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Abstract
We derive concentration inequalities for functions of the empirical measure of eigenvalues
for large, random, self adjoint matrices, with not necessarily Gaussian entries. The results
presented apply in particular to non-Gaussian Wigner and Wishart matrices. We also provide
concentration bounds for non-commutative functionals of random matrices.

1 Introduction and statement of results

Consider a random N × N Hermitian matrix X with i.i.d. complex entries (except for the
symmetry constraint) satisfying a moment condition. It is well known since Wigner [30] that
the spectral measure of N−1/2X converges to the semicircle law. This observation has been
generalized to a large class of matrices, e.g. sample covariance matrices of the form XRX∗

where R is a deterministic diagonal matrix ([20]), band matrices (see [5, 17, 22]), etc. For the
Wigner case, this convergence has been supplemented by Central Limit Theorems, see [16] for
the case of Gaussian entries and [18], [24] for the general case.
Our goal in this paper is to study deviations beyond the central limit theorem regime. For
Gaussian entries, full large deviation principles have been derived in [4] (for the Wigner case)
and [15] (for Wishart matrices, that is sample covariance matrices with R = I). These papers
are based on the explicit form of the joint law of the eigenvalues, and this technique does not
seem to extend to either non-Gaussian entries or even to general sample covariance matrices.
Still in the Gaussian case, [13] derived upper bounds of large deviations type for the spectral
measure of band matrices, including certain sample covariance matrices. Her derivation is
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based on the tools in [9] who considered more general non-commutative functionals of Wigner
matrices.
We propose here a different approach to the estimation of deviations from the typical be-
haviour, which is based on the concentration inequalities developed in recent years by M.
Talagrand ([25]-[27]). While the adaptation of concentration inequalities to the setup consid-
ered here requires rather moderate technical effort, it provides a very powerful tool to study
large random matrices which seems to have been overlooked in the rich literature on this
subject. Unlike the approach of [9] and [13], there is no hope to obtain by this technique
complementary lower bounds, and the constants determining the rates are clearly not optimal.
On the other hand, the Gaussian assumption can be dispensed with, and the derivation is
much easier. It is also worthwhile to note that the concentration inequalities we obtain are
in the correct scale ; the speed of convergence of the probabilities of large deviations that we
prove is the same as in the Gaussian Wigner case. In particular, in certain cases it yields all
the tightness needed for a CLT statement.
In the rest of this section, we define precisely the model of random matrices we consider,
state concentration bounds for these models, and show how these imply exponential decay
of Wasserstein distance between the empirical spectral measure µ̂N and its mean. We also
present a technical lemma, Lemma 1.2, which allows to transfer properties of a function f :
R 7→ R to properties of the function

∫
fdµ̂N viewed as a function of the entries of the random

matrix. In Section 1.2, we combine our basic concentration estimates with known results on the
convergence of µ̂N in some classical random matrix models to deduce exponential convergence
to an N -independent limit. Section 1.3 contains concentration results for a class of non-
commutative functionals of an ensemble of independent random matrices. Finally, Section 2
is devoted to the proofs of our results.

1.1 Concentration for large inhomogeneous random matrices

Let Msa
N×N(C ) be the set of complex entries N × N self-adjoint matrices. Let f be a real

valued function on R. f can as well be seen as a function from Msa
N×N (C ) into Msa

N×N(C ) if
we set, for M ∈ Msa

N×N(C ) so that M = UDU∗ for a diagonal real matrix D and a unitary
matrix U ,

f(M) = Uf(D)U∗

where f(D) is the diagonal matrix with entries (f(D11), .., f(DNN )) and U∗ denotes the (com-
plex) adjoint of U .
Let tr denote the trace on Msa

N×N (C ) given by tr(M) =
∑N

i=1 Mii, and set trN (M) :=
N−1tr(M). We shall first consider the concentration of the real valued random variable
trN (f(XA)) for inhomogeneous random matrices given by

XA = ((XA)ij)1≤i,j≤N , XA = X∗
A, (XA)ij =

1√
N

Aijωij

with

ω := (ωR + iωI) = (ωij)1≤i,j≤N = (ωR
ij +

√−1ωI
ij)1≤i,j≤N , ωij = ω̄ji,

A = (Aij)1≤i,j≤N , Aij = Āji,

{ωij , 1 ≤ i ≤ j ≤ N} are independent complex random variables with laws {Pij , 1 ≤ i ≤ j ≤
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N}, Pij being a probability measure on C with

Pij(ωij ∈ •) =
∫

1Iu+iv∈•PR
ij (du)P I

ij(dv) ,

and A is a non-random complex matrix with entries {Aij , 1 ≤ i ≤ j ≤ N} uniformly bounded
by, say, a. When needed, we shall write XA = XA(ω). We let ΩN = {(ωR

ij , ω
I
ij)}1≤i≤j≤N , and

denote by PN the law PN = ⊗1≤i≤j≤N (PR
ij ⊗P I

ij) on ΩN , with P I
ii = δ0, and set EN to be the

corresponding expectation. The rather general form of the matrix XA is chosen such that the
concentration inequalities developed in this section allow much flexibility in their application
to classical models (see Section 1.2 for details).
We shall also use the following notations and definitions.
For a compact set K, denote by |K| its diameter, that is the maximal distance between two
points of K. For a Lipschitz function f : Rk 7→ R, we define the Lipschitz constant |f |L by

|f |L = sup
x,y

|f(x) − f(y)|
||x − y|| ,

where here and throughout, || · || denotes the Euclidean norm on Rk .
We say that a measure ν on R satisfies the logarithmic Sobolev inequality with (not necessarily
optimal) constant c if, for any differentiable function f ,∫

f2 log
f2∫
f2dν

dν ≤ 2c

∫
|f ′|2dν.

