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Abstract: We determine that the continuous-state branching processes for which the genealogy,
suitably time-changed, can be described by an autonomous Markov process are precisely those arising
from α-stable branching mechanisms. The random ancestral partition is then a time-changed Λ-
coalescent, where Λ is the Beta-distribution with parameters 2 − α and α, and the time change
is given by Z1−α, where Z is the total population size. For α = 2 (Feller’s branching diffusion) and
Λ = δ0 (Kingman’s coalescent), this is in the spirit of (a non-spatial version of) Perkins’ Disintegration
Theorem. For α = 1 and Λ the uniform distribution on [0, 1], this is the duality discovered by
Bertoin & Le Gall (2000) between the norming of Neveu’s continuous state branching process and the
Bolthausen-Sznitman coalescent.

We present two approaches: one, exploiting the ‘modified lookdown construction’, draws heavily on
Donnelly & Kurtz (1999); the other is based on direct calculations with generators.
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1. Introduction and main results

1.1 Introduction

Let Z = (Zt) be a Feller branching diffusion process satisfying the stochastic differential equation

dZt =
√

Zt dWt, t ≥ 0, (1.1)

where W is a Wiener process with variance parameter σ2. Recall (see [16]) that Z arises as a scaling

limit as n → ∞ of Galton-Watson processes (ζ
(n)
k )k=0,1,... with offspring mean one and offspring

variance σ2, when time is measured in units of n generations and ‘mass’ is measured in units of n
individuals:

( 1

n
ζ
(n)
bntc

)

t≥0
→ (Zt)t≥0 in distribution as n→∞. (1.2)

Being infinitely divisible, Zt has a decomposition into a Poissonian superposition of ‘clusters’:

Zt =
∑

i

χi(t), (1.3)

where the χi(t) can be thought of as the rescaled sizes of families at time t descended from ancestors at
time 0. One way to record who descended from which ancestor at time 0 is to consider a superprocess
corresponding to Feller’s branching diffusion, i.e. a process (Mt) taking its values in the finite measures
µ on [0, 1], say, and having generator

LF (µ) = σ2

2

∫ 1

0

∫ 1

0
µ(da)δa(db)F

′′(µ; a, b) (1.4)

where F ′(µ; a) := δF (µ)
δµ(a) := limε→0

1
ε (F (µ + εδa) − F (µ)), and F ′′(µ; a, b) := δ2F (µ)/δµ(a)δµ(b). The

total population size process Zt := Mt([0, 1]) then is a Feller branching diffusion. For t > 0, Mt is a
random discrete measure whose atoms χi(t)δai measure the mass of the offspring at time t descended
from an ancestral individual of ‘type’ ai at time 0. As long as Zt > 0, the process Rt :=Mt/Zt is well-
defined; we will refer to it as the ratio process. Generalising a result of [15], Perkins [27] proved that,
conditioned on the total population size process Z, the ratio process Rt is a Fleming-Viot process with
time inhomogeneous sampling rate. In our setting where there is no spatial motion (i.e. no ‘mutation’
in the language of genetics) one can therefore think of (Rt)t≥0 as a time changed Fleming-Viot process
(without mutation). Throughout this paper, we shall work in this essentially non-spatial setting in
which the Fleming-Viot process simply encodes common ancestry of individuals in the population.

To re-phrase Perkins’ result in terms of the generator of R, we put

z := µ([0, 1]) and ρ := µ/z,

and consider functions F (µ) of the form

F (µ) = G(ρ) =

∫

ρ(da1)...ρ(dap)f(a1, ..., ap), (1.5)

where p ∈ N and f : [0, 1]p → R is measurable and bounded. For a = (a1, ..., ap) ∈ [0, 1]p and
J ⊆ {1, ..., p}, we put

aJi = amin J if i ∈ J, and aJi = ai if i /∈ J, i = 1, ..., p. (1.6)
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Thinking of a as a sample drawn from ρ, passage from a to aJ means a coalescence of ai, i ∈ J . Then,
Perkins’ result implies that, for F as in (1.5),

(LF )(µ) = z−1σ2 ·
∑

J⊆{1,...,p},|J |=2

∫

ρ(da1)...ρ(dap)
(

f(aJ1 , ..., a
J
p )− f(a1, ..., ap)

)

= z−1σ2 · (FG)(ρ), (1.7)

where F is the generator of a standard Fleming-Viot process (without mutation).

It is well-known that there is a duality between the Fleming-Viot process and a coalescent process
called Kingman’s coalescent, which was introduced in [21]. To define Kingman’s coalescent, we first
introduce the n-coalescent, which is a continuous-time Markov process taking its values in the set
Pn of partitions of {1, . . . , n}. If q denotes the transition rate function for the n-coalescent, then
for η, ξ ∈ Pn, we have q(η, ξ) = 1 if ξ can be obtained by merging two blocks of η and q(η, ξ) = 0
otherwise. Kingman’s coalescent is a continuous-time Markov process whose state space is the set P
of partitions of N := {1, 2, . . . } with the property that for each positive integer n, its restriction to
{1, . . . , n} is the n-coalescent.

If normed by the total population size Zt, the atoms of Rt can be used to define the random ancestral
partition Θt ∈ P using Kingman’s paintbox construction [20]. To do this, we define an i.i.d. sequence
of random variables (Vi)

∞
i=1 such that P (Vi = j) = χj/Zt for all j and then construct Θt such

that two integers i and j are in the same block if and only if Vi = Vj . Since (1.7) says that Rt

is a Fleming-Viot process run at speed σ2Z−1t , the duality between the Fleming-Viot process and
Kingman’s coalescent implies that if (Πs)s≥0 is Kingman’s coalescent, assumed to be independent of

Z, and T (t) :=
∫ t
0 σ

2Z−1s ds, then for each t ≥ 0 we have

Θt
d
= ΠT (t). (1.8)

Another way to state (1.8) is through the duality relation

E
[∫

Rt(da1)...Rt(dap)f(a1, ..., ap)

]

= E
[∫

db1...db|ΠT (t)|fΠT (t)
(b1, ..., b|ΠT (t)|)

]

, (1.9)

where Π is Kingman’s p-coalescent starting at π0 = {{1}, ..., {p}}, and, for any partition π =
{C1, ..., Cq} of {1, ..., p},

fπ(b1, ..., bq) := f(a1, ..., ap)

with ai := bk if i ∈ Ck.

Equation (1.8), and equivalently the form of the generator (1.7), have an intuitive interpretation.
The random partition Pt arises through a merging of ancestral lines backwards in time, and any two
lines not having merged by time s (backwards from t) coalesce at a rate proportional to the offspring
variance σ2, and inversely proportional to the total population size Z−1t−s, where time is measured in
the scale of Kingman’s coalescent. This genealogical interpretation can be made precise using the
lookdown construction of Donnelly & Kurtz, which we explain later (see [10, 11]).

Kingman’s coalescent fits into the family of Λ-coalescents introduced in [28] and [30]. On the other
hand, Feller’s branching diffusion is a special case of the general continuous state branching processes
(CSBP’s) initially studied by Jǐrina [19], Lamperti [22, 23], and Silverstein [33]. Our goal in this paper
is to determine for which continuous-state branching processes the genealogy of the process, suitably
time-changed, can be described by an autonomous Markov process. Evidently, this must be some
form of coalescent. Although a natural question, noone we spoke to seemed aware of a resolution of
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the problem. A detailed analysis of the case in which the CSBP has finite variance is of course well
known. Moreover Bertoin & Le Gall [2] showed that the genealogy of a continuous-state branching
process studied by Neveu could be described by a coalescent process called the Bolthausen-Sznitman
coalescent. Donnelly & Kurtz [11] prepared the ground for a unified treatment, even (in Section 3.1.4)
introducing the generalised Fleming-Viot processes rediscovered as duals to Λ-coalescent processes in
Bertoin & Le Gall [3] and in Section 5.1 briefly discussing Pitman’s Λ-coalescents and time changes
that lead to the Kingman coalescent. The long list of authors on this paper arose as a coalescence
of three independent groups of workers, all of whom thought it worthwhile to raise the profile of the
results of [11] pertaining to the discontinuous CSBP’s and at the same time to identify the family of
measure-valued branching processes which ‘factorise’ in this way, namely those arising from a stable
branching mechanism.

