ELECTRONIC COMMUNICATIONS in PROBABILITY

Some duality results for equivalence couplings and total variation

Luca Pratelli^{*} Pietro Rigo[†]

Abstract

Let (Ω, \mathcal{F}) be a measurable space and $E \subset \Omega \times \Omega$. Suppose that $E \in \mathcal{F} \otimes \mathcal{F}$ and the relation on Ω defined as $x \sim y \Leftrightarrow (x, y) \in E$ is reflexive, symmetric and transitive. Following [7], say that E is strongly dualizable if there is a sub- σ -field $\mathcal{G} \subset \mathcal{F}$ such that

$$\min_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \max_{A \in \mathcal{G}} |\mu(A) - \nu(A)|$$

for all probabilities μ and ν on \mathcal{F} . This paper investigates strong duality. Essentially, it is shown that E is strongly dualizable provided some mild modifications are admitted. Let \mathcal{G}_0 be the E-invariant sub- σ -field of \mathcal{F} . One result is that, for all probabilities μ and ν on \mathcal{F} , there is a probability ν_0 on \mathcal{F} such that

 $u_0 =
u$ on \mathcal{G}_0 and $\min_{P \in \Gamma(\mu, \nu_0)} (1 - P(E)) = \max_{A \in \mathcal{G}_0} |\mu(A) - \nu(A)|.$

In the other results, (Ω, \mathcal{F}) is a standard Borel space and the min over $\Gamma(\mu, \nu)$ is replaced by the inf over $\Gamma(\mu, \nu)$ in the definition of strong duality. Then, E is strongly dualizable provided \mathcal{G} is allowed to depend on (μ, ν) or it is taken to be the universally measurable version of the E-invariant σ -field.

Keywords: duality; equivalence relation; finitely additive probability measure; optimal transport; total variation.

MSC2020 subject classifications: 60A10; 60E05; 28A35; 49N15; 49Q22. Submitted to ECP on November 14, 2023, final version accepted on March 10, 2024.

1 Introduction

Throughout, (Ω, \mathcal{F}) is a measurable space, $\mathcal{P}(\mathcal{F})$ the collection of all probability measures on \mathcal{F} , and $E \subset \Omega \times \Omega$ a measurable equivalence relation. This means that $E \in \mathcal{F} \otimes \mathcal{F}$ and the relation on Ω defined as

$$x \sim y \quad \Leftrightarrow \quad (x,y) \in E$$

is reflexive, symmetric and transitive.

The following notion of duality has been recently introduced by Jaffe [7]. Given a sub- σ -field $\mathcal{G} \subset \mathcal{F}$, the pair (E, \mathcal{G}) is said to satisfy *strong duality* if

$$\min_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}} \quad \text{ for all } \mu, \nu \in \mathcal{P}(\mathcal{F}).$$

^{*}Accademia Navale di Livorno, Italy. E-mail: Luca_pratelli@marina.difesa.it

[†]Università di Bologna, Italy. E-mail: pietro.rigo@unibo.it

Here, as usual, $\Gamma(\mu, \nu)$ is the set of all probability measures on $\mathcal{F} \otimes \mathcal{F}$ with marginals μ and ν and the notation "min" asserts that the infimum is actually achieved. Moreover,

$$\|\mu - \nu\|_{\mathcal{G}} = \sup_{A \in \mathcal{G}} |\mu(A) - \nu(A)|$$

is the total variation between μ and ν on \mathcal{G} .

Obviously, strong duality is strictly connected to mass transportation and Kantorovich duality; see Section 2. In addition, strong duality is intriguing from the foundational point of view and plays a role in some probabilistic frameworks, including stochastic calculus, point processes and random sequence simulation; see Section 2 of [7].

Say that E is strongly dualizable if (E, \mathcal{G}) satisfies strong duality for some sub- σ -field $\mathcal{G} \subset \mathcal{F}$. Various conditions for E to be strongly dualizable are given in [7] (see e.g. Theorems 3.13 and 3.14) but no measurable equivalence relation which fails to be strongly dualizable is known to date. This suggests the *conjecture* that, under mild conditions on (Ω, \mathcal{F}) (say (Ω, \mathcal{F}) is a standard Borel space), every measurable equivalence relation is strongly dualizable.

This paper focus on strong duality and includes three results. In a sense, these results state that E is strongly dualizable as soon as a few mild modifications are admitted. Let

$$\mathcal{G}_0 = \left\{ A \in \mathcal{F} : 1_A(x) = 1_A(y) \text{ for all } (x, y) \in E \right\}$$

be the *E*-invariant sub- σ -field of \mathcal{F} . It is quite intuitive that \mathcal{G}_0 plays a role as regards strong duality. In fact, *E* is strongly dualizable if and only if (E, \mathcal{G}_0) satisfies strong duality; see [7, Proposition 3.15]. Our first result is that, for all $\mu, \nu \in \mathcal{P}(\mathcal{F})$, there is $\nu_0 \in \mathcal{P}(\mathcal{F})$ satisfying

$$\nu_0 = \nu \text{ on } \mathcal{G}_0 \quad \text{and} \quad \min_{P \in \Gamma(\mu, \nu_0)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_0}.$$

Roughly speaking, the above condition means that strong duality is always true up to changing one between μ and ν out of \mathcal{G}_0 . This is quite reasonable, after all, for $\|\mu - \nu\|_{\mathcal{G}_0}$ only involves the restrictions of μ and ν on \mathcal{G}_0 .

Next, suppose (Ω, \mathcal{F}) is a standard Borel space and denote by $\widehat{\mathcal{F}}$ the collection of those subsets of Ω which are universally measurable with respect to \mathcal{F} ; see Section 2. Define

$$\mathcal{G}_1 = \{ A \in \widehat{\mathcal{F}} : 1_A(x) = 1_A(y) \text{ for all } (x, y) \in E \}.$$

This time, \mathcal{G}_1 is not a sub- σ -field of \mathcal{F} . However, by our second result, one obtains

$$\inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_1} \quad \text{for all } \mu, \nu \in \mathcal{P}(\mathcal{F}).$$
(1.1)

In addition, the \inf is achieved if P is allowed to be finitely additive. Precisely,

$$\min_{P \in M(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_1} \quad \text{for all } \mu, \nu \in \mathcal{P}(\mathcal{F})$$

where $M(\mu, \nu)$ is the collection of finitely additive probabilities on $\mathcal{F} \otimes \mathcal{F}$ with marginals μ and ν .