Recall that a measure ν satisfying the logarithmic Sobolev inequality possesses sub-Gaussian
tails ([19]). Recall also that the Gaussian law [12], any probability measure ν absolutely
continuous with respect to Lebesgue measure satisfying the Bobkov and Götze [6] condition
(including ν(dx) = Z−1e−|x|αdx for α ≥ 2), as well as any distribution absolutely continuous
with respect to them possessing a bounded above and below density, satisfies the logarithmic
Sobolev inequality [19, Section 7.1], [14, Propriété 4.5].
Our main result is

Theorem 1.1 a)Assume that the (Pij , i ≤ j, i, j ∈ N) are uniformly compactly supported, that
is that there exists a compact set K ⊂ C so that for any 1 ≤ i ≤ j ≤ N , Pij(Kc) = 0. Assume
f is convex and Lipschitz. Then, for any δ > δ0(N) := 8|K|√πa|f |L/N > 0,

P
N
(|trN (f(XA(ω))) − E

N [trN (f(XA))]| ≥ δ
) ≤ 4 exp

{
− N2(δ − δ0(N))2

16|K|2a2|f |2L
}

.

b) If the (P R
ij , P I

ij , 1 ≤ i ≤ j ≤ N) satisfy the logarithmic Sobolev inequality with uniform
constant c, then for any Lipschitz function f , for any δ > 0,

P
N
(|trN (f(XA(ω))) − E

N [trN (f(XA))]| ≥ δ
) ≤ 2 exp

{
− N2δ2

8ca2|f |2L
}
.

Remark: Note that the concentration results stated in Theorem 1.1 above hold also in the
case that P I

ij = δ0 for all i, j, i.e. for inhomogeneous real Wigner matrices. Studying separately
this case roughly improves the constants in the exponents by a factor 2. This comment applies
to the other theorems in this paper.
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The above theorem is based on Talagrand’s results [26], and Ledoux [19]. To obtain it, we have
to see trNf(XA) as a function of the entries {ωR

ij, ω
I
ij , 1 ≤ i ≤ j ≤ N} and prove the following

lemma, which is at the heart of our results. We note that Lemma 1.2 is rather classical (in
fact, L. Pastur has pointed out to us that part (a) is referred to as “Klein’s lemma” in [21]),
we provide a proof below for completeness.

Lemma 1.2 a) If f is a real valued convex function on R, it holds that (ωR, ωI) 7→ tr(f(XA(ω)))
is convex.
b) If f is a Lipschitz function on R, (ωR, ωI) 7→ tr(f(XA(ω))) is a Lipschitz function on RN2

with Lipschitz constant bounded by 2a|f |L. If f is differentiable, we more precisely have∑
1≤i≤j≤N

(∂ωR
ij

tr(f(XA)))2 +
∑

1≤i<j≤N

(∂ωI
ij

tr(f(XA)))2 ≤ 4a2|f |2L.

In Theorem 1.1, we proved that for any compactly supported family of measures (Pi,j , i ≤ j),
concentration was holding for convex functions, and obtained a sub-Gaussian speed for this
concentration. Next, we push the argument to obtain concentration for non convex functions,
up to a loss in the accuracy of the speed. Towards this end, let

||f ||L = ||f ||∞ + |f |L, Flip = {f : ||f ||L ≤ 1} ,

and for K ⊂ R compact, let

Flip,K := {f : supp(f) ⊂ K, f ∈ Flip} .

Theorem 1.3 Let (Pi,j , i ≤ j) be compactly supported probability measures on K ⊂⊂ R. Fix
δ1(N) = 8|K|√πa/N , S = maxz∈K |z|2 and M =

√
8Sa2.

a) Let K ∈ R be compact. Then, for any δ ≥ 4
√|K|δ1(N),

P
N
(

sup
f∈Flip,K

|trN (f(XA)) − E
N [trN (f(XA))]| ≥ δ

)
≤ 32|K|

δ
exp

(
−N2 1

16|K|2a2
[

δ2

16|K| − δ1(N)]2
)

.

(1)

b) For any δ > (128(M +
√

δ)δ1(N))2/5,

P
N
A

(
sup

f∈Flip

|trN (f(XA)) − E
N [trN (f(XA))]| ≥ δ

)

≤ 128(M +
√

δ)
δ3/2

exp
(
−N2 1

16|K|2a2
[

δ5/2

128(M +
√

δ)
− δ1(N)]2

)
.

The results above have direct implication on concentration for the empirical measure of eigen-
values with respect to the Wasserstein2 distance, given for any probability measures (µ, ν) on
R by

d(µ, ν) = sup
f∈Flip

∣∣∣ ∫ fdµ −
∫

fdν
∣∣∣.

Let µ̂N denote the empirical measure of the eigenvalues of XA, that is trN (f(XA)) =
∫

f(x)µ̂N (dx)
for every bounded Borel f . We have the following immediate corollary.

