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Abstract

The product of subsequent partial sums of independent, identically distributed, square inte-
grable, positive random variables is asymptotically lognormal. The result extends in a rather
routine way to non-degenerate U -statistics.

1 Introduction

It is well known that the products of independent, identically distributed (iid), positive, square
integrable random variables (rv’s) are asymptotically lognormal. This fact is an immediate
consequence of the classical central limit theorem (clt). In the present paper, we are interested
in the limiting law of the products of sums of iid rv’s. It appears that their asymptotic
behavior is rather similar. We also derive a parallel result for the products of non-degenerate
U -statistics.
While considering limiting properties of sums of records, Arnold and Villaseñor (1998) obtained
the following version of the clt for a sequence (Xn) of iid exponential rv’s with the mean equal
one ∑n

k=1 log(Sk) − n log(n) + n√
2n

d→ N (1)

as n → ∞, where Sk = X1 + . . . + Xk, k = 1, 2, . . ., and N is a standard normal rv. Their
proof is heavily based on a very special property of exponential(gamma) distributions: namely
that there is independence of ratios of subsequent partial sums and the last sum. It uses also
Resnick’s (1973) result on weak limits for records.
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Observe that, via the Stirling formula, the relation (1) can be equivalently stated as

(
n∏

k=1

Sk

k

) 1√
n

d→ e
√

2N .

The main purpose of this note is to show that this limit behavior of a product of partial sums
has a universal character and holds true for any sequence of square integrable positive iid rv’s.
This is done in Section 2. Section 3 extends the result to a U -statistics setting.

2 Main Result

Our main result is a general version of (1), without assuming any particular distribution for
the Xi’s.

Theorem 1. Let (Xn) be a sequence of iid positive square integrable rv’s. Denote µ = E(X1) >
0, the coefficient of variation γ = σ/µ, where σ2 = V ar(X1), and Sk = X1 + . . . + Xk,
k = 1, 2, . . .. Then (∏n

k=1 Sk

n!µn

) 1
γ
√

n
d→ e

√
2N , (2)

where N is a standard normal rv.

Before proving the above result we will establish a version of the classical central limit theorem,
essentially, for scaled iid rv’s. To this end we will use the clt for triangular arrays, so the basic
step in the proof will rely on verifying the Lindeberg condition.

Lemma 1. Under the assumptions of Theorem 1

1
γ
√

2n

n∑
k=1

(
Sk

µk
− 1
)

d→ N . (3)

Proof of Lemma 1. Let Yi = (Xi−µ)/σ, i = 1, 2, . . ., and denote S̃k = Y1+. . .+Yk, k = 1, 2, . . ..
Then (3) becomes

1√
2n

n∑
k=1

S̃k

k

d→ N .

Observe that
n∑

k=1

S̃k

k
=

n∑
k=1

1
k

k∑
i=1

Yi =
n∑

i=1

bi,nYi ,

where

bi,n =
n∑

k=i

1
k

, i = 1, . . . , n.

Define now

Zi,n =
bi,n√

2n
Yi ,
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and observe that E(Zi,n) = 0 and

V ar(Zi,n) =
b2
i,n

2n
, i = 1, . . . , n.

Also, since for k ≥ l,

Cov

(
S̃k

k
,
S̃l

l

)
=

1
k

,

then

V ar

(
n∑

i=1

Zi,n

)
=

1
2n

V ar

(
n∑

k=1

S̃k

k

)
=

1
2n

(
b1,n + 2

n∑
k=2

k−1∑
l=1

1
k

)
=

=
1

2n

(
b1,n + 2

n∑
k=2

k − 1
k

)
= 1 − b1,n

2n
→ 1

as n → ∞. Observe that as a by-product of the above computation we have obtained the
identity

n∑
k=1

b2
i,n = 2n − b1,n . (4)

In order to complete the proof we need to check that the Lindeberg condition is satisfied for
the triangular array [Zi,n]. Take any ε > 0. Then, using (4), we get

n∑
i=1

E(Z2
i,nI(|Zi,n| > ε)) =

1
2n

n∑
i=1

b2
i,nE

(
Y 2

i I

(
|Yi| >

ε
√

2n

bi,n

))
≤

≤ 1
2n

n∑
i=1

b2
i,nE

(
Y 2

i I

(
|Yi| >

ε
√

2n

log(n)

))
=

an

2n

n∑
i=1

b2
i,n = an

(
1 − b1,n

2n

)
,

where

an = E

(
Y 2

i I

(
|Yi| >

ε
√

2n

log(n)

))

does not depend on i. Since an → 0 as n → ∞ then the Lindeberg condition holds. 2

Proof of Theorem 1. The proof relies on the delta-method expansion. In what follows we use
only elementary considerations to justify its validity.
Denote Ck = Sk/(µk), k = 1, 2, . . .. By the strong law of large numbers it follows that for any
δ > 0 ∃ R such that ∀ r > R

P (sup
k≥r

|Ck − 1| > δ) < δ.