To state the third result, for each $B \subset \Omega$, define

$$\mathcal{G}_B = \{ A \in \mathcal{F} : 1_A(x) = 1_A(y) \text{ for all } (x, y) \in E \cap (B \times B) \}.$$

Then, for all $\mu, \nu \in \mathcal{P}(\mathcal{F})$, there is a set $B \in \mathcal{F}$ such that

$$\mu(B)=\nu(B)=1 \quad \text{and} \quad \inf_{P\in \Gamma(\mu,\nu)}(1-P(E))=\|\mu-\nu\|_{\mathcal{G}_B}.$$

ECP 29 (2024), paper 17.

https://www.imstat.org/ecp

If compared with (1.1), the latter result has the advantage that \mathcal{G}_B is a sub- σ -field of \mathcal{F} but the disadvantage that \mathcal{G}_B is not universal, for it depends on the pair (μ, ν) . Note also that $\mu(B) = \nu(B) = 1$ and $E \cap (B \times B)$ is a measurable equivalence relation on B. Therefore, for fixed (μ, ν) , one can replace Ω with B and E with $E \cap (B \times B)$. After doing this, everything works as regards the total variation side of strong duality.

A last remark is in order. For fixed μ , $\nu \in \mathcal{P}(\mathcal{F})$, let us call equivalence coupling problem the minimization of 1 - P(E) over $P \in \Gamma(\mu, \nu)$ and total variation problem the maximization of $|\mu(A) - \nu(A)|$ over $A \in \mathcal{G}$. In this paper, since E is given, the equivalence coupling problem is regarded as primal while the total variation problem is viewed as *dual*. But of course this perspective can be reverted. Indeed, [7] contains results in which the total variation problem is primal and the equivalence coupling problem is dual.

2 Preliminaries

In this section, we introduce some further notation and recall a few known facts.

Let (S, \mathcal{E}) be a measurable space. Then, $\mathcal{P}(\mathcal{E})$ denotes the set of probability measures on \mathcal{E} and $b\mathcal{E}$ the set of bounded \mathcal{E} -measurable functions $f: S \to \mathbb{R}$. For each $\mu \in \mathcal{P}(\mathcal{E})$, we write

$$u(f) = \int f \, d\mu$$
 whenever $f \in b\mathcal{E}$,

and we denote by μ^* and μ_* the outer and inner measures corresponding to μ . Precisely, μ^* and μ_* are defined as

$$\mu^*(A) = \inf\{\mu(B) : B \in \mathcal{E}, B \supset A\} \text{ and } \mu_*(A) = \sup\{\mu(B) : B \in \mathcal{E}, B \subset A\}$$

for all $A \subset S$. Moreover, we let

$$\widehat{\mathcal{E}} = \bigcap_{\mu \in \mathcal{P}(\mathcal{E})} \overline{\mathcal{E}}^{\mu}$$

where $\overline{\mathcal{E}}^{\mu}$ is the completion of \mathcal{E} with respect to μ . The elements of $\widehat{\mathcal{E}}$ are usually called *universally measurable* with respect to \mathcal{E} . With a slight abuse of notation, for each $\mu \in \mathcal{P}(\mathcal{E})$, the unique extension of μ to $\widehat{\mathcal{E}}$ is still denoted by μ .

If T is any topological space, $\mathcal{B}(T)$ denotes the Borel σ -field. We say that T is *Polish* if its topology is induced by a distance d such that (T, d) is a complete separable metric space. If T is Polish, each analytic subset $A \subset T$ is universally measurable with respect to $\mathcal{B}(T)$, that is, $A \in \widehat{\mathcal{B}(T)}$.

The measurable space (S, \mathcal{E}) is a standard Borel space if $\mathcal{E} = \mathcal{B}(S)$ for some Polish topology on S.

A probability $\mu \in \mathcal{P}(\mathcal{E})$ is *perfect* if, for any \mathcal{E} -measurable function $f: S \to \mathbb{R}$, there is a Borel set $B \in \mathcal{B}(\mathbb{R})$ such that $B \subset f(S)$ and $\mu(f \in B) = 1$. In a sense, perfectness is a non-topological version of the notion of tightness. In fact, if S is separable metric and $\mathcal{E} = \mathcal{B}(S)$, then μ is perfect if and only if it is tight. In particular, each element of $\mathcal{P}(\mathcal{E})$ is perfect whenever (S, \mathcal{E}) is a standard Borel space. We refer to [13] for more on perfect probability measures.

As regards duality theory in mass transportation, we just mention a result by Ramachandran and Rüschendorf [14, Theorem 4]. For more information, the interested reader is referred to [2], [3], [9], [12], [16], [19] and references therein. Given $\mu, \nu \in \mathcal{P}(\mathcal{E})$, let $\Gamma(\mu, \nu)$ be the collection of probability measures P on $\mathcal{E} \otimes \mathcal{E}$ with marginals μ and ν , i.e.

$$P(A \times S) = \mu(A)$$
 and $P(S \times A) = \nu(A)$ for all $A \in \mathcal{E}$.

Moreover, let $c: S \times S \to \mathbb{R}$ be a bounded measurable cost function. (Boundedness of c is generally superfluous and has been assumed for the sake of simplicity only). A

primal minimizer, or an optimal coupling, is a probability measure $P \in \Gamma(\mu, \nu)$ such that $P(c) \leq Q(c)$ for each $Q \in \Gamma(\mu, \nu)$. For a primal minimizer to exist, it suffices that S is separable metric, $\mathcal{E} = \mathcal{B}(S)$, μ and ν are perfect, and the cost c is lower semi-continuous. To state the duality result, we denote by L the set of pairs (f, g) satisfying

$$f, g \in b\mathcal{E}$$
 and $f(x) + g(y) \le c(x, y)$ for all $(x, y) \in S \times S$.

Then, in view of [14, Theorem 4], one obtains

$$\inf_{P \in \Gamma(\mu,\nu)} P(c) = \sup_{(f,g) \in L} \left\{ \mu(f) + \nu(g) \right\}$$

provided at least one between μ and ν is perfect.