2also called Monge-Kantorovich-Rubinstein, see the historical comments in [11, Page 341–342].
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Corollary 1.4 a) With the assumptions and notations of Theorem 1.3 b), we have for δ >
(128(M +

√
δ)δ1(N))2/5,

P
N(d(µ̂N , EN µ̂N ) > δ) ≤ 128(M +

√
δ)

δ3/2
exp

(
−N2 1

16|K|2a2
[

δ5/2

128(M +
√

δ)
− δ1(N)]2

)
.

b) Assume that (Pij , 1 ≤ i, j ≤ N) satisfy the logarithmic Sobolev inequality with uniform
constant c. Then, there exist positive universal constants C1 and C2 so that for any δ > 0,

P
N
(
d(µ̂N , EN (µ̂N )) ≥ δ

) ≤ C1

δ3/2
exp

{
− C2

ca2
N2δ5

}
.

Next, we also get the following extension.

Theorem 1.5 Assume that (Pij , 1 ≤ i, j ≤ N) satisfy the logarithmic Sobolev inequality with
uniform constant c. Then, for any probability measure µ on R, for any δ > 0,

P
N
(
d(µ̂N , µ) ≥ E

N
(
d(µ̂N , µ)

)
+ δ
) ≤ exp

{
− N2

8ca2
δ2
}

.

We remark here that we restricted ourselves in this paper to functionals of the spectral measure
µ̂N of the matrix XA. However, concentration inequalities can as well be obtained to other
quantities such as the spectral radius of XA which is easily seen to be a convex Lipschitz
function of the entries too.

1.2 Concentration of the spectral measure for classical matrices

In the previous section, we obtained concentration of the marginals of the spectral measure
for inhomogeneous Wigner’s matrices for which we do not know a priori that E [trN (f(XA))]
converges. Here, we shall specialize our discussion to some classical models for which such a
convergence is already known. These include Wigner’s matrices (with non necessarily Gaussian
entries), band matrices, diluted matrices, and Wishart’s ensembles including inhomogeneous
Wishart matrices. In such models, the results of Section 1.1 will allow us to deduce from
already known L1 convergence, an exponential speed for this convergence. Hereafter, we shall
state results under the natural normalization∫

xdPij(x) = 0,

∫
|x|2dPij(x) = 1. (2)

Wigner’s matrices
First, let us concentrate on Wigner’s matrices. In this case, we have Aij = 1 for all i, j, and
we write XA = X1. Then, it is well known that if the Pij ’s satisfy the moments conditions
(see [2] for instance)

sup
ij

∫
|x|4dPij(x) < ∞, (3)

one has
lim

N→∞
E

N (trN (f)) =
∫

f(x)dσ(x)

with σ the semicircle law
σ(dx) =

1
2π

√
4 − x21|x|≤2dx. (4)
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Here, we shall restrict ourselves according to the previous section (see the assumptions of
Theorem 1.1) to entries with all moments finite. Further, Bai (see [2] for real entries and [3,
Theorem 3.6] for the complex case) proved that if FN is the distribution function FN (x) =
EN (trN (1IX1≤x)), and F is the distribution function of the semicircle law (4), then there exists
a finite constant C so that for any N ∈ N,

sup
x∈R

|FN (x) − F (x)| ≤ CN− 1
4 .

As a direct consequence, it is not hard to verify that if f is differentiable with f ′ ∈ L1(R),

δN (f) := |EN [trN (f(X1))] −
∫

f(x)dσ(x)| ≤ C|f ′|L1(R)N
− 1

4 .

Recall that it is known since Wigner [30] that for any k ∈ N, EN [trN ((X2k
1 ))] can be bounded

independently of N . For general Lipschitz functions, one can use an approximating scheme to
see that for any ε > 0, there exists a finite constant C(ε) > 0 such that

δN (f) ≤ C(ε)||f ||LN− 1
4+ε.

We can therefore deduce from Theorem 1.1 the

Corollary 1.6 a) Under the assumptions of Theorem 1.1 a) and (2), for any Lipschitz func-
tion f , for any δ > δ2(N) := 8|K|√πa|f |L/N + δN (f) > 0,

P
N

(
|trN (f(XA(ω))) −

∫
f(x)dσ(x)| ≥ δ

)
≤ 4e

− 1
16|K|2a2|f|2L

N2(δ−δ2(N))2

.

b) Under the assumptions of Theorem 1.1 b) and (2), for any Lipschitz function f , for any
δ > δN (f),

P
N

(
|trN (f(XA(ω))) −

∫
f(x)dσ(x)| ≥ δ

)
≤ 2e

− 1
8ca2|f|2L

N2(δ−δN (f))2

.

Of course, Corollary 1.4 and Theorem 1.5 also provide exponential convergence of Wasser-
stein’s distance between the spectral measure of Wigner’s matrices and the semicircle law. We
emphasize that they apply both for real and complex Wigner matrices.
Now we turn to more interesting consequences of the possible inhomogeneity in the matrices
studied in Section 1.1 and first to the most natural
Band matrices Let us recall that band matrices are matrices of type XA with Ai,j null for
|i−j| big enough. More generally, one can consider the sometimes called generalized deformed
Wigner ensemble described by a sequence XAN ∈ Msa

N×N(C ), N ∈ N, so that there exists a
non random bounded continuous function φ so that

lim
N→∞

sup
u∈[0,1]

∫ 1

0

du|
∑
i,j

AN
ij 1It∈[i/N,i+1/N [1Iu∈[j/N,j+1/N [ − φ(t, u)| = 0.