1.2 Λ-coalescents and generalised Fleming-Viot processes

Pitman [28] and Sagitov [30] introduced coalescents with multiple collisions, also called Λ-coalescents,
which are coalescent processes in which many clusters can merge at once into a single cluster. Here,
Λ is a finite measure on [0, 1]. As with Kingman’s coalescent, the Λ-coalescent is a P-valued Markov
process whose law can be prescribed by specifying the law of its restriction to {1, . . . , n} for all n ∈ N.
If (Πs)s≥0 is the restriction of a Λ-coalescent to {1, . . . , n}, then whenever Πs has p blocks, each
transition that involves j of the blocks merging into one happens at rate

βΛp,j =

∫

[0,1]
yj−2(1− y)p−jΛ(dy), (1.10)

and these are the only possible transitions. Note that Kingman’s coalescent is the special case in
which Λ = δ0.

When Λ({0}) = 0, Pitman showed that the Λ-coalescent can be constructed from a Poisson point
process on [0,∞)×{0, 1}∞ with intensity measure dt⊗L(dξ). Here L is the measure on {0, 1}∞ such
that L(A) =

∫

(0,1] Py(A)y
−2 Λ(dy) for all measurable A, where Py is the law of an infinite sequence of

i.i.d. Bernoulli random variables with success probability y. If (t, ξ) is a point of the Poisson process
with ξ = (ξ1, ξ2, . . . ) and B1, B2, . . . are the blocks of the coalescent at time t−, ordered by their
smallest element, then at time t, all of the blocks Bi such that ξi = 1 merge together, while the other
blocks remain unchanged. That is, for each block we flip an independent coin with probability y of
heads to determine which blocks participate in the merger. The measure Λ thus governs the rates of
the multiple mergers.

We now define the corresponding generalised Fleming-Viot processes. For Λ a finite measure on [0, 1],
a Λ-Fleming-Viot process takes its values in the probability measures ρ on [0, 1] and has generator

(RG)(ρ) =
∑

J⊆{1,...,p},|J |≥2

βΛp,|J |

∫

ρ(da1)...ρ(dap)(f(a
J
1 , ...a

J
p )− f(a1, ..., ap)), (1.11)

where G is a function of the type defined in (1.5) and βΛp,j is defined in (1.10). Note that this

terminology slightly differs from that in [3]: Bertoin & Le Gall would call this a ν-generalised Fleming-
Viot process, with ν(dy) = y−2Λ(dy). As we see in the proof of Theorem 1.1 in Section 3, when
Λ({0}) = 0, the generator can also be written as

(RG)(ρ) =
∫

(0,1]
y−2Λ(dy)

∫

ρ(da)
(

G((1− y)ρ+ yδa)−G(ρ)
)

.
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An intuitive way to think about the generator is to consider a Poisson point process on R+ × (0, 1]
with intensity measure dt ⊗ y−2Λ(dy) which picks jump times and sizes for (ρt). At a jump time t
with corresponding jump size y, ρt− is modified in the following way: pick a according to ρt−, insert
an atom yδa, and scale down ρt− so that the total mass remains equal to one.

As proved in [2], a Λ-Fleming-Viot process is dual to the Λ-coalescent, mirroring the duality between
the standard Fleming-Viot process and Kingman’s coalescent established in [8].

1.3 Continuous-state branching processes

A continuous-state branching process (Zt)t≥0 is a [0,∞]-valued Markov process such that the sum of
independent copies of the process started at x and y has the same distribution as the process started
at x+ y. If one excludes processes with the possibility of an instantaneous jump to ∞, the dynamics
of a continuous-state branching process (CSBP) are characterised by a triple (σ2, γ, ν), where σ2 and
γ are nonnegative real numbers, and ν is a measure on R+ with

∫ ∞

0
(h2 ∧ 1)ν(dh) <∞. (1.12)

The generator of Z is given by

LZf(z) = z

(

γf ′(z) +
σ2

2
f ′′(z) +

∫

(0,∞)
(f(z + h)− f(z)− h1(0,1](h)f ′(z))ν(dh)

)

. (1.13)

Furthermore Lamperti [22] and Silverstein (Section 4 of [33]) showed that a CSBP with generator
(1.13) can be obtained from a Lévy process with no negative jumps whose Laplace exponent is given
by −Ψ(·), with

Ψ(u) = γu+
σ2

2
u2 +

∫ ∞

0
(e−hu − 1 + hu1(0,1](h)) ν(dh) (1.14)

for u ≥ 0. More precisely, let (Yt)t≥0 be a Lévy process such that Y0 = Z0 = s > 0 and E[e−λYt ] =

e−λs+tΨ(λ). Define (Ỹt)t≥0 to be the process (Yt)t≥0 stopped when it hits zero. If Ut = inf{s :
∫ s
0 Ỹ

−1
u du = t}, then the processes (Zt)t≥0 and (ỸU(t))t≥0 have the same law. The function Ψ is called

the branching mechanism of the CSBP.

For some triples (σ2, γ, ν), the process X may explode in finite time or may go extinct. Let τ∞ =
inf{t : Zt = ∞} be the explosion time and let τ0 = inf{t : Zt = 0} be the extinction time. Put
τ := τ∞ ∧ τ0. Grey [18] showed that the process is conservative, meaning that τ∞ = ∞ a.s., if and
only if

∫ δ

0

1

|Ψ(λ)| dλ =∞

for δ > 0. To give a condition for extinction, let q = P (τ0 < ∞) be the extinction probability. Let
m = −Ψ′(0), so E[Zt] = emt and the process Z is called critical if m = 0, subcritical if m < 0, and
supercritical if m > 0. Grey [18] showed that q > 0 if and only if, for sufficiently large θ, we have
Ψ(θ) > 0 and

∫ ∞

θ

1

Ψ(λ)
dλ <∞.

Grey also showed that if q > 0, then q < 1 if and only if m > 0.



309

1.4 Main result

To study the distribution of the random ancestral partition Θt for a general CSBP Z, we consider
an infinite types model where each ancestor has its own type. This is described by a measure-valued
branching process (Mt) taking its values in the finite measures µ on [0, 1], and having generator

LF (µ) = γ

∫ 1

0
µ(da)F ′(µ; a) +

σ2

2

∫ 1

0

∫ 1

0
µ(da)δa(db)F

′′(µ; a, b) (1.15)

+

∫ 1

0
µ(da)

∫

(0,∞)
ν(dh)(F (µ+ hδa)− F (µ)− 1(0,1](h)hF

′(µ; a)),

cf. [14] or [7] and see (2.4) below. We write

z := µ([0, 1]), ρ := µ/z, Zt :=Mt([0, 1]), Rt :=Mt/Zt.

We are now ready to state our main result.

Theorem 1.1. The ratio process (Rt)0≤t<τ can be time-changed with an additive functional of the
total mass process (Zt) to obtain a Markov process if and only if

(i) ν = 0, or
(ii) σ = 0, and ν(dh) = const ·h−1−αdh for some α ∈ (0, 2), i.e. Z is an α-stable continuous state

branching process.

In case (i), let Tt =
∫ t
0 σ

2Z−1s ds and T−1(t) = inf{s : Ts > t}. Then the process (RT−1(t))t≥0 is
the classical (non-spatial) Fleming-Viot process, dual to Kingman’s coalescent. In case (ii), if we let

Tt = const ·
∫ t
0 Z

1−α
s ds and define T−1(t) as before, then (RT−1(t))t≥0 is the Λ-Fleming-Viot process,

where Λ is the Beta(2− α, α) distribution, i.e. Λ(du) = Cα u
1−α(1− u)α−1du.