We finally turn to total variation distance. Let $\mathcal{D} \subset \mathcal{E}$ be a sub- σ -field and μ , $\nu \in \mathcal{P}(\mathcal{E})$. The total variation between μ and ν on \mathcal{D} is

$$\|\mu - \nu\|_{\mathcal{D}} = \sup_{A \in \mathcal{D}} |\mu(A) - \nu(A)| = \sup_{\substack{f \in b\mathcal{D} \\ 0 \le f \le 1}} |\mu(f) - \nu(f)|.$$

It is well known that $\|\cdot\|_{\mathcal{D}}$ can be written as

$$\|\mu - \nu\|_{\mathcal{D}} = \mu(A) - \nu(A)$$
 for a suitable $A \in \mathcal{D}$. (2.1)

A last remark is in order. If (Φ, C, \mathbb{Q}) is any probability space and $H \subset \Phi$ is an arbitrary subset, there is a probability measure \mathbb{P} on the σ -field $\sigma(\mathcal{C} \cup \{H\})$ such that $\mathbb{P} = \mathbb{Q}$ on \mathcal{C} and $\mathbb{P}(H) = \mathbb{Q}_*(H)$; see e.g. Theorem 1.12.14, p. 58, of [5]. As a consequence,

$$\|\mu - \nu\|_{\mathcal{D}} \le \mathbb{Q}_* (X \neq Y)$$

whenever $X, Y : (\Phi, \mathcal{C}) \to (S, \mathcal{D})$ are measurable maps such that $\mathbb{Q}(X \in A) = \mu(A)$ and $\mathbb{Q}(Y \in A) = \nu(A)$ for all $A \in \mathcal{D}$. Define in fact $H = \{X \neq Y\}$. Then, for every $A \in \mathcal{D}$,

$$|\mu(A) - \nu(A)| = |\mathbb{Q}(X \in A) - \mathbb{Q}(Y \in A)| = |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|$$
$$= |\mathbb{P}(X \in A, X \neq Y) - \mathbb{P}(Y \in A, X \neq Y)| \le \mathbb{P}(X \neq Y) = \mathbb{Q}_*(X \neq Y).$$

3 Two weak results

The results of this section have been termed "weak" as they concern the inf and not the min over $\Gamma(\mu,\nu)$.

It is quite intuitive that, when investigating strong duality, the partition of Ω in the equivalence classes of E plays a role. Let Π denote such a partition, i.e.

$$\Pi = \left\{ [x] : x \in \Omega \right\} \quad \text{where } [x] = \left\{ y \in \Omega : (x, y) \in E \right\}.$$

The σ -fields \mathcal{G}_0 and \mathcal{G}_1 , introduced in Section 1, can be written as

$$\begin{split} \mathcal{G}_0 &= \big\{ A \in \mathcal{F} : A \text{ is a union of elements of } \Pi \big\}, \\ \mathcal{G}_1 &= \big\{ A \in \widehat{\mathcal{F}} : A \text{ is a union of elements of } \Pi \big\}, \end{split}$$

where $\widehat{\mathcal{F}}$ denotes the universally measurable σ -field with respect to \mathcal{F} . By "a union of elements of Π ", we mean "an arbitrary union of elements of Π "; in particular, the union is not necessarily countable. In descriptive set theory and ergodic theory, the sets which are union of elements of Π are usually called *E*-invariant sets. Another useful fact, often used in the sequel, is

$$1_A(x) - 1_A(y) \le 1 - 1_E(x, y) \quad \text{for all } (x, y) \in \Omega \times \Omega \tag{3.1}$$

provided the set $A \subset \Omega$ is a union of elements of Π .

Our starting point is the following.

Theorem 3.1. If (Ω, \mathcal{F}) is a standard Borel space, then

$$\inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_1} \quad \text{for all } \mu, \nu \in \mathcal{P}(\mathcal{F}).$$

Proof. Let $\mu, \nu \in \mathcal{P}(\mathcal{F})$. In the notation of Section 2, let $c = 1 - 1_E$ and

 $L = \{(f,g): f, g \in b\mathcal{F} \text{ and } f(x) + g(y) \le c(x,y) \text{ for all } (x,y) \in \Omega \times \Omega \}.$

Since (Ω, \mathcal{F}) is standard Borel, μ and ν are perfect. Hence, by the duality result mentioned in Section 2, it follows that

$$\inf_{P\in\Gamma(\mu,\nu)} (1-P(E)) = \inf_{P\in\Gamma(\mu,\nu)} P(c) = \sup_{(f,g)\in L} \left\{ \mu(f) + \nu(g) \right\}.$$

Given $(f,g) \in L$, define

$$\phi = (f - \sup f + 1)^+$$
 and $\psi = g + \sup f - 1$.

On noting that

$$\sup f + \sup g = \sup_{(x,y)} \{f(x) + g(y)\} \le \sup c \le 1,$$

one obtains $(\phi, \psi) \in L$. Moreover, $0 \le \phi \le 1$ and $\mu(\phi) + \nu(\psi) \ge \mu(f) + \nu(g)$. Hence,

$$\inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \sup_{(f,g) \in L} \left\{ \mu(f) + \nu(g) \right\} = \sup_{\substack{(f,g) \in L \\ 0 \le f \le 1}} \left\{ \mu(f) + \nu(g) \right\}$$

Next, fix $\epsilon > 0$ and take $(f,g) \in L$ such that $0 \leq f \leq 1$ and

$$\mu(f) + \nu(g) + \epsilon > \inf_{P \in \Gamma(\mu, \nu)} (1 - P(E)).$$

Define

$$h(x) = \sup_{y \in [x]} f(y)$$

and note that $h(x) + g(y) \le c(x, y)$ for all (x, y). Letting y = x, one obtains

$$g(x) \le c(x, x) - h(x) = -h(x)$$
 for all $x \in \Omega$.