We denote by Xφ the matrix XA for such a choice of A. It was observed since [7, 10, 17, 22, 13]
under various hypotheses that the empirical measure of Xφ converges when the (Pij , 1 ≤ i ≤
j ≤ N) satisfy (2) and have some uniformly bounded moments. Let us recall the result from
[17, section 8.3] for real symmetric Xφ (see [5, 22, 13] for Hermitian matrices) which as far



CONCENTRATION OF THE SPECTRAL
MEASURE FOR LARGE MATRICES 125

as we know have the weakest hypotheses. Assuming that supi,j Pi,j [|x|3] is finite, they found
that if kφ is the unique analytic function on [0, 1]× C \R, so that

kφ(x, z) = (z − Kφ(kφ(., z))(x))−1

where Kφ is the operator in L2([0, 1]) with kernel φ, for any z ∈ C \ R,

lim
N→∞

E
N [trN

(
(z − Xφ)−1

)
] = mφ(z) :=

∫ 1

0

kφ(x, z)dx. (5)

Let σφ be the unique probability measure with Stieljes transform mφ. Let us recall how the
convergence of EN (trN (f(Xφ))) for Lipschitz functions f can be deduced from the convergence
of the Stieljes transform. The main observation is that if m is the Stieljes transform of a
probability measure µ, m(z) =

∫
(z−x)−1dµ(x), z ∈ C \R, then, with z = u+ iv and =(z) = v

denoting the imaginary part of z,

π−1=(m(z)) =
∫ +∞

−∞

v

π ((x − u)2 + v2)
µ(dx) =

dPv ∗ µ

du
(u) (6)

with Pv the Cauchy law with parameter v 6= 0. Thus, for f ∈ Flip ∩ L1(R),

|EN [trN (f(Xφ))] −
∫

fdσφ|

≤ |
∫

E
N [trN (f(Xφ + u))]Pv(du) −

∫
fdPv ∗ σφ| + 4||f ||L

∫
(|u| ∧ 1)Pv(du)

= π−1|
∫

f(u)= (EN [trN ((u + iv − Xφ)−1)] − mφ(u + iv)
)
du| + 4||f ||L

∫
(|u| ∧ 1)Pv(du)(7)

It is now clear from (5) that the first term in the right hand side of (7) goes to zero as N goes
to infinity by dominated convergence for v 6= 0 and then that the second is as small as one
wishes when v goes to zero. Hence, using the a-priori moment bounds on Xφ, for any f ∈ Flip,

lim
N→∞

E
N [trN (f(Xφ))] =

∫
fdσφ.

Further, this convergence can be seen to be uniform over Flip by considering more carefully
the first integral in the right hand side of (7).
As a conclusion, for band-matrices, not only Theorems 1.1, 1.3, 1.5 and Corollary 1.4 hold but
actually one has also the convergence of EN [trNf(XA)] (for f ∈ Flip) and of EN µ̂N .
In the same spirit, one can consider
Diluted random matrices Diluted random matrices appear in diluted models of spin glasses.
They are described as matrices XA with A now random with {0, 1}-valued entries. Assume
for simplicity that {Aij , 1 ≤ i ≤ j ≤ N} are i.i.d with law Q = pδ0 + (1 − p)δ1 ( p eventually
depending on N ) and denote QN = ⊗1≤i≤j≤NQ with EN the corresponding expectation.
Convergence of the empirical measure of XA for such random matrices A is discussed in [17],
p.193-197. We here want to stress the following concentration result

Corollary 1.7 Assume that the (Pij , i ≤ j, i, j ∈ N) are uniformly compactly supported, that
is that there exists a compact set K ⊂ C so that for any 1 ≤ i ≤ j ≤ N , Pij(Kc) = 0. Set
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L = max{supx∈K x2, |K|2}. Assume f is convex and Lipschitz. Then, for any δ > δ3(N) :=
4(|K| + supx∈K |x|)√π|f |L/N > 0,

QN ⊗ P
N
(|trN (f(XA(ω))) − EN

E
N [trN (f(XA))]| ≥ δ

) ≤ 8e
− 1

64L|f|2L
N2(δ−δ3(N))2

.

Concentration for the Wasserstein distance can be derived as in Corollary 1.4.
We now turn to the well known
Wishart’s matrices Let us recall that if Y is a N × M matrix, N ≤ M , with independent
entries ωkl = (ωR

kl +iωI
kl) of law Pkl, Z = YY∗ is a so-called Wishart’s matrix. We let through-

out PN,M = ⊗1≤k≤N,1≤l≤MPkl. For the sake of completeness, let us consider inhomogeneous
Wishart matrices given, for a diagonal real matrix R = (λ1, ..λM ) with λi ≥ 0 by Z = YRY∗.
To deduce the concentration of the spectral measure for such matrices from Theorem 1.1, note
that if we consider

Aij = 0 for 1 ≤ i ≤ N, 1 ≤ j ≤ N

Aij = 0 for M + 1 ≤ i ≤ M + N, M + 1 ≤ j ≤ N + M

Aij =
√

λi−M for N + 1 ≤ i ≤ M + N, 1 ≤ j ≤ N

Aij =
√

λj−M for 1 ≤ i ≤ N, N + 1 ≤ j ≤ N + M

then A = A∗ and if we consider XA ∈ Msa
(N+M)×(N+M)(C ) constructed as in the previous

section, XA can be written as (
0 YR

1
2

R
1
2 Y∗ 0

)
.