If Tτ < ∞ we understand (RT−1(t))t≥0 to be extended for t ≥ Tτ by an independent Λ-Fleming-Viot
process started from RT−1(Tτ−).

In particular, under (ii) we have the following analogue of (1.9),

E
[∫

Rt(da1)...Rt(dap)f(a1, ..., ap)

]

= E
[∫

db1...db|ΠT (t)|fΠT (t)
(b1, ..., b|ΠT (t)|)

]

, (1.16)

in which (Πt)t≥0 is now a Beta(2− α, α)-coalescent started from {{1}, . . . , {p}}.
Note that case (i) is a direct consequence of Perkins’ result [27]. It is interesting that case (ii) cannot
be strengthened to a direct analogue of the Perkins Disintegration Theorem. In the case α < 2
conditional on the total mass process, the ratio process is not just a time change of an independent
generalised Fleming-Viot process: its jump times are now deterministic.

In case (ii) when α = 1, the CSBP Z is the continuous-state branching process that was studied
by Neveu [26]. Also, Λ is the uniform distribution on [0, 1], so the Λ-coalescent is the Bolthausen-
Sznitman coalescent, which was introduced in [5], so this case corresponds to the result of Bertoin
and Le Gall [2]. Bertoin and Le Gall’s result was used by Bovier and Kurkova [6] in their study of
Derrida’s generalised random energy models.

Let (Z
(1)
t )t≥0 and (Z

(2)
t )t≥0 be two independent α-stable CSBP’s. Equation (1.16) tells us, in par-

ticular, that for α ∈ [0, 1], the process (RT−1(t)([0, a]))t≥0, which is a time change of the process

(Z
(1)
t /(Z

(1)
t + Z

(2)
t ))t≥0, is equal to the dual of the block-counting process introduced in Möhle [25].

These results were generalised by Bertoin and Le Gall in [4].
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From (1.14) and the fact that m = −Ψ′(0), we see that in case (i), the branching mechanism of Z is

Ψ(u) = −mu + σ2

2 u
2. In case (ii), when 1 < α < 2, we have Ψ(u) = −mu + cuα for some constant

c > 0. When α = 1, we have Ψ(u) = −du + cu log u, where d ∈ R is a drift coefficient (see [2]), and
when 0 < α < 1, we have Ψ(u) = −du− cuα for some constant c > 0. Note that d (or m in the case
α > 1) is the drift of the driving Lévy process; as it can no longer be interpreted as a mean, we name
it d rather than m in case (ii) when α ≤ 1. By checking Grey’s conditions, it easily follows that Z
is conservative except in case (ii) when 0 < α < 1. Also, q = 0 only in case (ii) when α ≤ 1, and
otherwise q = 1 only when m ≤ 0.

Proposition 1.2. In case (i) of Theorem 1.1, we have Tτ = ∞ a.s. if and only if m ≤ 0. In case
(ii), we have Tτ =∞ a.s. if and only if either 0 < α ≤ 1 and d ≥ 0 or 1 < α < 2 and m ≤ 0.

Remark 1.3. We say a Λ-coalescent (Πt)t≥0 comes down from infinity if Πt almost surely has only
a finite number of blocks for all t > 0. When Λ is the Beta(2− α, α) distribution, it is shown in [31]
that the Λ-coalescent comes down from infinity if 1 < α < 2 but not when 0 < α ≤ 1. Combining this
observation with Theorem 1.1, we obtain the result that for the α-stable CSBP with 1 < α < 2, only
finitely many individuals at time zero have descendants alive in the population at time t > 0. This
fact is well-known in the superprocesses literature (see, for example, [9]). On the other hand, when
0 < α ≤ 1 and t > 0, there are infinitely many individuals at time zero who have descendants alive at
time t.

Proposition 1.2 is now easily understood for 1 < α < 2. Notice that if m > 0 there is a positive
probability of more than one infinite line of descent in which case it must be that Tτ <∞.

In case (ii) of the Theorem, we have

(LF )(µ) = const · z1−α · (RG)(ρ).
In view of (1.11) this has the following interpretation. A sample of size p from Mt+dt is obtained
as follows: first in the time interval (t, t + dt] any j-tuple (2 ≤ j ≤ p) merges with probability
const · βΛp,jZ1−α

t dt+ o(dt); the resulting ancestors are then sampled from Mt.

There are three regimes for the Zt-dependent time change which are qualitatively different:

• In the case 1 < α < 2 (many small jumps), for large population size z the ratio process Rt

runs slower – the law of large numbers starts to take effect. Note that when m ≤ 0, we can
have Tτ =∞ a.s. even when the CSBP goes extinct a.s. because the process Rt runs quickly
when the population size gets small.

• In the case 0 < α < 1 (many large jumps), for large population size z the process Rt runs
quicker - a lot of fluctuations happen. Consequently, we can have Tτ = ∞ a.s. even though
P (τ∞ <∞) = 1.

• In the case α = 1, the speed of the ratio process is independent of the population size and no
time change is necessary.

1.5 Heuristics

In order to see why a factorisation of the type considered in this paper will work only in the case of
a stable branching mechanism, we invite our readers to consider a simplified scenario, where only two
‘types’ are present. Let X and X ′ be two independent CSBP’s with the same characteristics given by
(1.14), and denote by St := Xt +X ′t, Rt := Xt/St the total mass resp. the frequency of the first type.
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If at some time t the current total mass is St− and a new family of size h > 0 is created (an event
which occurs at rate St−ν(dh)dt), the relative mass of the newborns is y := h/(St− + h), so

∆Rt =

{

y(1−R) with probability Rt− and
−yR with probability (1−Rt−) .

Thus, if we want to find a time-change that eliminates the dependence of the relative jump size y on
the current total population size St−, and hence converts the time-changed R into a Markov process
in its own right, the Lévy measure ν must satisfy the factorisation property

∀ s, y > 0 , sν({h : h/(h+ s) > y}) = sν({h : h > sy/(1− y)}) = g(s)f(y)

for some functions f, g. One convinces oneself easily that this forces ν to have algebraic tails (see e.g.
the proof of Lemma 1 in Section VIII.8 of [17]), and hence X and X ′ to be stable branching processes.
Details can be found in Lemma 3.5.

2. Genealogies and the lookdown construction

The measure-valued process Mt introduced in Section 1.1 allows us to keep track of which individual,
at time zero, is the ancestor of an individual in the population at time t. However, if we wish to trace
the genealogy of the population by sampling individuals at time t and following the ancestral lines
backwards in time, then we need to know who is the ancestor of a given individual at time t for any
time s < t.

To extend Theorem 1.1 to a result about the genealogies of CSBP’s, we first need to give a precise
definition of the genealogies of the CSBP’s that arise in Theorem 1.1. Several methods for describing
the genealogy of CSBP’s have been proposed. Bertoin & Le Gall [2] defined the genealogy using

a flow of subordinators (S(s,t)(a))0≤s≤t,a≥0, where, for fixed s and t, the process (S(s,t)(a))a≥0 is a

subordinator whose law depends only on t − s and we interpret S(s,t)(a) as being the size of the
population at time t descended from the first a individuals in the population at time s. Alternatively,
Le Gall & Le Jan [24] showed, in the case of a finite first moment, how to describe the genealogy of a
CSBP by constructing a ‘height process’ that determines the continuous analogue of a Galton-Watson
tree. See [12] for further developments in this direction.

We choose to define the genealogy of CSBP’s by using the lookdown construction of Donnelly & Kurtz
[11]. (In that paper it is actually refered to as the ‘modified’ lookdown construction to distinguish
it from the construction of the classical Fleming-Viot superprocess introduced by the same authors
in [10]. Here we drop the prefix ‘modified’.) We can use this construction to define the genealogy of
both continuous-state branching processes and generalised Fleming-Viot processes. This construction
allows one to represent a measure-valued process as the empirical measure of a countable system of
particles. We now describe a special case of the construction which will be sufficient for the results
presented here. We refrain from including a ‘Brownian component’ (corresponding to case (i) in
Thm. 1.1) because that case is well known and cumbersome to incorporate.