Since h(x) = h(y) whenever $(x, y) \in E$, for each $a \in \mathbb{R}$ the set $\{h > a\}$ is a union of elements of Π . Moreover,

$${h > a} = {x \in \Omega : (x, y) \in E \text{ and } f(y) > a \text{ for some } y \in \Omega}$$

is the projection on the first coordinate of the set

$$E \cap (\Omega \times \{f > a\}) \in \mathcal{F} \otimes \mathcal{F}.$$

Since (Ω, \mathcal{F}) is standard Borel, the projection theorem yields $\{h > a\} \in \widehat{\mathcal{F}}$; see e.g. Theorem A1.4, page 562, of [8]. Hence, $\{h > a\} \in \mathcal{G}_1$. To sum up,

$$h \in b\mathcal{G}_1, \quad 0 \le h \le 1, \quad h \ge f, \quad -h \ge g.$$

Therefore,

$$\begin{aligned} \|\mu - \nu\|_{\mathcal{G}_1} &= \sup_{\substack{f \in b\mathcal{G}_1 \\ 0 \leq f \leq 1}} |\mu(f) - \nu(f)| \geq \mu(h) - \nu(h) \\ &\geq \mu(f) + \nu(g) > \inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) - \epsilon. \end{aligned}$$

ECP 29 (2024), paper 17.

https://www.imstat.org/ecp

Finally, fix $P \in \Gamma(\mu, \nu)$ and $A \in \mathcal{G}_1$. Since A is a union of elements of Π , inequality (3.1) yields

$$1 - P(E) \ge \int \{ 1_A(x) - 1_A(y) \} P(dx, dy) = \mu(A) - \nu(A).$$

Hence,

$$\inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) \ge \|\mu - \nu\|_{\mathcal{G}_1}$$

and this concludes the proof.

The function h involved in the proof of Theorem 3.1 is also called the least E-invariant majorant of f. Letting $c = 1 - 1_E$ and recalling that $0 \le f \le 1$, one obtains

$$h(x) = \inf_{y \in [x]} \{-f(y)\} = \inf_{y \in \Omega} \{1 - 1_E(x, y) - f(y)\} = \inf_{y \in \Omega} \{c(x, y) - f(y)\}.$$

Hence, in the mass transportation terminology, -h is the *c*-transform of f. In general, h is $\widehat{\mathcal{F}}$ -measurable, as proved above, but not necessarily \mathcal{F} -measurable; see Remarks 5.5 and 5.11 of [19]. For this reason, \mathcal{G}_1 (and not \mathcal{G}_0) comes into play. An open question is to assign conditions on E under which h is \mathcal{F} -measurable. Under such conditions, $\|\mu - \nu\|_{\mathcal{G}_1}$ could be replaced by $\|\mu - \nu\|_{\mathcal{G}_0}$ in Theorem 3.1. We also note that, for a lower semi-continuous cost function c, measurability of the c-transform is discussed in [19, p. 69]. This discussion, however, does not fit to $c = 1 - 1_E$.

If regarded as a tool to get strong duality, Theorem 3.1 has two gaps:

- \mathcal{G}_1 is not a sub- σ -field of \mathcal{F} ;
- Theorem 3.1 is a weak result, for it involves the inf and not the min over $\Gamma(\mu, \nu)$.

The second gap is concerned in the next section. Here, we focus on the first, that is, we replace \mathcal{G}_1 with a suitable sub- σ -field of \mathcal{F} .

Theorem 3.2. If (Ω, \mathcal{F}) is a standard Borel space, then, for all $\mu, \nu \in \mathcal{P}(\mathcal{F})$, there is a set $B \in \mathcal{F}$ such that

$$\mu(B) = \nu(B) = 1$$
 and $\inf_{P \in \Gamma(\mu, \nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_B}$

where $\mathcal{G}_B = \{A \in \mathcal{F} : 1_A(x) = 1_A(y) \text{ for all } (x, y) \in E \cap (B \times B)\}.$

Proof. Let $\mu, \nu \in \mathcal{P}(\mathcal{F})$. By (2.1) and Theorem 3.1, there is $D \in \mathcal{G}_1$ such that

$$\inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_1} = \mu(D) - \nu(D).$$

Since *D* is universally measurable with respect to \mathcal{F} , there is $A \in \mathcal{F}$ such that

$$\frac{\mu + \nu}{2} \left(A \Delta D \right) = 0,$$

or equivalently $\mu(A\Delta D) = \nu(A\Delta D) = 0$. Let

$$T = \{ (x, y) \in E : 1_A(x) \neq 1_A(y) \}.$$

Since *D* is a union of elements of Π , then $1_D(x) = 1_D(y)$ for all $(x, y) \in E$. Hence,

$$P(T) = P\{(x,y) \in E : 1_D(x) \neq 1_D(y)\} = P(\emptyset) = 0 \text{ for each } P \in \Gamma(\mu,\nu)$$

where the first equality is because $\mu(A\Delta D) = \nu(A\Delta D) = 0$. By a (deep) result of Arveson, Haydon and Shulman, since (Ω, \mathcal{F}) is standard Borel and P(T) = 0 for all $P \in \Gamma(\mu, \nu)$, there is $B \in \mathcal{F}$ such that $\mu(B) = \nu(B) = 1$ and

$$T \subset (B^c \times \Omega) \cup (\Omega \times B^c);$$

ECP 29 (2024), paper 17.

https://www.imstat.org/ecp

see [1, Theorems 1.4.2 and 1.4.3], [6, Corollary, p. 500] and [16, p. 2345]. Therefore $A \in \mathcal{G}_B$, which in turn implies

$$\inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \mu(D) - \nu(D) = \mu(A) - \nu(A) \le \|\mu - \nu\|_{\mathcal{G}_B}.$$

To prove the reverse inequality, fix any $C \in \mathcal{G}_B$ and $P \in \Gamma(\mu, \nu)$. Then,

$$P(B\times B)=1 \quad \text{and} \quad 1_C(x)-1_C(y)\leq 1-1_E(x,y) \quad \text{for all } (x,y)\in B\times B.$$

Hence,

$$\mu(C) - \nu(C) = \int (1_C(x) - 1_C(y)) P(dx, dy) \le 1 - P(E),$$

which in turn implies $\|\mu - \nu\|_{\mathcal{G}_B} \leq \inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)).$

The advantage of Theorem 3.2 with respect to Theorem 3.1 is that \mathcal{G}_B is a sub- σ -field of \mathcal{F} while \mathcal{G}_1 is not. The disadvantage is that \mathcal{G}_B is not universal, for it depends on the pair (μ, ν) . However, for fixed (μ, ν) , since $\mu(B) = \nu(B) = 1$ and $E \cap (B \times B)$ is a measurable equivalence relation on B, it is reasonable to replace Ω with B and E with $E \cap (B \times B)$. In other terms, for fixed (μ, ν) , it makes sense to involve \mathcal{G}_B in the notion of strong duality.