Now, it is straightforward to see that (XA)2 is equal to(
YRY∗ 0

0 R
1
2 Y∗YR

1
2

)
In particular, for any measurable function f ,

tr(f((XA)2)) = 2tr(f(YRY∗)) + (M − N)f(0).

It is therefore a direct consequence of Theorem 1.1 that

Corollary 1.8 With (Ykl, 1 ≤ k ≤ N, 1 ≤ l ≤ M) independent random variables, and with
P

N,M as above, we let R be a non negative diagonal matrix with finite spectral radius ρ. Set
Z = YRY∗. Then,
a) If the (Pkl, 1 ≤ k ≤ N, 1 ≤ l ≤ M) are supported in a compact set K, for any function
f so that g(x) = f(x2) is convex and has finite Lipschitz norm |g|L ≡ |||f |||L, for any δ >
δ0(N + M) := 4|K|√πρ|||f |||L/(N + M),

P
N,M

(
|trN (f(Z)) − E

N,M (trN (f(Z)))| > δ
M + N

N

)
≤ 4e

− 1
4|K|2ρ|||f|||2L

(δ−δ0(N+M))2(N+M)2

.

b) If the (Pkl, 1 ≤ k ≤ N, 1 ≤ l ≤ M) satisfy the logarithmic Sobolev inequality with uniformly
bounded constant c, the above result holds for any Lipschitz functions g(x) = f(x2): for any
δ > 0,

P
N,M

(
|trNf(Z)) − E

N,M (trNf(Z)))| > δ
M + N

N

)
≤ 2e

− 1
2cρ|||f|||2L

δ2(N+M)2

.
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The proof is in fact straightforward since, with the above remarks, one should see f(Z) as
g(XA) = f((XA)2) and thus control the Lipschitz norm of g and the convexity of g.

Remarks

1. The interest in Corollary 1.8 is in the case where N and M are large and N/M remains
bounded and bounded away from zero.

2. For the convergence of the expected empirical measure of Wishart matrices, see [20],
[23], and for rates, see [2].

3. Exponential convergence for the Wasserstein distance follows from our results by noting
that the approximating set of functions in the proof of Theorem 1.3 below used convex
increasing functions.

4. The results presented above extend to the case where R is self-adjoint non negative but
not diagonal. Indeed, the key Lemma 1.2 generalizes as follows. Let Y, Y ′ denote N ×M
matrices with complex entries, with ||Y − Y ′||2 =

∑
1≤k≤N,1≤l≤M |Ykl − Y ′

kl|2, writing
R = UR̃U∗ with U unitary, one has for f ∈ Flip that

trf(Y RY ∗) = trf(Y UR̃U∗Y ∗) = trf(U∗Y UR̃U∗Y ∗U)

Hence, with ρ denoting the spectral radius of R, Lemma 1.2.b) and the observations
above Corollary 1.8 imply

|trf(Y RY ∗) − trf(Y ′R(Y ′)∗)| ≤
√

ρ

2
||U∗Y U − U∗Y ′U || =

√
ρ

2
||Y − Y ′|| .

Hence, viewed as a function of the entries of Y , f(Y RY ∗) is Lipschitz of constant
√

ρ/2.
A similar argument applies to the convexity considerations.

1.3 Concentration for non-commutative functionals

In this section, we present concentration inequalities for non-commutative functionals encoun-
tered in free probability theory. Let (X1

A1
, . . . ,Xn

An
) be independent, N × N self adjoint

inhomogeneous random matrices as in Section 1.1, with

(Xp
Ap

)ij =
1√
N

(ωp)ij(Ap)ij ,

with the Ap self adjoint and the entries (ωp)ij = (ωp)R
ij +

√−1(ωp)I
ij of law P p

ij such that

P p
ij((ω

p)ij ∈ •) =
∫

1Iu+iv∈•P
p,R
ij (du)P p,I

ij (dv) .

We let PN,n = ⊗1≤i≤j≤N,1≤p≤n(P p,R
ij ⊗P p,I

ij ), with respective expectation denoted by EN,n . In
free probability theory, the law of (X1

A1
, . . . ,Xn

An
) is determined by the family tr[Q(X1

A1
, . . . ,Xn

An
)]

where Q are all possible (non-commutative) polynomials in n variables. In the particular case
that A1 = . . . = An = I and P p

ij(z) = 0, P p,R
ij (x2) = P p,I

ij (x2) = 1, the law of (X1
A1

, . . . ,Xn
An

)
is known to converge to the law of n free semicircular variables. When P p

ij are Gaussian, a
central limit theorem was obtained in [8]. In order to state a large deviations upper bound
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(still in the Gaussian case), one cannot look at polynomials because these do not possess
good enough exponential moments. Instead, in their study of large deviations upper bounds,
T. Cabanal-Duvillard and one of the authors restricted themselves in [9] to the (separating)
family of analytic, bounded functionals in the complex vector field generated by the family

FNC =
{
F (X1, . . . , Xn) =

k∏
l=1

(zl −
n∑

r=1

αl
rXr)−1 , zl ∈ C \ R, αl

r ∈ R, k ∈ N

}
.

However, the machinery developed in [9] is restricted to Gaussian entries. Here, with a less
sharp bound, we provide the following concentration inequality.