Let n =
∑

i δ(ti,yi) be a point configuration on R+ × (0, 1] with the property that
∑

i : ti≤t

y2i <∞ for all t ≥ 0. (2.1)

We think of each particle being identified by a level j ∈ N. We equip the levels with types ξjt , j ∈ N
in some type space E (and we think of E = [0, 1] to fit into the previous framework). Initially, we
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Figure 1. Relabelling after a birth event involving levels 2, 3 and 6.

require the types ξj0, j ∈ N to be exchangeable and such that

lim
n→∞

1

n

n
∑

j=1

δ
ξj0

=
µ

µ(E)

for some finite measure µ on E.

In principle, the construction works with any initial distribution of types, not necessarily exchangeable,
but then there will be very little to prove about the object obtained. The point is that the construction
preserves exchangeability.

The jump times ti in our point configuration n will correspond to “birth events”. Let Uij , i, j ∈ N, be
i.i.d. uniform([0, 1]). Define for J ⊂ {1, . . . , l} with |J | ≥ 2,

Ll
J(t) :=

∑

i : ti≤t

∏

j∈J

1{Uij≤yi}

∏

j∈{1,...,l}−J

1{Uij>yi}.

Ll
J(t) counts how many times, among the levels in {1, . . . , l}, exactly those in J were involved in a

birth event up to time t. Note that for any configuration n =
∑

δ(ti,yi) satisfying (2.1), since |J | ≥ 2,
we have

E[Ll
J(t)] =

∑

i : ti≤t

y
|J |
i (1− yi)l−|J | ≤

∑

i : ti≤t

y2i <∞,

so that Ll
J(t) is a.s. finite.

Intuitively, at a jump ti, each level tosses a uniform coin, and all the levels j with Uij ≤ yi participate
in this birth event. Each participating level adopts the type of the smallest level involved. All the
other individuals are shifted upwards accordingly, keeping their original order with respect to their
levels (see Figure 1). In terms of the sequence (ξ1t , ξ

2
t , . . . ) this means that if t = ti is a jump time and
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j is the smallest level involved, i.e. Uij ≤ yi and Uik > yi for k < j, we put

ξkt = ξkt−, for k ≤ j

ξkt = ξjt−, for k > j with Uik ≤ yi

ξkt = ξ
k−Jk

t
t− otherwise,

where Jk
ti = #{m < k : Uim ≤ yi}− 1. Although the jump times (ti) may be dense in R+, assumption

(2.1) guarantees that in any finite time interval, the number of ‘lookdowns’ in which any given pair of
type processes ξj and ξk, j < k, is involved is finite. Thus, the processes ξj can be defined inductively,
details can be found in [11], pp 182. The point of the construction is that for each t > 0, (ξ1t , ξ

2
t , . . .)

is an exchangeable random vector, so that

Xt = lim
n→∞

1

n

n
∑

j=1

δ
ξjt

(2.2)

exists almost surely by de Finetti’s Theorem.

We now make use of the explicit description of the modified construction to determine the coalescent
process embedded in it. Recall the notation Ll

K from above. For each t ≥ 0 and k = 1, 2, . . . , let
N t

k(s), 0 ≤ s ≤ t, be the level at time s of the ancestor of the individual at level k at time t. In terms

of the Ll
K , for 0 ≤ s ≤ t,

N t
k(s) = k −

∑

K⊂{1,...,k}

∫ t

s−
(N t

k(u)−min(K))1{N t
k
(u)∈K} dL

k
K(u)

−
∑

K⊂{1,...,k}

∫ t

s−
(|K ∩ {1, . . . , N t

k(u)}| − 1)1{N t
k
(u)>min(K), N t

k
(u)/∈K} dL

k
K(u). (2.3)

Fix 0 ≤ T and, for t ≤ T , define a partition RT (t) of N such that k and l are in the same block of
RT (t) if and only if NT

k (T − t) = NT
l (T − t). Thus, k and l are in the same block if and only if the

two levels k and l at time T have the same ancestor at time T − t.
We now use this lookdown construction to embed a genealogy into a CSBP (Zt). We focus on the
case in which σ = 0. As before, let τ be the time of extinction or explosion of Z. Let (ti)i∈N be an
enumeration of {0 ≤ t < τ : ∆Zt > 0}, and put yi := ∆Zti/Zti . Note that for any t < τ we have

∑

i:ti≤t

y2i ≤ ( inf
0≤r≤t

Zr)
−2
∑

s≤t

(∆Zs)
2 <∞.

Taking the corresponding n =
∑

δ(ti,yi) in the lookdown construction, we obtain partitions RT (t)
which encode the genealogy of Z. The process (Xt)t≥0 of (2.2) is then such that

(

ZtXt

)

0≤t<τ
is the superprocess with generator (1.15) . (2.4)

The case α ∈ (1, 2] corresponds to Example 3.1.2 of [11] and then Theorem 3.2 (also of [11]) provides
the proof of the claim. For completeness we now check (2.4) for any CSBP with σ = 0.

Proof of (2.4). First we remark that it suffices to check that

F (ZtXt)− F (Z0X0)−
∫ t

0
LF (ZsXs) ds (2.5)
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is a martingale for functions of the type

F (µ) = ψ(|µ|)〈φ, µ|µ| 〉
m, m ∈ N, ψ ∈ C2c (R+), ψ(0) = 0, φ ∈ Bb([0, 1]). (2.6)

For such a function, denoting by GY the generator of the Lévy process that generates the total mass
process via Lamperti’s time change, we have

LF (µ) = |µ|GY ψ(|µ|)× 〈φ,
µ

|µ| 〉
m + |µ|

m
∑

j=2

∫

(0,∞)

(

m

j

)

( h

|µ|+ h

)j( |µ|
|µ|+ h

)m−j

× ψ(|µ|+ h)
[

〈

φj ,
µ

|µ|
〉

〈φ, µ|µ| 〉
m−j − 〈φ, µ|µ| 〉

m
]

ν(dh). (2.7)

To see that this is equivalent to the more familiar ‘exponential form’ of the martingale problem one
can check that the respective linear spans of

{

(F,LF ) : F (µ) = exp(−〈φ, µ〉), φ ∈ B++b ([0, 1])
}

and
{

(F,LF ) : F (µ) = ψ(|µ|)〈φ, µ|µ| 〉
m, m ∈ N, ψ ∈ C2c (R+), ψ(0) = 0, φ ∈ Bb([0, 1])

}

have the same bounded-pointwise closure, where B++b ([0, 1]) = {φ ∈ Bb([0, 1]) : inf φ > 0}, and apply
Proposition 3.1, Chapter 4 of [16].

The proof is now straightforward. First we write down the generator Am for the (m + 1)-tuple
(Zt; ξ

1
t , . . . , ξ

m
t ) corresponding to the CSBP and the first m levels of the lookdown construction. This

can be found in [11]. For the interested reader, in their notation we are taking Q(t) = Zt, p(q) = q
(so P (t) = Q(t)), q1(v) ≡ 0, q2(v, v

′) = (v′ − v)2. Still in their notation this implies U(t) = [P ]t =
∑

s≤t(∆Pt)
2, β(v, v′) = (v′ − v)/v′, and η(v, dv′) = Cv(v′ − v)−1−αdv′. Let m ∈ N, x = (x1, . . . , xm).