4 Existence of primal minimizers

Quite surprisingly, in mass transportation theory, existence of primal minimizers seems to have received only a little attention to date; see e.g. [2] and [7, p. 4]. To our knowledge, when the cost c is not lower semi-continuous, the only available results are in [12, Theorem 2.3.10] and require c to be suitably approximable by regular costs. However, such results do not apply to our case where $c = 1 - 1_E$.

Let (Ω, \mathcal{F}) be a standard Borel space and $c = 1 - 1_E$. Then, c is lower semi-continuous if and only if E is closed, and in this case E is strongly dualizable. Similarly, E is strongly dualizable if its equivalence classes are the atoms of a countably generated sub- σ -field of \mathcal{F} , or if E is the union of an increasing sequence of strongly dualizable equivalence relations; see [7, Theorems 3.13 and 3.14] and [11, Theorem 1]. As noted above, however, we are not aware of any general condition for a primal minimizer to exist. In the sequel, we discuss two strategies for circumventing this problem.

The first strategy is possibly expected and lies in using finitely additive probabilities. Let

 $M(\mu, \nu) = \{$ finitely additive probabilities on $\mathcal{F} \otimes \mathcal{F}$ with marginals μ and $\nu \}$.

Theorem 4.1. Let (Ω, \mathcal{F}) be a standard Borel space. Then,

$$\min_{P \in M(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_1} \quad \text{ for all } \mu, \nu \in \mathcal{P}(\mathcal{F}).$$

Moreover, for all $\mu, \nu \in \mathcal{P}(\mathcal{F})$ there is $B \in \mathcal{F}$ such that

$$\mu(B) = \nu(B) = 1 \text{ and } \min_{P \in M(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_B}.$$

Proof. Just apply Theorems 3.1 and 3.2 and note that, by Theorem 2 of [17],

$$\min_{P \in M(\mu,\nu)} (1 - P(E)) = \inf_{P \in \Gamma(\mu,\nu)} (1 - P(E)).$$

ECP 29 (2024), paper 17.

A remark on Theorem 4.1 is in order. Let P be a finitely additive primal minimizer, in the sense that $P \in M(\mu, \nu)$ and $1 - P(E) = \inf_{Q \in \Gamma(\mu, \nu)} (1 - Q(E))$. Moreover, let \mathcal{R} be the field generated by the measurable rectangles $A \times B$ with $A, B \in \mathcal{F}$. Since μ and ν are perfect (due to (Ω, \mathcal{F}) is standard Borel), the restriction $P|\mathcal{R}$ is σ -additive; see e.g. [15, Theorem 6]. Hence, it is tempting to define P' as the only σ -additive extension of $P|\mathcal{R}$ to $\sigma(\mathcal{R}) = \mathcal{F} \otimes \mathcal{F}$. Then, $P' \in \Gamma(\mu, \nu)$ but it is *not* necessarily true that P'(E) = P(E). Hence, P' needs not be a primal minimizer.

The second strategy for dealing with primal minimizers is summarized by the next result.

Theorem 4.2. For all μ , $\nu \in \mathcal{P}(\mathcal{F})$, there is $\nu_0 \in \mathcal{P}(\mathcal{F})$ such that

$$\nu_0 = \nu \text{ on } \mathcal{G}_0 \text{ and } \min_{P \in \Gamma(\mu, \nu_0)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_0}.$$

Before proving Theorem 4.2, we provide a lemma (which is possibly of some independent interest).

Lemma 4.3. Let (S, \mathcal{E}) be a measurable space, $\mathcal{D} \subset \mathcal{E}$ a sub- σ -field and $\mu, \nu \in \mathcal{P}(\mathcal{E})$. Then, there are a probability space $(\Phi, \mathcal{A}, \mathbb{P})$ and two measurable maps $X, Y : (\Phi, \mathcal{A}) \to (S, \mathcal{E})$ such that

$$\begin{split} \mathbb{P}(X \in A) &= \mu(A) \text{ for all } A \in \mathcal{E}, \quad \mathbb{P}(Y \in A) = \nu(A) \text{ for all } A \in \mathcal{D}, \\ & \left\{ X \neq Y \right\} \in \mathcal{A} \quad \text{and} \quad \mathbb{P}(X \neq Y) = \|\mu - \nu\|_{\mathcal{D}}. \end{split}$$

Proof. For any measure γ on \mathcal{E} , we write $\gamma | \mathcal{D}$ to denote the restriction of γ on \mathcal{D} .

Suppose first $\mu | \mathcal{D} = \nu | \mathcal{D}$. Let $\Phi = S \times S$, $\mathcal{C} = \mathcal{E} \otimes \mathcal{E}$ and X(a, b) = a and Y(a, b) = b for all $(a, b) \in S \times S$. Define also

$$\mathbb{Q}(C) = \mu \{ x \in S : (x, x) \in C \} \quad \text{for all } C \in \mathcal{C}.$$

Then, $\mathbb{Q}(X \in A) = \mathbb{Q}(Y \in A) = \mu(A)$ for all $A \in \mathcal{E}$. In particular, since $\mu = \nu$ on \mathcal{D} , then $\mathbb{Q}(Y \in A) = \nu(A)$ for all $A \in \mathcal{D}$. Moreover, since $\mathbb{Q}(C) = 0$ whenever $C \in \mathcal{C}$ and $C \subset \{X \neq Y\}$, one obtains $\mathbb{Q}_*(X \neq Y) = 0$ (where \mathbb{Q}_* is the inner measure corresponding to \mathbb{Q}). Hence, by the extension theorem mentioned in Section 2, \mathbb{Q} can be extended to a probability measure \mathbb{P} on

$$\mathcal{A} = \sigma(\mathcal{C} \cup \{X \neq Y\})$$

such that

$$\mathbb{P}(X \neq Y) = \mathbb{Q}_*(X \neq Y) = 0 = \|\mu - \nu\|_{\mathcal{D}}$$

Suppose now that $\mu | \mathcal{D} \neq \nu | \mathcal{D}$. Define

$$\begin{split} \lambda &= \mu + \nu, \quad f = \frac{d\left(\mu | \mathcal{D}\right)}{d\left(\lambda | \mathcal{D}\right)}, \quad g = \frac{d\left(\nu | \mathcal{D}\right)}{d\left(\lambda | \mathcal{D}\right)}, \quad \text{and} \\ \gamma(A) &= \frac{1}{\|\mu - \nu\|_{\mathcal{D}}} \int_{A} \left(g - f\right)^{+} d\lambda \quad \text{ for all } A \in \mathcal{E}. \end{split}$$

Since $\int (g-f)^+ d\lambda = \|\mu - \nu\|_{\mathcal{D}}$, such a γ is a probability measure on \mathcal{E} . Let $(\Phi, \mathcal{C}, \mathbb{Q})$ be any probability space which supports three independent random variables U, X, Z with U uniformly distributed on (0, 1) and

$$\mathbb{Q}(X \in A) = \mu(A)$$
 and $\mathbb{Q}(Z \in A) = \gamma(A)$ for all $A \in \mathcal{E}$.