Consequently, there exist two sequences (δm) ↓ 0 (δ1 = 1/2) and (Rm) ↑ ∞ such that

P ( sup
k≥Rm

|Ck − 1| > δm) < δm.

Take now any real x and any m. Then

P

(
1

γ
√

2n

n∑
k=1

log(Ck) ≤ x

)
= P

(
1

γ
√

2n

n∑
k=1

log(Ck) ≤ x , sup
k>Rm

|Ck − 1| > δm

)
+
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+P

(
1

γ
√

2n

n∑
k=1

log(Ck) ≤ x , sup
k>Rm

|Ck − 1| ≤ δm

)
= Am,n + Bm,n

and Am,n < δm.
To compute Bm,n we will expand the logarithm: log(1 + x) = x + x2

(1+θx)2 , where θ ∈ (0, 1)
depends on x ∈ (−1, 1). Thus,

Bm,n = P

(
1

γ
√

2n

Rm∑
k=1

log(Ck) +
1

γ
√

2n

n∑
k=Rm+1

log(1 + (Ck − 1)) ≤ x , sup
k>Rm

|Ck − 1| ≤ δm

)
=

= P

(
1

γ
√

2n

Rm∑
k=1

log(Ck) +
1

γ
√

2n

n∑
k=Rm+1

(Ck − 1) +
1

γ
√

2n

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2
≤ x ,

sup
k>Rm

|Ck − 1| ≤ δm

)
= P

(
1

γ
√

2n

Rm∑
k=1

log(Ck) +
1

γ
√

2n

n∑
k=Rm+1

(Ck − 1)+

[
1

γ
√

2n

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
I( sup

k>Rm

|Ck − 1| ≤ δm) ≤ x

)
−

−P

(
1

γ
√

2n

Rm∑
k=1

log(Ck) +
1

γ
√

2n

n∑
k=Rm+1

(Ck − 1) ≤ x, sup
k>Rm

|Ck − 1| > δm

)
= Dm,n + Fm,n.

where θk, k = 1, . . . , n are (0, 1)-valued rv’s and Fm,n < δm.
Rewrite now Dm,n as

Dm,n = P

(
1

γ
√

2n

Rm∑
k=1

(log(Ck) − Ck + 1) +
1

γ
√

2n

n∑
k=1

(Ck − 1)+

+

[
1

γ
√

2n

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
I( sup

k>Rm

|Ck − 1| < δm) ≤ x

)
.

Observe now that for any fixed m

1
γ
√

2n

Rm∑
k=1

(log(Ck) − Ck + 1) P→ 0 (5)

as n → ∞ (as a matter of fact this sequence converges to zero a.s.).
Note that for |x| < 1/2 and any θ ∈ (0, 1) it follows that x2/(1 + θx)2 ≤ 4x2. Then for any m[

1
γ
√

2n

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
I( sup

k>Rm

|Ck − 1| < δm) ≤ 4√
2n

n∑
k=1

(Ck − 1)2 P→ 0, (6)

as n → ∞. The above is a consequence of the Markov inequality, since for any ε > 0

P

(
4√
2n

n∑
k=1

(Ck − 1)2 > ε

)
≤ 4

ε
√

2n

n∑
k=1

V ar(Ck) =
4

ε
√

2n

n∑
k=1

1
k
→ 0
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as n → ∞ for any fixed m.
Since by Lemma 1 it follows that

1
γ
√

2n

n∑
k=1

(Ck − 1) d→ N

as n → ∞ then by (5) and (6) we conclude that for any fixed m

Dm,n → Φ(x) ,

where Φ is the standard normal distribution function.
Finally, observe that

P

(
log

(∏n
k=1 Sk

n!µn

) 1
γ
√

n

≤ x

)
= P

(
1

γ
√

2n

n∑
k=1

log(Ck) ≤ x

)
= Am,n + Dm,n + Fm,n

which implies (2) since Am,n + Fm,n < 2δm → 0 as m → ∞, uniformly in n.

Remark 1. It is perhaps worth to notice that by the strong law of large numbers and the
property of the geometric mean it follows directly that(∏n

k=1 Sk

n!

) 1
n

→ µ a.s.

if only existence of the first moment is assumed.

Remark 2. In Arnold and Villaseñor (1998) the following identity was proved:

Tn =
n∑

k=1

log(
k∑

i=1

Xk) d= −
n∑

i=1

X̃i + nRn

where (Xn) and (X̃n) are independent sequences of iid standard exponential rv’s and Rn is
nth record from an independent sequence of iid Gumbel rv’s (R1 is the first observation).
Consequently

Tn − n log(n) + n√
2n

d=
1√
2

(
−
∑n

i=1 X̃i − n√
n

+
√

n(Rn − log(n))

)
.