For

f(v, x1, . . . , xm) = ψ(v)
m
∏

i=1

φ(xi)
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we have

Amf(v, x) =
m
∏

i=1

φ(xi)
[

γvψ′(v) + v

∫

(0,∞)

{

ψ(v + h)− ψ(v)− 1(0,1](h)hψ
′(v)
}

ν(dh)
]

+
∑

J⊂{1,...,m}

∫

R+

(v′ − v
v′

)|J |(

1− v′ − v
v′

)m−|J |

× ψ(v′)
[

φ(xmin J)
|J |
∏

k∈Jc

φ(xk)−
m
∏

i=1

φ(xi)
]

η(v, dv′)

=
m
∏

i=1

φ(xi)
[

γvψ′(v) + v

∫

(0,∞)

{

ψ(v + h)− ψ(v)− 1(0,1](h)hψ
′(v)
}

ν(dh)
]

+
∑

J⊂{1,...,m}

∫

R+

( h

v + h

)|J |(

1− h

v + h

)m−|J |

× ψ(v + h)
[

φ(xmin J)
|J |
∏

k∈Jc

φ(xk)−
m
∏

i=1

φ(xi)
]

vν(dh)

= vGY ψ(v)×
m
∏

i=1

φ(xi) +
∑

J⊂{1,...,m},
|J|≥2

∫

(0,∞)
vν(dh)

( h

v + h

)|J |(

1− h

v + h

)m−|J |

× ψ(v + h)
[

φ(xmin J)
|J |
∏

k∈Jc

φ(xk)−
m
∏

i=1

φ(xi)
]

.

So for test functions F (q, ρ) := ψ(q)〈φ, ρ〉m the generator A of the pair (Q,X), consisting of the driving
total mass process and the empirical measure process, obtained from the lookdown construction is

AF (q, ρ) =
〈

Amf(q, ·), ρ⊗m
〉

= qGY ψ(q)× 〈φ, ρ〉m

+
∑

J⊂{1,...,m},
|J|≥2

∫

(0,∞)
qν(dh)

( h

q + h

)|J |(

1− h

q + h

)m−|J |

× ψ(q + h)
[

〈

φ|J |, ρ
〉

〈φ, ρ〉m−|J | − 〈φ, ρ〉m
]

,

(see Theorem 4.1 and equation (4.4) in [11]). Now substituting q = |µ|, ρ = µ/|µ|, we see that
AF (|µ|, µ/|µ|) = LF (µ) as required. ¤

While the classical duality in Theorem 1.1 is only a statement about distributions, there is also
a pathwise version, given by the lookdown construction, which relates both processes on the same
probability space.

Theorem 2.1. Assume that an α-stable branching superprocess (Mt) has been obtained as above from
an α-stable continuous-state branching process (Zt) and the lookdown construction. Define Tt from Z
as in Theorem 1.1. Assume that either 0 < α ≤ 1 and d ≥ 0 or 1 < α < 2 and m ≤ 0, so that Tτ =∞
a.s. Fix t > 0, and for 0 ≤ s ≤ t, let Πs = RT−1(t)(T−1(t)− T−1(t− s)). Then, the P-valued process
(Πs)0≤s≤t is a Beta(2− α, α)-coalescent.



316

Remark 2.2. An analogous result holds in the general case. If Tτ < ∞ we can augment the point
process

∑

s≤Tτ
∆Z̃s/Z̃s that is used in the lookdown construction with an independent auxiliary Poisson

point process in a similar way to the proof of Lemma 3.7 and thus produce a Beta(2−α, α)-coalescent
that lives for all time. However, the auxiliary part no longer has anything to do with the genealogy of
the given realisation of the measure-valued branching process.

Remark 2.3. We refer to [32] for another route leading, at least for α ∈ (1, 2], from α-stable branching
to Beta-coalescents, this time via a particle approximation obtained from a Galton-Watson branching
process by holding the population size fixed by randomly sampling N offspring in each generation to
survive.

3. Proofs

Our first step will be to consider the time change in Theorem 1.1 and to prove Proposition 1.2, which
gives necessary and sufficient conditions to have Tτ = ∞ a.s. Define the continuous-state branching
process Zt and the time-change Tt as in Theorem 1.1. Let (Yt)t≥0 be a Lévy process with Laplace
exponent −Ψ such that Y0 > 0. We write {Ft : t ≥ 0} for its canonical filtration. For all a ∈ R,
let ζ(a) = inf{t : Yt = a}. Then, as discussed previously, we may assume that Zt = YU(t), where

Ut = inf{s :
∫ s
0 Y

−1
u du = t}, for t <

∫ ζ(0)
0 Y −1u du. For t ≥

∫ ζ(0)
0 Y −1u du, we have Zt = 0 if ζ(0) < ∞

and Zt = ∞ if ζ(0) = ∞. Recall that τ = τ0 ∧ τ∞, where τ∞ = inf{t : Zt = ∞}, τ0 = inf{t : Zt = 0}
are the explosion resp. extinction times of Z. The following lemma shows how we can combine the
two time changes and express the condition that Tτ = ∞ in terms of the Lévy process Y . For this
result, and the rest of this section, case (i) of Theorem 1.1 corresponds to setting α = 2.

Lemma 3.1. We have Tτ =∞ a.s. if and only if
∫ ζ(0)
0 Y −α

t dt =∞ a.s.

Proof. For 0 ≤ t ≤ ζ(0), define K(t) =
∫ t
0 Y

−1
u du and note that ZK(t) = Yt. Therefore,

∫ ζ(0)

0
Y −α
t dt =

∫ ζ(0)

0
Y 1−α
t Y −1t dt =

∫ ζ(0)

0
Z1−α
K(t)Y

−1
t dt.

Note that if τ = τ0 < ∞ then τ0 = K(ζ(0)), and if τ = τ∞ < ∞ then τ∞ = K(ζ(0)). Also, if τ = ∞
then K(ζ(0)) = ∞, so we have K(ζ(0)) = τ . Since the function t 7→ K(t), defined on (0, ζ(0)), is
almost surely absolutely continuous with derivative K ′(t) = Y −1t , we make the change of variables
s = K(t) to obtain

∫ ζ(0)

0
Y −α
t dt =

∫ τ

0
Z1−α
s ds. (3.1)

The lemma is now immediate from the definition of Tτ . ¤

Lemma 3.2. Let (Wt)t≥0 be a stable Lévy process having Laplace exponent Φ(u) = sgn(1 − α)cuα,
where α ∈ (0, 1) ∪ (1, 2] and c > 0. Let r and x be positive real numbers. Then

P (|Wt −W0| ≤ rx for 0 ≤ t ≤ xα) = ηα,r,

where ηα,r is a positive constant which does not depend on x.

Proof. For t ≥ 0, let W̃t = Wt −W0. From the form of Φ, it is straightforward to verify the scaling
property, which says that for any k > 0, the processes (W̃t)t≥0 and (k−1/αW̃kt)t≥0 have the same law.
Therefore by taking k = x−α, we get

P (|W̃t| < rx for 0 ≤ t ≤ xα) = P (|W̃t| < r for 0 ≤ t ≤ 1). (3.2)
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It remains to show that the probability on the right-hand side of (3.2), which we call ηα,r, is positive.
For 0 < α < 1, M1 = sup0≤s≤1 |Ws| has a stable density which is strictly positive on (0,∞). For
1 < α < 2, exact asymptotics for ηα,r as r → 0 are given e.g. in Proposition 3, Chapter VIII of [1]. ¤

We now combine Lemma 3.1 with scaling properties of Lévy processes to prove Proposition 1.2. We
present the proof in the form of two lemmas.

Lemma 3.3. We have Tτ =∞ a.s. if either α = 1, 0 < α < 1 and d ≥ 0, or 1 < α ≤ 2 and m ≤ 0.

Proof. First, note that if α = 1, then time is changed only by a constant factor. Therefore, since Z
neither explodes nor goes extinct, we have Tτ =∞ a.s.