Define

$$G = \left\{ f(X) U > g(X) \right\}, \quad Y = Z \text{ on } G \quad \text{and} \quad Y = X \text{ on } G^c.$$

Then,

$$\begin{aligned} \mathbb{Q}(G) &= \mathbb{Q}\left[f(X) > g(X), \, U > \frac{g(X)}{f(X)}\right] = \int_{\{f > g\}} \left(1 - \frac{g}{f}\right) \, f \, d\lambda \\ &= \int_{\{f > g\}} (f - g) \, d\lambda = \|\mu - \nu\|_{\mathcal{D}}. \end{aligned}$$

Moreover, for each $A \in \mathcal{E}$,

$$\begin{split} \mathbb{Q}(Y \in A) &= \mathbb{Q}\big(G \cap \{Z \in A\}\big) + \mathbb{Q}\big(G^c \cap \{X \in A\}\big) \\ &= \mathbb{Q}(G) \,\mathbb{Q}(Z \in A) + \mathbb{Q}\left[f(X) \, U \leq g(X), \, X \in A\right] \\ &= \int_A (g-f)^+ d\lambda + \int_{A \cap \{f > g\}} \frac{g}{f} \, d\mu + \mu\big(A \cap \{f \leq g\}\big). \end{split}$$

If $A \in \mathcal{D}$, since $f = \frac{d(\mu | \mathcal{D})}{d(\lambda | \mathcal{D})}$, one obtains

$$\int_{A \cap \{f > g\}} \frac{g}{f} d\mu + \mu \left(A \cap \{f \le g\} \right) = \int_{A \cap \{f > g\}} \frac{g}{f} f d\lambda + \int_{A \cap \{f \le g\}} f d\lambda = \int_A (f \land g) d\lambda.$$

Therefore,

$$\mathbb{Q}(Y \in A) = \int_A (g - f)^+ d\lambda + \int_A (f \wedge g) \, d\lambda = \int_A g \, d\lambda = \nu(A) \quad \text{ for each } A \in \mathcal{D}.$$

It follows that

$$\|\mu - \nu\|_{\mathcal{D}} \le \mathbb{Q}_*(X \neq Y) \le \mathbb{Q}^*(X \neq Y) \le \mathbb{Q}(G) = \|\mu - \nu\|_{\mathcal{L}}$$

where the first inequality has been discussed in Section 2. Hence, to conclude the proof, it suffices to take $(\Phi, \mathcal{A}, \mathbb{P})$ as the completion of $(\Phi, \mathcal{C}, \mathbb{Q})$.

Lemma 4.3 slightly improves some known results; see [4, Proposition 3.1] and [18, Lemma 2.1]. We also recall that the diagonal $\Delta = \{(x, x) : x \in S\}$ does not necessarily belong to $\mathcal{E} \otimes \mathcal{E}$; see e.g. Exercise 3.10.44 of [5]. A characterization of the measurable spaces (S, \mathcal{E}) such that $\Delta \in \mathcal{E} \otimes \mathcal{E}$ is in [5, Theorem 6.5.7].

Proof of Theorem 4.2. By Lemma 4.3, applied with $S = \Omega$, $\mathcal{E} = \mathcal{F}$ and $\mathcal{D} = \mathcal{G}_0$, there are a probability space $(\Phi, \mathcal{A}, \mathbb{P})$ and two measurable maps $X, Y : (\Phi, \mathcal{A}) \to (\Omega, \mathcal{F})$ such that

$$P(X \in A) = \mu(A) \text{ for all } A \in \mathcal{F}, \quad P(Y \in A) = \nu(A) \text{ for all } A \in \mathcal{G}_0, \\ \left\{ X \neq Y \right\} \in \mathcal{A} \quad \text{and} \quad \mathbb{P}(X \neq Y) = \|\mu - \nu\|_{\mathcal{G}_0}.$$

Up to replacing $(\Phi, \mathcal{A}, \mathbb{P})$ with its completion, it can be assumed that $(\Phi, \mathcal{A}, \mathbb{P})$ is complete. Because of (3.1),

$$1_{\{X \in A\}} - 1_{\{Y \in A\}} \le 1_{\{(X,Y) \notin E\}} \le 1_{\{X \neq Y\}} \quad \text{ for each } A \in \mathcal{G}_0.$$

Therefore,

$$\mu(A) - \nu(A) = \int \left(\mathbb{1}_{\{X \in A\}} - \mathbb{1}_{\{Y \in A\}} \right) d\mathbb{P} \leq \mathbb{P}_* \left((X, Y) \notin E \right)$$

$$\leq \mathbb{P}^* \left((X, Y) \notin E \right) \leq \mathbb{P}(X \neq Y) = \|\mu - \nu\|_{\mathcal{G}_0} \quad \text{for each } A \in \mathcal{G}_0$$

which in turn implies

$$\|\mu - \nu\|_{\mathcal{G}_0} \le \mathbb{P}_*((X, Y) \notin E) \le \mathbb{P}^*((X, Y) \notin E) \le \|\mu - \nu\|_{\mathcal{G}_0}.$$

Since $(\Phi, \mathcal{A}, \mathbb{P})$ is complete, one obtains

$$\{(X,Y)\notin E\}\in\mathcal{A} \text{ and } \mathbb{P}((X,Y)\notin E)=\|\mu-\nu\|_{\mathcal{G}_0}$$

To conclude the proof, note that $\{(X,Y) \in H\} \in \mathcal{A}$ for each $H \in \mathcal{F} \otimes \mathcal{F}$ and define

$$u_0(A) = \mathbb{P}(Y \in A) \text{ and } P(H) = \mathbb{P}((X, Y) \in H) \text{ for all } A \in \mathcal{F} \text{ and } H \in \mathcal{F} \otimes \mathcal{F}.$$

Then, $\nu_0 = \nu$ on \mathcal{G}_0 , $P \in \Gamma(\mu, \nu_0)$ and

$$1 - P(E) = \|\mu - \nu\|_{\mathcal{G}_0} \le 1 - Q(E) \quad \text{for each } Q \in \Gamma(\mu, \nu_0). \quad \Box$$

It is worth noting that, in Theorem 4.2, (Ω, \mathcal{F}) is not required to be a standard Borel space. In addition, Theorem 4.2 has the following useful consequence.