Now, in view of the result above, we can apply the argument used in Arnold and Villaseñor
(1998) in the reverse order. From Theorem 1 it follows that the left hand side converges in
distribution to the standard normal law and the same holds true by the standard clt for the
first element at the rhs. Now since the first and the second element at the rhs are independent
it follows that

√
n(Rn − log(n)) is asymptotically standard normal, which proves Resnick’s

result for records from the Gumbel distribution.

3 Extension to U-statistics

A useful notion of a “U -statistic” has been introduced by Hoeffding (1948) and pertains to
any estimator based on the statistic of the form

Un =
∑

1≤i1<...<im≤n

h(Xi1 , . . . , Xim) (7)
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where h is a symmetric real function of m arguments, the Xi’s are iid rv’s, and the summa-
tion is carried over all possible choices of m indices out of the set {1, 2, . . . , n}. Let us note
that if m = 1 and h(x) = x then the above definition gives simply Sn. If we assume that
E h(X1, . . . , Xm)2 < ∞ and define h1(x) = E h(x, X2, . . . , Xm) as well as

Ûn =
(

n

m

) [
m

n

n∑
i=1

(h1(Xi) − Eh) + E h

]
,

then we may write

Un = Ûn + Rn (8)

where
Rn =

∑
1≤i1<...<im≤n

H(Xi1 , . . . , Xim),

and

H(x1, . . . , xm) = h(x1, . . . , xm) −
m∑

i=1

(h1(xi) − E h) − E h.

It is well known (cf. e.g., Serfling 1980) that,

Cov(Ûn, Rn) = 0

and

n V ar

[(
n

m

)−1

Rn

]
→ 0 as n → ∞. (9)

The result of Theorem 1 can be extended to U -statistics as follows.

Theorem 2. Let Un be a statistic given by (7). Assume E h2 < ∞ and P (h(X1, . . . , Xm) >
0) = 1, as well as σ2 = V ar(h1(X1)) 6= 0. Denote µ = E h > 0 and γ = σ/µ > 0, the
coefficient of variation. Then

(
n∏

k=m

Uk(
k
m

)
µ

) 1
mγ

√
n

d→ e
√

2N ,

where N is a standard normal rv.

In order to prove the theorem we shall first consider a more general version of (3).

Lemma 2. Under the assumptions of Theorem 2

1
m γ

√
2n

n∑
k=m

(
Uk

µ
(

k
m

) − 1

)
d→ N .

Proof of Lemma 2. Using the decomposition (8) we have

1
m γ

√
2n

n∑
k=m

(
Uk

µ
(

k
m

) − 1

)
=

1
m γ

√
2n

n∑
k=m

(
Ûk

µ
(

k
m

) − 1

)
+

1
m σ

√
2n

n∑
k=m

Rk(
k
m

) .
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By Lemma 1, applied to the rv’s m h1(Xi) for i = 1, 2, . . . we have

1
m γ

√
2n

n∑
k=m

(
Ûk

µ
(

k
m

) − 1

)
=

1
γ
√

2n

n∑
k=1

(∑k
i=1 h1(Xi)

µk
− 1

)
−

m−1∑
k=1

(∑k
i=1 h1(Xi)

µk
− 1

)
d→ N

since the second expression converges to zero a.s. as n → ∞. Therefore, in order to prove the
lemma it suffices to show

R̃n =
1

m σ
√

2n

n∑
k=m

Rk(
k
m

) P→ 0 as n → ∞.

To argue the above, it is, in turn, enough to argue that

E R̃2
n → 0 as n → ∞.

To this end let us note that, due to symmetries involved, we have

Cov

[
Rl(
l
m

) , Rk(
k
m

)
]

= V ar

[
Rk(
k
m

)
]

for l < k,

and thus

E R̃2
n = V ar R̃n =

1
m2 σ2 2n

V ar

[
n∑

k=m

Rk(
k
m

)
]

=
1

m2 σ2 2n




n∑
k=m

V ar

[
Rk(
k
m

)
]

+ 2
∑

m≤l<k≤n

Cov

[
Rk(
k
m

) , Rl(
l
m

)
]


=
1

m2 σ2 2n




n∑
k=m

V ar

[
Rk(
k
m

)
]

+ 2
∑

m≤l<k≤n

V ar

[
Rk(
k
m

)
]


=
1

m2 σ2 2n

{
n∑

k=m

(1 + 2k − 2m) V ar

[
Rk(
k
m

)
]}

→ 0

as n → ∞, in view of (9) and the property of arithmetic mean.

Proof of Theorem 2. In view of the fact that if E |h| < ∞ then
(

n
m

)−1
Un → E h = µ a.s. (see,

e.g., Serfling 1980) and Lemma 2 above, the argument used in the proof of Theorem 1 can be
virtually repeated with Sk/k replaced now by

(
k
m

)−1
Uk and γ by mγ.

Remark 3. Let us note that in view of the strong law of large numbers for U -statistics we
may extend the observation of Remark 1 to U -statistics as follows

(
n∏

k=m

Uk(
k
m

)
) 1

n

→ µ a.s.

if E |h| < ∞.
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