We next consider 1 < α ≤ 2 and m ≤ 0. In this case, ζ(b) <∞ and we have Yζ(b) = b for all b < Y0 a.s.

because Y has no negative jumps (see e.g. p. 188 of [1]). For n ∈ N, write xn = Y02
−n and let An be

the event that 12xn < Yt <
3
2xn for all t ∈ [ζ(xn), ζ(xn)+x

α
n]. If An occurs, then ζ(xn+1) ≥ ζ(xn)+x

α
n,

and so
∫ ζ(xn+1)

ζ(xn)
Y −α
t dt ≥

∫ ζ(xn)+xαn

ζ(xn)
Y −α
t dt ≥ xαn[(3/2)xn]

−α = (2/3)α.

Therefore, if infinitely many of the An occur a.s., then
∫ ζ(0)
0 Y −α

t dt = ∞ a.s., which by Lemma 3.1
implies that Tτ = ∞ a.s. It thus suffices to show that infinitely many of the An occur a.s. By the
strong Markov property, the events An are independent, so by the Borel-Cantelli Lemma, it suffices
to show that

∑∞
n=1 P (An) =∞.

By the strong Markov property, P (An) = P (|Yt − Y0| ≤ xn/2 for all 0 ≤ t ≤ xαn). Define a process
(Wt)t≥0 by Wt = Yt−mt. Then W is a Lévy process with Laplace exponent −cuα for some c > 0. Let
Bn be the event that |Wt −W0| ≤ xn/4 for all 0 ≤ t ≤ xαn, and note that P (Bn) = ηα,1/4 by Lemma
3.2. If Bn occurs and mxαn ≤ xn/4, then |Yt−Y0| ≤ xn/2 for all 0 ≤ t ≤ xαn. Note that mxαn ≤ xn/4 if
and only if 4m ≤ x1−α

n , which is true for sufficiently large n. It follows that P (An) ≥ P (Bn) = ηα,1/4
for sufficiently large n, which implies that

∑∞
n=1 P (An) =∞.

Next, suppose 0 < α < 1 and d ≥ 0. In this case, the process Y is a stable subordinator with
nonnegative drift added, so Y is nondecreasing and limt→∞ Yt =∞ a.s. Define a sequence of stopping
times (Sn)

∞
n=0 by S0 = 0 and Sn = inf{t : Yt ≥ 2YSn−1} for n ≥ 1. Note that for all n, we have Sn <∞

a.s. Let An be the event that Sn+1 − Sn ≥ Y α
Sn
. If An occurs, then

∫ Sn+1

Sn

Y −α
t dt ≥ (Sn+1 − Sn)(2YSn)

−α ≥ 2−α.

Thus, once again it suffices to show that infinitely many of the An occur a.s. Let FSn be the σ-field
generated by the stopped process Y·∧Sn . Note that An ∈ FSn+1 , so by the conditional Borel-Cantelli
Lemma (see Section 4.3 of [13]), it suffices to show that

∑∞
n=1 P (An|FSn) =∞ a.s.

For b > 0, let p(b) = P (Yt − Y0 ≤ b for all 0 ≤ t ≤ bα). By the strong Markov property, P (An|FSn) =
p(YSn). Let Wt = Yt − dt, and let q(b) = P (Wt − W0 ≤ b/2 for all 0 ≤ t ≤ bα). If Wt − W0 ≤
b/2 for all 0 ≤ t ≤ bα and dbα ≤ b/2, then Yt − Y0 ≤ b for all 0 ≤ t ≤ bα. We have dbα ≤ b/2 if and
only if 2d ≤ b1−α, which is true for sufficiently large b. It follows that p(b) ≥ q(b) for sufficiently large
b. Since YSn ≥ 2nY0, we have p(YSn) ≥ q(YSn) for sufficiently large n. However, q(b) = ηα,1/2 for all b

by Lemma 3.2, so
∑∞

n=1 P (An|FSn) =∞ a.s. ¤

Lemma 3.4. If 1 < α ≤ 2 and m > 0, or if 0 < α < 1 and d < 0, then P (Tτ <∞) > 0.
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Proof. First, suppose 1 < α ≤ 2 andm > 0. Now the event {ζ(0) =∞} has positive probability, and as
then Y grows approximately linearly with inf t Yt > 0, (3.1) will be finite. Indeed, letWt = Yt−mt−Y0
for all t ≥ 0, so (Wt)t≥0 is a stable Lévy process with Laplace exponent Ψ(u) = −cuα for some c > 0.
We have lim supt→∞ t−1|Wt| = 0 a.s. (see, for example, p. 222 of [1]). Therefore, if 0 < a < m, there
exists M such that M <∞ a.s. and Yt =Wt+mt+Y0 ≥ at for all t ≥M . Thus, the process Yt drifts
to ∞, in the terminology of p. 167 of [1], and since Y0 > 0, we have P (Yt > Y0/2 for all t ≥ 0) > 0.
On the event that Yt > Y0/2 for all t ≥ 0, we have

∫ ∞

0
Y −α
t dt ≤

∫ M

0
(Y0/2)

−α dt+

∫ ∞

M
(at)−α dt <∞.

It follows that P (Tτ <∞) > 0.

Next, suppose 0 < α < 1 and d < 0. Now the event {ζ(0) <∞} has positive probability, and on this
event, Yt− 0 will look approximately like const · (ζ(0)− t) for t near ζ(0)−, so that (3.1) will be finite.

More formally, for all t ≥ 0, let It = inf{Ys : 0 ≤ s ≤ t} be the infimum process, and for x ≤ Y0,
let Sx = inf{t ≥ 0 : It < x}. Since d < 0, the process (Yt)t≥0 is a Lévy process with no negative
jumps that is not a subordinator. Therefore, we can apply Theorem 1 on p. 189 of [1] to −Y to see
that the process (SY0−t)t≥0 is a subordinator, killed at an independent exponential time κ. If κ > Y0
then S0 < ∞, which means Yt < 0 for some t and therefore ζ(0) < ∞. Since κ has an exponential
distribution, it follows that P (ζ(0) < ∞) > 0. Furthermore, we have S0 = ζ(0) almost surely on the
event {ζ(0) <∞}.
Using the time-reversal property of subordinators, we see that, conditional on the event {ζ(0) <∞},
the process (S̃t)0≤t≤Y0 defined by S̃t = ζ(0)−St is a subordinator. It follows (see Proposition 8 on p. 84

of [1]) that limt↓0 t
−1S̃t = β, where β is the drift coefficient for the subordinator S̃. It follows that for

any β′ > β there exists ε > 0 such that S̃t ≤ β′t for all 0 ≤ t ≤ ε. Therefore, there exists B <∞ such
that S̃t ≤ Bt, and so St ≥ ζ(0)−Bt, for all 0 ≤ t ≤ Y0. Thus, if 0 ≤ t ≤ ζ(0), then S(ζ(0)−t)/B ≥ t. It
follows that if 0 ≤ t ≤ ζ(0), then It ≥ (ζ(0)− t)/B. Hence, on the event {ζ(0) <∞}, we have

∫ ζ(0)

0
Y −α
t dt ≤

∫ ζ(0)

0
I−α
t dt ≤

∫ ζ(0)

0
[(ζ(0)− t)/B]−α dt = Bα

∫ ζ(0)

0
s−α ds,

which is finite because 0 < α < 1. Thus,
∫ ζ(0)
0 Y −α

t dt < ∞ a.s. on {ζ0 < ∞}, which by Lemma 3.1
implies that P (Tτ <∞) > 0, as claimed. ¤

We now show rigorously that the generator L of our measure-valued process (Mt)t≥0 applied to
functions of the form (1.5) factorises precisely under the conditions of Theorem 1.1.

Lemma 3.5. Let ν be a measure on (0,∞) satisfying (1.12), and for z > 0 let λz = φz(ν) be the
image of ν under the mapping given by

φz : h 7→ r :=
h

z + h
. (3.3)

There exists a measure λ on R+ and a measurable mapping s : R+ → R+ such that

λz = s(z)λ (3.4)

if and only if, for some α ∈ (0, 2),

ν(dh) = const · h−1−αdh.