Corollary 4.4. Let (Ω, \mathcal{F}) be a standard Borel space.

(a) If $E \in \mathcal{F} \otimes \mathcal{G}_0$, then

$$\min_{P \in \Gamma(\mu,\nu)} \left(1 - P(E) \right) = \|\mu - \nu\|_{\mathcal{G}_0} \quad \text{ for all } \mu, \, \nu \in \mathcal{P}(\mathcal{F}).$$

(b) If $E \in \widehat{\mathcal{F}} \otimes \mathcal{G}_1$ (and even if $E \notin \mathcal{F} \otimes \mathcal{F}$), then

$$\min_{P \in \Gamma(\mu,\nu)} \left(1 - P(E)\right) = \|\mu - \nu\|_{\mathcal{G}_1} \quad \text{ for all } \mu, \nu \in \mathcal{P}(\mathcal{F}).$$

Proof. Recall that, for each $\gamma \in \mathcal{P}(\mathcal{F})$, the only extension of γ to $\widehat{\mathcal{F}}$ is still denoted by γ . Moreover, since (Ω, \mathcal{F}) is standard Borel, every probability measure on $\widehat{\mathcal{F}}$ is perfect.

Part (a). Suppose $E \in \mathcal{F} \otimes \mathcal{G}_0$. Given $\mu, \nu \in \mathcal{P}(\mathcal{F})$, by Theorem 4.2, there are $\nu_0 \in \mathcal{P}(\mathcal{F})$ and $P_0 \in \Gamma(\mu, \nu_0)$ such that $\nu_0 = \nu$ on \mathcal{G}_0 and $1 - P_0(E) = \|\mu - \nu\|_{\mathcal{G}_0}$. In addition, since μ and ν are perfect, by Theorem 9 of [15], there is $P \in \Gamma(\mu, \nu)$ such that $P = P_0$ on $\mathcal{F} \otimes \mathcal{G}_0$. Since $E \in \mathcal{F} \otimes \mathcal{G}_0$, one obtains $P(E) = P_0(E)$. Therefore,

$$P \in \Gamma(\mu, \nu)$$
 and $1 - P(E) = \|\mu - \nu\|_{\mathcal{G}_0} \le 1 - Q(E)$ for each $Q \in \Gamma(\mu, \nu)$

where the inequality is by (3.1).

Part (b). Suppose $E \in \widehat{\mathcal{F}} \otimes \mathcal{G}_1$. Let $\widehat{\Gamma}(\mu, \nu)$ be the collection of probability measures \widehat{P} on $\widehat{\mathcal{F}} \otimes \widehat{\mathcal{F}}$ such that

$$\widehat{P}(A \times \Omega) = \mu(A)$$
 and $\widehat{P}(\Omega \times A) = \nu(A)$ for all $A \in \widehat{\mathcal{F}}$.

Since $E \in \widehat{\mathcal{F}} \otimes \mathcal{G}_1$ and μ and ν are perfect (where μ and ν are now regarded as probability measures on $\widehat{\mathcal{F}}$) the proof of part (a) can be repeated with $(\Omega, \widehat{\mathcal{F}})$ and \mathcal{G}_1 in the place of (Ω, \mathcal{F}) and \mathcal{G}_0 . Hence,

$$1 - \widehat{P}(E) = \|\mu - \nu\|_{\mathcal{G}_1}$$
 for some $\widehat{P} \in \widehat{\Gamma}(\mu, \nu)$.

Finally, denoting by *P* the restriction of \widehat{P} on $\mathcal{F} \otimes \mathcal{F}$, one obtains

$$P \in \Gamma(\mu, \nu)$$
 and $1 - P(E) = \|\mu - \nu\|_{\mathcal{G}_1} \le 1 - Q(E)$ for each $Q \in \Gamma(\mu, \nu)$. \Box

Corollary 4.4-(a) slightly improves [7, Theorem 3.13]. The former requires in fact $E \in \mathcal{F} \otimes \mathcal{G}_0$ while the latter $E \in \mathcal{G}_0 \otimes \mathcal{G}_0$. However, we do not know of any example where $E \in \mathcal{F} \otimes \mathcal{G}_0$ but $E \notin \mathcal{G}_0 \otimes \mathcal{G}_0$. Instead, to our knowledge, Corollary 4.4-(b) is new. Among other things, since E is not forced to belong to $\mathcal{F} \otimes \mathcal{F}$, it allows to handle situations where E is analytic but not Borel.

Example 4.5. Let Ω be a Polish space and $\mathcal{F} = \mathcal{B}(\Omega)$. A subset of Ω is a G_{δ} if it is a countable intersection of open sets. In particular, open and closed subsets of Ω are both G_{δ} . The next result is a consequence of Corollary 4.4-(b).

If *E* is analytic and the equivalence classes of *E* are G_{δ} , then

$$\min_{P \in \Gamma(\mu,\nu)} (1 - P(E)) = \|\mu - \nu\|_{\mathcal{G}_1} \quad \text{ for all } \mu, \nu \in \mathcal{P}(\mathcal{F}).$$

To prove this claim, it suffices to show that $E \in \widehat{\mathcal{F}} \otimes \mathcal{G}_1$. For $A \in \mathcal{F}$, define

