j=1

Mj(bn)Aj
nj

) ni

Mi(bn)
.

Since, up to polynomial terms, B(n) is of order exp(−nδ2/2

2 ), if the event {|Ẑ(n) − B(n)| ≤
2 exp(−nδ2/2)} occurs, then for n large enough it holds that m̂(n) = m. So, using (52), one can
observe that

P[m̂(n) 6= m] ≤ exp
(

− nδ2

4

)

(55)

and, using the abbreviation C = 2πeπ
2/2|Mi(π)|−1 (note that |Mi(bn)| ≥ |Mi(π)|/2 for all large

enough n)

P

[

|Âi(n;m,A1, . . . , Ai−1) −Ai| ≥ Cni+1 exp
(

− nδ2/2

2

)]

≤ exp
(

− nδ2

4

)

. (56)

Now, informally, the idea is the following: take a sequence of ns going fast to infinity, recon-
struct m (using also the Borel-Cantelli lemma), then reconstruct A1, and so on. Formally,
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consider the sequence nk = 2k, k = 1, 2, 3, . . .. Then, by Lemma 2.4, nk will be good for all but
finitely many k. Using (55) and Borel-Cantelli lemma, we obtain that there is k0 such that

m̂(nk) = m for all k ≥ k0. (57)

Then, given m, we are able to determine A1 in the following way: by (56),

lim
k→∞

Â1(nk,m) = A1 a.s. (58)

Inductively, given m and A1, . . . Ai−1, we determine Ai by

lim
k→∞

Âi(nk,m,A1, . . . , Ai−1) = Ai a.s., (59)

for all i ≤ m.

At this point we need the following elementary fact:

Lemma 2.7. Suppose that a1, . . . , am are positive numbers satisfying the following system of
algebraic equations







a1 + · · · + am = d1

. . .
am1 + · · · + amm = dm

(60)

Suppose also that (a′1, . . . , a
′
m) is another solution of the system (60). Then, it holds that

{a1, . . . , am} = {a′1, . . . , a′m}, i.e., a′1, . . . , a
′
m is simply a reordering of the collection a1, . . . , am.

Proof. This is an easy consequence of Newton’s and Vieta’s formulas (see e.g. Chapter 6.2 of (7)).
2

To conclude this section, it remains to note that, by Lemma 2.7, one can uniquely determine
a1, . . . , am from A1, . . . , Am.

2.4 Reconstruction algorithm for the general case

Now, suppose that we do not know about where the perturbation took place, and that we only
know it is local in the sense of Definition 1.1. This means that there exists N0 (which is not
known to us) such that the interval of perturbation is fully inside [−N,N ] for all N ≥ N0.
Denote by X̃(N) the result of application of the reconstruction algorithm of Section 2.3 with
ℓ := N . Note, however, that it is not clear if the algorithm of Section 2.3 produces any result
(i.e., (57), (59) hold) when the perturbation is not limited to [−N,N ]. When the algorithm does
not produce the result, we formally define X̃(N) := ∅.
Then, it is clear that the true scenery X can be obtained as

X = lim
N→∞

X̃(N),

where the limit can be formally defined in any reasonable sense, since a.s. X̃(N) = X for all
N ≥ N0. This concludes the proof of Theorem 1.1. 2
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3 Final remarks and open problems

• In Theorem 1.1, we can suppose that X is equivalent to some local perturbation of X ′,
where “equivalent” means “can be obtained by shift and (possibly) reflection”. In this
case, we can reconstruct X up to equivalence, i.e., the result of the application of the
reconstruction algorithm will be a.s. equivalent to X.

• If X(1) is any scenery, and X(2) is a random realization (independent of X(1)) of a one-
dimensional Poisson process, then a.s. X(1) and X(2) are distinguishable. We do not
describe the distinguishing algorithm in detail here (since the sceneries are “globally” dif-
ferent, it is much easier to distinguish them), it is possible to construct this algorithm
using e.g. the following idea: the localization test build upon X(2) (as in Section 2.2) will
typically fail for X(1). This shows that almost every two sceneries are distinguishable.

• However, the method of this paper is not applicable to periodic sceneries (this includes
also the problem of reconstructing a scenery on a circle), so we cannot answer the question
whether one can distinguish between any two periodic sceneries, or reconstruct a single
defect in a periodic scenery. This is because the main idea of the present paper is that
one can find pairs of bells that are arbitrarily close to each other, and then one can build
a localization test based upon those pairs; in a periodic scenery, this is not possible.

• The question whether there are indistinguishable sceneries is open as well (in the discrete
case such sceneries do exist, see (8)).

• Another open question is whether one can reconstruct a completely unknown scenery
(supposing, say, that it is a random realization of a Poisson process), up to equivalence.
For now, it seems to be a difficult problem. The reason is that, as mentioned before,
many methods used in discrete scenery reconstruction do not work here. Specifically, it is
possible to construct a localization test even for a completely unknown scenery (obtained
as a realization of a Poisson process) in roughly the same way as in this paper, but then
it is not clear how to reconstruct the scenery outside the close pairs, since the “straight
crossing” method of discrete scenery reconstruction does not work here. Perhaps, a first
step in this direction would be building a reconstruction algorithm which works on the
sceneries produced not by a Poisson process, but by some process that “favors” more the
close pairs of bells.

• The question of how much information about the true scenery can be extracted from a
finite piece of observations (say, up to time t) seems tractable, but is left unaddressed
in this paper. For now, we can conjecture (but not yet prove) that if the interval of
perturbation is known, then in time t one can reconstruct the scenery there with precision
t−const and with confidence 1− t−const′ . However, it is not clear to us with what confidence
one can localise the interval of perturbation up to time t, in the case when that interval is
unknown.
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