Theorem 1.9 Assume the laws P p,R
ij , P p,I

ij satisfy the logarithmic Sobolev inequality with uni-
form constant c. Then, for any F ∈ FNC, and any δ > 0,

P
N,n(|trNF (X1

A1
, . . . ,Xp

Ap
) − E

N,ntrNF (X1
A1

, . . . ,Xp
Ap

)| > δ) ≤ 2 exp
{
− δ2N2

16ca2||F ||L
}

,

where, if F (X1, . . . , Xn) =
∏k

l=1(zl −
∑n

r=1 αl
rXr)−1,

||F ||2L =

[
n∑

p=1

(
k∑

l=1

|αp
l |
)(

k∑
l=1

|αp
l | · |=(zl)|−2

)]
k∏

l=1

|=(zl)|−2 .

2 Proofs

Let us first assume Lemma 1.2 and give the
Proof of Theorem 1.1
a) For a real valued random variable v, denote by Mv the median of v, i.e.

Mv = sup{t : P (v ≤ t) ≤ 1/2} .

Following Talagrand (see [25]–[28] and Theorem 6.6 in [27]), for any F : RN2 → R Lipschitz
with Lipschitz constant bounded by one, if PN is supported on [−1, 1]N

2
and F is a convex

function of (ωR, ωI), for any δ > 0,

P
N (|F − MF | ≥ δ) ≤ 4e−

δ2
16 .

Hence, taking F (ωR, ωI) = tr(f(XA(ω))), F is convex and Lipschitz with Lipschitz norm
bounded by 2a|f |L according to Lemma 1.2, and one gets by homothety that, for any PN as
in the statement of the theorem,

P
N (|F − MF | ≥ δ) ≤ 4e

− δ2

16|K|2a2|f|2L . (8)

In particular,

|EN trNf − MF

N
| ≤ E

N |trNf − MF

N
| ≤ 4

∫ ∞

0

e
− δ2

16|K|2a2|f|2L dδ = δ0(N) .

Substituting back into (8) yields the first part of Theorem 1.1.
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b). In case where the (PR
ij , P I

ij , 1 ≤ i ≤ j ≤ N) satisfy a log-Sobolev inequality with uniformly
bounded constants c, by the product property of the logarithmic Sobolev inequality, for any
F : RN2 → R differentiable, we have∫

F 2 log
F 2∫

F 2dPN
dPN ≤ 2c

∫
||∇F ||2dPN ,

where
||∇F ||2 =

∑
1≤i≤j≤N

(∂ωR
ij

F (ω))2 +
∑

1≤i<j≤N

(∂ωI
ij

F (ω))2 .

Therefore, we can follow Herbst’s argument (see Ledoux [19], proposition 2.3) to see that

P
N
(|F − E

N (F )| > δ
) ≤ 2e

− δ2

2ca2||(||∇F ||)||2∞ .

Taking F (ω) = tr(f(XA(ω))) gives, with Lemma 1.2.b),

P
N
(|tr(f(XA)) − E

N (tr(f(XA)))| > δ
) ≤ 2e

− δ2

8ca2||f′||2∞

for any differentiable functions f . The generalization to Lipschitz functions is obtained by
approximations, the set of differentiable functions being dense in the set of Lipschitz functions
for the Lipschitz norm.

�

Very similarly, we can give the
Proof of Corollary 1.7 : Indeed, again assuming Lemma 1.2, we see that if f is convex Lip-
schitz, (Aij)1≤i≤j≤N → EN [trN (f(XA))] is convex Lipschitz with Lipschitz constant bounded
by 2 supx∈K |x||f |L. Hence, applying Talagrand’s result (8) twice, we obtain

P
N

(
|trN (f(XA)) − E

N (trN (f(XA)))| ≥ δ +
8|K|√π|f |L

N

)
≤ 4e

− 1
16|K|2|f|2L

N2δ2

(9)

and

QN

(
|EN (trN (f(XA))) − ENEN (trN (f(XA)))| ≥ δ +

8 supx∈K |x|√π|f |L
N

)
≤ 4 exp

{
− 1

16 supx∈K |x|2|f |2L
N2δ2

}
.

(10)

Combining (9) and (10) give Corollary 1.7.
�

Thus, let us prove the key Lemma 1.2.
Proof of Lemma 1.2.a) Note that for any Y, X ∈ Msa

N×N (C ),

f(Y ) − f(X) =
∫ 1

0

Df(X + η(Y − X))](Y − X)dη

where
Df(X)](Y ) = lim

ε↓0
ε−1(F (X + εY ) − F (X)).
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For polynomial functions f , the non-commutative derivation D can easily be computed and
one finds in particular that for any p ∈ N,

Y p − Xp =
∫ 1

0

(
p−1∑
k=0

(X + η(Y − X))k(Y − X)(X + η(Y − X))p−k−1

)
dη. (11)

For such a polynomial function, and taking the trace, one deduces that

tr(Xp) − tr((
X + Y

2
)p) =

∫ 1

0

ptr
(

(
X + Y

2
+ η

X − Y

2
)p−1 X − Y

2

)
dη , (12)

tr(Y p) − tr((
X + Y

2
)p) =

∫ 1

0

ptr
(

(
X + Y

2
− η

X − Y

2
)p−1 Y − X

2

)
dη . (13)

Hence, by further use of (11), (12) and (13) yield

∆ ≡ tr(Xp) + tr(Y p) − 2tr((
X + Y

2
)p)

=
p

2

p−2∑
k=0

∫ 1

0

∫ 1

0

ηdηdθtr
(
(X − Y )Zk

η,θ(X − Y )Zp−2−k
η,θ

)
(14)

with
Zη,θ ≡ X + Y

2
− η

X − Y

2
+ ηθ(X − Y ).