In this case, s(z) = const · z−α, and λ(dr) = const · r−2Beta(2− α, α)(dr).
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Proof. The “if” direction follows by inspection; hence it suffices to prove the “only if” direction. For
c > 0, write ψc for the mapping h 7→ c · h. Evidently, for all z, c,

φz = φcz ◦ ψc (3.5)

Hence, using (3.4) and (3.5),
s(z)λ = φcz(ψc(ν)). (3.6)

On the other hand, again by (3.4),
φcz(ν) = s(cz)λ (3.7)

Inverting (3.7),

ν = s(cz)φ−1cz (λ), (3.8)

and inverting (3.6) and using (3.8),

ψc(ν) =
s(z)

s(cz)
ν. (3.9)

Choosing z = 1 and putting s̃(1c ) = s(1)/s(c), we obtain for the tail probabilities

`(h) := ν([h,∞))

the relation

`
(h

c

)

= ψc(ν)([h,∞)) = s̃
(1

c

)

ν([h,∞)) = s̃
(1

c

)

`(h).

From this it follows readily that `(h) = const · h−α, where α ∈ (0, 2) by assumption (1.12). Finally, it
is straightforward to check that λ is of the claimed form. ¤

Proof of Theorem 1.1. Recall z = |µ|, ρ = µ/z. We claim that for functions F (µ) = G(ρ) of the
form (1.5)

(LF )(µ) = z−1σ2 · (FG)(ρ) + z · (Rν,zG)(ρ), (3.10)

where (FG)(ρ) is as in (1.7), and

(Rν,zG)(ρ) =

∫ 1

0
ρ(da)

∫

(0,∞)
ν(dh)

(

G

(

µ+ hδa
z + h

)

−G(ρ)
)

. (3.11)

Indeed, we may assume without loss of generality that the f appearing in (1.5) is symmetric (since
the r.h.s. of (1.5) does not change if f is replaced by its symmetrised version). Since any con-
tinuous symmetric function from [0, 1]p to R can be uniformly approximated by functions of the
form f(a1, ..., ap) =

∏p
i=1 φ(ai), it suffices to consider functions F of the form F (µ) = H( 1z 〈φ, µ〉) =

H(〈φ, ρ〉) with H : R → R differentiable and φ bounded. Since

F ′(µ; a) = H ′
(

〈φ, ρ〉
)1

z
(φ(a)− 〈φ, ρ〉),

and consequently
∫

µ(da)F ′(µ; a) = 0, we see that in the case σ = 0 (1.15) turns into (3.10) and
(3.11). The general form of our claim follows by combining this with (1.4) and (1.7).

Defining λz as the image of the measure ν under the mapping (3.3), we can re-write equation (3.11)
as

(Rν,zG)(ρ) =

∫

ρ(da)

∫

(0,1)
λz(dr)(G((1− r)ρ+ rδa)−G(ρ)).

By Lemma 3.5, λz factorises in the desired form if and only if, for some α ∈ (0, 2),

(Rν,zG)(ρ) = const · z−α(RG)(ρ)
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where

(RG)(ρ) =
∫

ρ(da)

∫

(0,1)

1

r2
Λ(dr)(G((1− r)ρ+ rδa)−G(ρ)) (3.12)

and

Λ := Beta(2− α, α).
It remains to check that RG given by (3.12) is indeed the generator of a generalised Fleming-Viot
process, i.e. RG is of the form (1.11) for functions G of the form (1.5).

For this purpose, let A1, ..., Ap be i.i.d. with distribution ρ, and let, for r ∈ (0, 1), J ⊆ {1, ..., p} be
the random success times of a coin tossing with success probability r and independent of (A1, ..., Ap).
Using the notation introduced in (1.6) it is readily checked that

∫

(0,1)
ρ(da)(G((1− r)ρ+ rδa)−G(ρ)) = E[f(AJ

1, ..., A
J
p)− f(A1, ..., Ap)]

=
∑

J⊆{1,...,p}

r|J |(1− r)p−|J |
∫

ρ(da1)...ρ(dap)(f(a
J
1 , ...a

J
p )− f(a1, ..., ap)).

Noting that the subsets J with |J | ∈ {0, 1} do not contribute to the sum, we obtain

(RG)(ρ) =

∫

(0,1)
Λ(dr)

1

r2

∑

J⊆{1,...,p},|J |≥2

r|J |(1− r)p−|J |

∫

ρ(da1)...ρ(dap)(f(a
J
1 , ..., a

J
p )− f(a1, ..., ap)) (3.13)

=
∑

J⊆{1,...,p},|J |≥2

βΛp,|J |

∫

ρ(da1)...ρ(dap)(f(a
J
1 , ...a

J
p )− f(a1, ..., ap)),

where βΛp,j is defined in (1.10).

Thus, R is precisely of the form appearing in [3] p. 280, and the second summand on the right hand
side of (3.10) is const · z1−α(RG)(ρ). ¤

It remains to prove Theorem 2.1. We achieve this by two lemmas. The first says that both the
Λ-Fleming-Viot process and the Λ-coalescent can be obtained through a realisation-wise lookdown
construction from a time-homogeneous Poisson point process on [0,∞) × (0, 1]. The second explains
how the required time-homogeneous Poisson point process can be recovered from an α-stable CSBP.

Lemma 3.6. Let Λ be a finite measure on (0, 1] and let N =
∑

i δ(ti,yi) be a Poisson point process on

[0,∞) × (0, 1] with intensity measure dt ⊗ y−2Λ(dy). Note that (2.1) holds almost surely, so we can
define the measures Xt and the partitions RT (t) via the lookdown construction in Section 2.

(i) The process (Xt)t≥0 is the Λ-Fleming-Viot process.
(ii) For fixed T > 0, the process (RT (t))0≤t≤T is a Λ-coalescent run for time T .

Proof. Part (i) is a direct consequence of Section 4 of [11]. In their notation, we choose

Q(t) :=
∑

i:ti≤t

y2i , P (t) ≡ 1, U(t) = Q(t), t ≥ 0,
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p(v) ≡ 1, q1(v) ≡ 0, q2(v, v
′) = v′ − v. The process Q is Markov. In fact it is a driftless subordinator

with Lévy measure given by

`(A) =

∫

[0,1]
1A(r

2)
1

r2
Λ(dr) for all A ⊂ [0, 1] Borel. (3.14)

The transition kernel η(v, dv′) of Q is given by `(v + dv′). We let the type space E = [0, 1] and the
motion operator B be the 0-operator. Consider, for m ∈ N, test functions of the type

f(v′, x1, . . . , xm) = ψ(v′)
m
∏

i=1

φ(xi).

Then, using x = (x1, . . . , xm) the (m + 1)-tuple consisting of the process Q and the first m levels of
the lookdown construction has generator (equation (4.2) in [11])

Amf(v, x) = Gf(v, x) +
∑

J⊂{1,...,m}

∫

R+

(
√
v′ − v)|J |(1−

√
v′ − v)m−|J |

×
(

f(v′, θJ(x))− f(v′, x)
)

η(v, dv′)

= Gf(v, x) +
∑

J⊂{1,...,m}

∫

[0,1]
y|J |(1− y)m−|J |

×
(

f(v + y2, xJ)− f(v + y2, x)
) 1

y2
Λ(dy), (3.15)

where G is the generator of Q and xJ is as defined in (1.6). Note that the martingale problem for Am

is well-posed due to the boundedness of
∫

R+

(
√
v′ − v)2 η(v, dv′) =

∫

[0,1]
y2

1

y2
Λ(dy) = Λ([0, 1]) <∞.

Let Xt be the empirical process obtained from the lookdown construction by

Xt = lim
k→∞

1

k

∑

k

ξkt .

By [11], Theorem 4.1, we have that for the pair (Qt, Xt) and f as above,

〈f(Qt, ·), Xm
t 〉 −

∫ t

0
〈Amf(Qs, ·), Xm

s 〉 ds (3.16)

is a martingale with respect to the canonical filtration of (Q,X).