 $A^* = \{ x \in \Omega : \exists y \in A \text{ such that } (x, y) \in E \}.$

Then, A^* is analytic, as it is the projection on the first coordinate of the analytic set $E \cap (\Omega \times A)$. Hence, $A^* \in \widehat{\mathcal{F}}$. Since A^* is a union of equivalence classes of E, one also obtains $A^* \in \mathcal{G}_1$. Having noted this fact, fix a countable basis \mathcal{U} for the topology of Ω and define

$$\mathcal{V} = \sigma(U^* : U \in \mathcal{U}).$$

Then, \mathcal{V} is countably generated and $\mathcal{V} \subset \mathcal{G}_1$. If A and B are any disjoint G_{δ} sets, there is $U \in \mathcal{U}$ such that

$$A \cap U \neq \emptyset$$
 and $B \cap U = \emptyset$ or $A \cap U = \emptyset$ and $B \cap U \neq \emptyset$;

see the proof of Lemma 2 in [10]. Hence, if A and B are two disjoint equivalence classes of E, then

$$A \subset U^*$$
 and $B \cap U^* = \emptyset$ or $A \cap U^* = \emptyset$ and $B \subset U^*$

for some $U \in \mathcal{U}$. This implies that the equivalence classes of E are precisely the atoms of \mathcal{V} . Finally, since \mathcal{V} is countably generated, there is a function $f : \Omega \to \mathbb{R}$ such that $\mathcal{V} = \sigma(f)$. Therefore,

$$E = \{(x, y) : f(x) = f(y)\} \in \mathcal{V} \otimes \mathcal{V} \subset \widehat{\mathcal{F}} \otimes \mathcal{G}_1.$$

We close this paper with a last result. While not practically useful, it still provides some information on primal minimizers.

Theorem 4.6. Let (Ω, \mathcal{F}) be a standard Borel space and $P \in \Gamma(\mu, \nu)$ for some $\mu, \nu \in \mathcal{P}(\mathcal{F})$. Then, P is a primal minimizer (with respect to $c = 1 - 1_E$) if and only if

$$P(E) = 1 - P(A \times A^c) \quad \text{for some } A \in \mathcal{G}_1.$$
(4.1)

Proof. By (2.1), there is $A \in \mathcal{G}_1$ such that $\|\mu - \nu\|_{\mathcal{G}_1} = \mu(A) - \nu(A)$. Hence, if P is a primal minimizer, Theorem 3.1 implies

$$1 - P(E) = \|\mu - \nu\|_{\mathcal{G}_1} = \mu(A) - \nu(A) = \int (1_A(x) - 1_A(y)) P(dx, dy)$$

$$\leq P(A \times A^c) \leq P(E^c) = 1 - P(E).$$

Thus, condition (4.1) holds. Conversely, if (4.1) holds for some $A \in \mathcal{G}_1$, then

$$P\{(x,y): 1_A(x) - 1_A(y) = 1 - 1_E(x,y)\} = P(E) + P\{(x,y) \in E^c: 1_A(x) - 1_A(y) = 1\}$$
$$= P(E) + P(E^c \cap (A \times A^c)) = P(E) + P(A \times A^c) = 1.$$

Therefore, for each $Q \in \Gamma(\mu, \nu)$,

$$1 - P(E) = \int (1_A(x) - 1_A(y)) P(dx, dy) = \mu(A) - \nu(A)$$

= $\int (1_A(x) - 1_A(y)) Q(dx, dy) \le 1 - Q(E)$

where the last inequality is by (3.1). Hence, *P* is a primal minimizer.

ECP 29 (2024), paper 17.

https://www.imstat.org/ecp

Theorem 4.6 is very similar to Proposition 3.12 of [7]. Both provide characterizations of primal minimizers. The only difference is that, in Proposition 3.12, it is required a priori that E is strongly dualizable.

References

- [1] Arveson, W.: Operator algebras and invariant subspaces, Ann. Math. 100, (1974), 433-533. MR0365167
- [2] Beiglböck, M., Léonard, C. and Schachermayer, W.: On the duality theory for the Monge-Kantorovich transport problem. In: Optimal transportation, London Math. Soc. Lecture Note Ser. 413, (2014), 216-265, Cambridge Univ. Press. MR3328997
- [3] Beiglböck, M., Nutz, M. and Touzi, N.: Complete duality for martingale optimal transport on the line. Ann. Probab. 45, (2017), 3038-3074. MR3706738
- [4] Berti, P., Pratelli, L. and Rigo, P.: Skorohod representation theorem via disintegrations. Sankhya 72, (2010), 208-220. MR2658171
- [5] Bogachev, V.I.: Measure theory, Vol. I and II. Springer, Berlin, 2007. MR2267655
- [6] Haydon, R. and Shulman, V.: On a measure-theoretic problem of Arveson. Proc. Amer. Math. Soc. 124, (1996), 497–503. MR1301501
- [7] Jaffe, A.Q.: A strong duality principle for equivalence couplings and total variation. *Electronic J. Probab.* 28, (2023), 1-33. MR4664456
- [8] Kallenberg, O.: Foundations of modern probability, Second edition. Springer, New York, 2002. MR1876169
- [9] Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheorie Verw. Geb. 67, (1984), 399-432. MR0761565
- [10] Miller, D.E.: A selector for equivalence relations with G_{δ} orbits, *Proc. Amer. Math. Soc.* **72**, (1978), 365-369. MR0515142
- [11] Pratelli, L. and Rigo, P.: A strong version of the Skorohod representation theorem. J. Theor. Probab. 36, (2023), 372-389. MR4585120
- [12] Rachev, S.T. and Rüschendorf, L.: Mass transportation problems, Volume I: Theory. Springer, New York, 1998. MR1619171
- [13] Ramachandran, D.: Perfect measures I and II. ISI-Lecture Notes Series 5 and 7, (1979), New Delhi, Macmillan. MR0553600
- [14] Ramachandran, D. and Rüschendorf, L.: A general duality theorem for marginal problems. Probab. Theory Relat. Fields 101, (1995), 311-319. MR1324088
- [15] Ramachandran, D.: The marginal problem in arbitrary product spaces. In: Distributions with fixed marginals and related topics (Rüschendorf, Schweizer and Taylor eds.) IMS Lect. Notes Monog. Series 28, (1996), 260-272. MR1485537
- [16] Rigo, P.: A note on duality theorems in mass transportation. J. Theor. Probab. 33, (2020), 2337-2350. MR4166202
- [17] Rigo, P.: Finitely additive mass transportation. Bernoulli 30, (2024).
- [18] Sethuraman, J.: Some extensions of the Skorohod representation theorem. Sankhya 64, (2002), 884-893. MR1981517
- [19] Villani, C.: Optimal transport. Old and new. Vol. 338 of Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 2009. MR2459454

Acknowledgments. We are grateful to an anonymous referee for many comments and remarks which improved this paper.