Next, for fixed η, θ ∈ [0, 1]2, X, Y ∈ Msa
N×N (C ), Zη,θ ∈ Msa

N×N (C ), and we can find a unitary
matrix Uη,θ and a diagonal matrix Dη,θ with real diagonal elements (λ1

η,θ, .., λ
N
η,θ) so that

Zη,θ = Uη,θDη,θU
∗
η,θ. Let Wη,θ = U∗

η,θ(X − Y )Uη,θ. Then, the right hand side of (14) is given
by

∆ =
p

2

p−2∑
k=0

∫ 1

0

∫ 1

0

ηdηdθtr
(
Wη,θD

k
η,θWη,θD

p−2−k
η,θ

)

=
p

2

∫ 1

0

∫ 1

0

ηdηdθ

p−2∑
k=0

∑
1≤i,j≤N

(λi
η,θ)

k(λj
η,θ)

p−2−k|W ij
η,θ|2

 . (15)

But

p−2∑
k=0

(λi
η,θ)

k(λj
η,θ)

p−2−k =
(λi

η,θ)
p−1 − (λj

η,θ)
p−1

λi
η,θ − λj

η,θ

= (p − 1)
∫ 1

0

(αλj
η,θ + (1 − α)λi

η,θ)
p−2dα.

Hence, substituting in (15) gives,

∆ =
1
2

∑
1≤i,j≤N

∫ 1

0

∫ 1

0

∫ 1

0

dαηdηdθ|W ij
η,θ |2f ′′(αλj

η,θ + (1 − α)λi
η,θ) (16)
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for the polynomial function f(x) = xp. Now, with (X, Y ) fixed, the eigenvalues (λ1
η,θ, .., λ

N
η,θ)

and the entries of Wη,θ are uniformly bounded. Hence, by Runge’s theorem, we can deduce
by approximation that (16) holds for any twice continuously differentiable function f . As a
consequence, for any such convex function, f ′′ ≥ 0 and

∆ =
1
2
tr(f(X)) +

1
2
tr(f(Y )) − tr(f(

X + Y

2
)) ≥ 0.

The generalization to arbitrary convex functions is then obtained by approximations. �

Proof of Lemma 1.2.b) Let us first consider a bounded continuously differentiable function
f and show that ω → tr(f(XA(ω))) is differentiable and bound the Euclidean norm of its
gradient. More precisely, we shall prove that∑

1≤i≤j≤N

(
∂ωR

ij
trf(XA(ω))

)2

+
∑

1≤i<j≤N

(
∂ωI

ij
trf(XA(ω))

)2

≤ 4a2|f |2L (17)

It is not hard to verify that

∂ωR
ij

trf(XA) =
1√
N

tr(f ′(XA)∆ij) ∈ R (18)

with (∆ij)kl = akl if (kl) = (ij) or (ji) and (∆ij)kl = 0 otherwise. In fact, this is a consequence
of (11) for polynomial functions and can then be obtained for continuously differentiable
functions by approximations. In other words, (18) shows that

∂ωR
ij

trf(XA) =


1√
N

[aijf
′(XA)ij + ajif

′(XA)ji] , if i 6= j

aii√
N

f ′(XA)ii , if i = j .

Hence, ∑
1≤i≤j≤N

(
∂ωR

ij
trf(XA)

)2

≤ 2
N

∑
1≤i,j≤N

|aijf
′(XA)ij |2

≤ 2a2

N

∑
1≤i,j≤N

|f ′(XA)ij |2

= 2a2trN (f ′(XA)f ′(XA)∗) .

(19)

But if (λ1, .., λN ) ∈ RN denotes the eigenvalues of XA,

trN (f ′(XA)f ′(XA)∗) =
1
N

N∑
i=1

f ′(λi)2 ≤ ||f ′||2∞

so that with (19), we conclude∑
1≤i≤j≤N

(
∂ωR

ij
trf(XA)

)2

≤ 2a2||f ′||2∞.

The same argument applies for the derivatives with respect to ωI
ij , and we find

|tr(f(XA(ω))) − tr(f(XA(ω′)))| ≤ 2a|f |L||ω − ω′||
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according to integration by parts formula and Cauchy-Schwartz ’s inequality. Note that this
last result for differentiable functions extends to Lipschitz functions by approximations. �

Proof of Theorem 1.3 a) Without loss of generality, we assume that min{x : x ∈ K} = 0. We
will approximate a function f ∈ Flip,K by a combination of a finite number of convex functions
from Flip. Towards this end, fix ∆ = δ/4, and define the function

g(x) =


0, x ≤ 0
x, 0 ≤ x ≤ ∆
∆, x ≥ ∆ .

We note that while g(·) is not convex, it is given as the sum of two convex functions in Flip.
Define recursively f∆(x) = 0 for x ≤ 0 and

f∆(x) =
dx/∆e∑

i=0

(21If((i+1)∆)>f∆(i∆) − 1)g(x − i∆) .