Note that for f as above with ψ ≡ 1, we have

〈Amf(Qt, ·), Xm
t 〉

=

∫∫

Em

∑

J⊂{1,...,m}

∫

[0,1]
y|J |(1− y)m−|J |

×
[

φ(xmin J)
j
∏

k∈Jc

φ(xk)−
m
∏

i=1

φ(xi)

]

1

y2
Λ(dy)Xm

t (dx1, . . . , dxm). (3.17)
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Observe that only terms involving J with |J | ≥ 2 contribute to the above integral, so that we can
rewrite, by slight abuse of notation abbreviating f(Qt, ·) = f(·),

〈Amf(·), Xm
t 〉

=
∑

J :|J |≥2

βΛm,|J |

∫∫

Em

[

f(xJ)− f(x)
]

Xm
t (dx1, . . . , dxm), (3.18)

where xJ is defined as in (1.6). This is the generator in the martingale problem for the generalised
Fleming-Viot process stated in Bertoin & Le Gall [3], which is well-posed (by duality with the Λ-
coalescent).

Part (ii) is immediate from the construction. ¤

The final lemma of this section identifies the distribution of the process of relative jump sizes of our
time-changed CSBP and thus, combined with Lemma 3.6, completes the proof of Theorem 2.1.

Lemma 3.7. Assume that either 0 < α ≤ 1 and d ≥ 0 or 1 < α < 2 and m ≤ 0. Then, writing
Z̃t := ZT−1(t),

∑

t : ∆Z̃t>0

δ(t,∆Z̃t/Z̃t)

is a Poisson point process on [0,∞) × (0, 1) with intensity measure dt ⊗ y−2Λ(dy), and Λ is the
Beta(2− α, α) distribution.
In the complementary case, there exists a Poisson point process N̄ =

∑

i δ(ti,yi) with the same intensity
measure and a random time η such that





∑

i : ti≤η

δ(ti,yi) , η





d
=





∑

t≤Tτ : ∆Z̃t>0

δ(t,∆Z̃t/Z̃t)
, Tτ



 .

Proof. As in the preamble to this section, Z can be expressed as a time change of a Lévy process Y .

Evidently, Z̃ is also a time change of Y . Indeed, writing Bt =
∫ t
0 Y

−α
s ds for t < ζ(0) and Bt = Bζ(0)−

for t ≥ ζ(0), we have that Z̃t = YB−1(t) with the stopping times B−1(s) := inf{t ≥ 0 : Bt > s}.
Observe that under the given conditions, from Lemma 3.1 we have Bζ(0)− = ∞, so that B−1(s) is
defined for all s. In this case it therefore suffices to check that the random measure

∑

t : ∆Y
B−1(t)>0

δ(t,∆Y
B−1(t)/YB−1(t))

is a Poisson point process on R+ × (0, 1) with intensity measure dt ⊗ r−2Beta(2 − α, α)(dr). To this

end, let Ut :=
∑

s≤t∧ζ(0)(∆Ys/Ys)
2, Ũs := UB−1(s). It is enough to show that Ũ is a subordinator

(without drift) with Lévy measure given by (3.14) with Λ = Beta(2− α, α), so that the square roots
of its jumps form the required Poisson point process. Fix a continuously differentiable function f with
compact support and let

H(s,∆Ys) := 1{ζ(0)>s}

(

f(Us− + (∆Ys/(∆Ys + Ys−))
2)− f(Us−)

)

,
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so f(Ut) = f(U0) +
∑

s≤tH(s,∆Ys). Put

Mf
t := f(Ut)−

∫ t

0

∫

(0,∞)

(

f(Us− + (h/(h+ Ys−))
2)− f(Us−)

)

h−1−αdhds

= f(Ut)−
∫ t

0

∫

(0,1)

(

f(Us− + u2)− f(Us−)
) 1

u2
u1−α(1− u)α−1duY −α

s− ds

(we have substituted u = h/(Ys− + h) in the second line). We now show that M f
t is a uniformly

integrable (Ft)-martingale. Let K be such that f(u) = 0 for u ≥ K, and let Lf denote the Lipschitz
constant of f .

E
[ ∫ t

0

∫

(0,∞)
|H(s, y)|ν(dy)ds

]

≤ LfE
[ ∫ t∧ζ(0)

0

∫

(0,∞)
1{Us≤K}

(

h/(h+ Ys)
)2
h−1−αdh ds

]

= Lf
Γ(2− α)Γ(α)

Γ(2)
E
[ ∫ t∧ζ(0)

0
1{Us≤K}Y

−α
s ds

]

. (3.19)

Let us assume for the moment that

E
[ ∫ ζ(0)

0
1{Us≤K}Y

−α
s ds

]

<∞ for all K > 0. (3.20)

Given this, (3.19) together with standard results on Poisson point processes (see e.g. [29], Cor. XII.1.11)
implies that M f is a martingale w.r.t. (Ft). Note that for t > 0

|Mf
t | ≤ ||f ||∞ + Lf

Γ(2− α)Γ(α)
Γ(2)

∫ ζ(0)

0
1{Us≤K}Y

−α
s ds,

and that the right hand side has finite expectation by (3.20), so that (M f
t )t≥0 is uniformly integrable.

Using Y −α
s− ds = dBs, uniform integrability and the Optional Stopping Theorem applied to the stopping

times B−1(s), we see that

f(Ũs)−
∫ s

0

∫

(0,1)

(

f(Ũs− + u2)− f(Ũs−)
) 1

u2
u1−α(1− u)α−1duds

is a martingale with respect to the new filtration {F̃s := FB−1(s)}. The corresponding well-posed
martingale problem is solved by the subordinator with Lévy measure ` defined in (3.14) with Λ =
Beta(2− α, α), see Thm. 3.4 in Chapter 8 of [16].

In the complementary case, when Bζ(0)− <∞, provided we can check (3.20), we can apply Lemma 5.16,

Chapter 4 of [16] to find a version of Ũ that lives for all time.

It remains to check (3.20). The proof is reminiscent of that of Lemma 3.3. Here is a sketch (in the
strictly stable case):
Let τ(a,b)c := inf{t > 0 : Yt 6∈ (a, b)}. Note that by scaling we have for all x > 0

Ex

[

∫ τ
( 1
2x,

3
2x)c

0
Y −α
s ds

]

= E1
[

∫ τ
( 1
2 ,

3
2 )c

0
Y −α
s ds

]

≤ 2αE1
[

τ( 1
2
, 3
2
)c
]

<∞,

q := Px

(

∃ s ≤ τ( 1
2
x, 3

2
x)c : ∆Ys >

1
4x
)

= P1
(

∃ s ≤ τ( 1
2
, 3
2
)c : ∆Ys >

1
4

)

> 0.
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Define a sequence of stopping times via T0 := 0, Tn := inf{t > Tn−1 : Yt 6∈ (12YTn−1 ,
3
2YTn−1)}. Put

An := {∃s ∈ (Tn−1, Tn) : ∆Ys ≥ 1
4YTn−1}. Note that Tn ↗ ζ(0), and that the sequence 1A1 , 1A2 , . . . is

i.i.d. by the strong Markov property. Furthermore An ⊂ {UTn − UTn−1 ≥ 1/36}. Thus
∫ T∧ζ(0)

0
1{Us≤K}Y

−α
s ds =

∞
∑

n=1

∫ Tn

Tn−1

1{Us≤K}Y
−α
s ds

≤
∞
∑

n=1

1{∑n−1
j=1 1Aj

≤b36Kc
}

∫ Tn

Tn−1

Y −α
s ds,

and the expectation of the right hand side is (in an obvious notation)

E1
[

∫ τ
( 1
2 ,

3
2 )c

0
Y −α
s ds

]

×
∞
∑

n=1

Binn−1,q({0, 1, . . . , b36Kc}) <∞.
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