Note that ||f − f∆|| < ∆, and at most 2|K|/∆ different convex functions {hk} from Flip were
used in this approximation, regardless of the particular function f ∈ Flip,K. Thus,

P
N

(
sup

f∈Flip,K

|tr(f(XA)) − E
N (tr(f(XA)))| > δ

)

≤ 2|K|
∆

sup
k

P
N

(
|tr(hk(XA)) − E

N (tr(hk(XA)))| >
∆(δ − 2∆)

2|K|
)

≤ 8|K|
∆

exp
(
−N2 1

16|K|2a2
[(

∆
2|K| (δ − 2∆) − δ1(N))+]2

)
,

where we have used Theorem 1.1 in the last inequality. Substituting ∆ = δ/4 yields the
conclusion.
b) Note that since the Pi,j ’s are compactly supported in K, we have

trN (X2
A) = N−2

∑
i,j

|Aijωij |2 ≤ Sa2.

Thus, for any M1 > 0, trN (1I|XA|>M1) ≤ Sa2/M2
1 . Let now

fM1(x) =


f(x), |x| < M1

f(M1) − sign(f(M1))(x − M1), M1 < x < M1 + |f(M1)|
f(−M1) + sign(f(−M1))(x + M1), −M1 − |f(−M1)| < x < −M1

0, otherwise .

Then,

|trNf(XA) − E
N trNf(XA)| ≤ |trNfM1(XA) − E

N trNfM1(XA)| + 4
Sa2

M2
1

.

Take now M1 = M/
√

δ. Then, using that 4Sa2/M2 ≤ 1/2, and setting K = [−(M1 +1), (M1+
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1)], one sees that fM1 ∈ Flip,K and

P
N( sup

f∈Flip

|trNf(XA) − E
N trNf(XA)| > δ)

≤ P
N( sup

g∈Flip,K
|trNg(XA) − E

N trNg(XA)| > δ/2)

≤ 128(M +
√

δ)
δ3/2

exp
(
−N2 1

16|K|2a2
[

δ5/2

128(M +
√

δ)
− δ1(N)]2

)
,

where part a) of the theorem was used in the last inequality. �

Proof of Corollary 1.4 The first part is immediate from Theorem 1.3. The second part follows
from Theorem 1.1 using the same approximation by a fixed basis of Lipschitz functions as in
Theorem 1.3. �

Proof of Theorem 1.5 This type of result is rather common in this field and comes from the
great generality of concentration inequalities. In fact,

F (ω) = d(trN , µ)(ω) = sup
f∈Flip

|trN (f(XA(ω))) −
∫

fdµ|

can be seen to be Lipschitz since for any ω, ω′ ∈ R
N(N+1)

2 ,

F (ω) = sup
f :||f ||L≤1

|trN (f(XA(ω))) − trN (f(XA(ω′))) + trN (f(XA(ω′))) −
∫

fdµ|

≤ F (ω′) + sup
f :||f ||L≤1

|trN (f(XA(ω))) − trN (f(XA(ω′)))|

≤ F (ω′) + 2a||ω − ω′||

where we have used in the last line lemma 1.2.b). By symmetry, we deduce that F is Lipschitz.
Since Herbst’s argument used in the proof of Theorem 1.1 extends to Lipschitz functions by
density, it immediately gives Theorem 1.5. �

Proof of Theorem 1.9 : As in the proof of Theorem 1.1.b), we only need to show that, if
F (X1, . . . , Xn) =

∏k
l=1(zl −

∑n
r=1 αl

rXr)−1, G : (RN2
)n 7→ C given by

G(ω1, .., ωn) := trN

(
F (X1

A1
(ω1), ..,Xn

An
(ωn))

)
is Lipschitz and bound its Lipschitz norm. In fact, G is differentiable and for any 1 ≤ i ≤ j ≤
N , 1 ≤ p ≤ n,

∂ωp,R
ij

G(ω1, .., ωn) =
k∑

l=1

αl
ptrN

(
l∏

m=1

(zm −
n∑

r=1

αm
r Xr)−1∆ij

k∏
m=l

(zm −
n∑

r=1

αm
r Xr)−1

)

with (∆ij)kl = ap
kl if (kl) = (ij) or (ji) and (∆ij)kl = 0 otherwise. Thus, as in the proof of
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Lemma 1.2.b), we deduce by Jensen’s inequality∑
1≤i≤j≤N

∣∣∣∂ωp,R
ij

G(ω1, .., ωn)
∣∣∣2

≤ 2a2

(
k∑

l=1

|αl
p|
)

k∑
l=1

|αl
p|trN

∣∣∣∣∣
k∏

m=l

(zm −
n∑

r=1

αm
r Xr)−1

l∏
m=1

(zm −
n∑

r=1

αm
r Xr)−1

∣∣∣∣∣
2

where for any N ×N matrix M , |M |2 = MM∗. Noticing that the operator norm of (z−M)−1

is bounded by =(z)−1 for any self-adjoint matrix M , we conclude

∑
1≤i≤j≤N

∣∣∣∂ωp,R
ij

G(ω1, .., ωn)
∣∣∣2 ≤ 2a2

(
k∑

l=1

|αl
p|
)

k∑
l=1

|αl
p|

k∏
m=1

|=(zm)|−2|=(zl)|−2

By similar computations for the derivations with respect to the ωp,I
ij and summing over p, we

complete the proof of Theorem 1.9. �
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