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Abstract

Let (Ω,F) be a measurable space and E ⊂ Ω× Ω. Suppose that E ∈ F ⊗ F and the
relation on Ω defined as x ∼ y ⇔ (x, y) ∈ E is reflexive, symmetric and transitive.
Following [7], say that E is strongly dualizable if there is a sub-σ-field G ⊂ F such that

min
P∈Γ(µ,ν)

(1− P (E)) = max
A∈G
|µ(A)− ν(A)|

for all probabilities µ and ν on F . This paper investigates strong duality. Essentially, it
is shown that E is strongly dualizable provided some mild modifications are admitted.
Let G0 be the E-invariant sub-σ-field of F . One result is that, for all probabilities µ
and ν on F , there is a probability ν0 on F such that

ν0 = ν on G0 and min
P∈Γ(µ,ν0)

(1− P (E)) = max
A∈G0

|µ(A)− ν(A)|.

In the other results, (Ω,F) is a standard Borel space and the min over Γ(µ, ν) is
replaced by the inf over Γ(µ, ν) in the definition of strong duality. Then, E is strongly
dualizable provided G is allowed to depend on (µ, ν) or it is taken to be the universally
measurable version of the E-invariant σ-field.
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1 Introduction

Throughout, (Ω,F) is a measurable space, P(F) the collection of all probability
measures on F , and E ⊂ Ω × Ω a measurable equivalence relation. This means that
E ∈ F ⊗ F and the relation on Ω defined as

x ∼ y ⇔ (x, y) ∈ E

is reflexive, symmetric and transitive.
The following notion of duality has been recently introduced by Jaffe [7]. Given a

sub-σ-field G ⊂ F , the pair (E,G) is said to satisfy strong duality if

min
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G for all µ, ν ∈ P(F).
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Duality

Here, as usual, Γ(µ, ν) is the set of all probability measures on F ⊗ F with marginals µ
and ν and the notation “min” asserts that the infimum is actually achieved. Moreover,

‖µ− ν‖G = sup
A∈G
|µ(A)− ν(A)|

is the total variation between µ and ν on G.
Obviously, strong duality is strictly connected to mass transportation and Kantorovich

duality; see Section 2. In addition, strong duality is intriguing from the foundational
point of view and plays a role in some probabilistic frameworks, including stochastic
calculus, point processes and random sequence simulation; see Section 2 of [7].

Say that E is strongly dualizable if (E,G) satisfies strong duality for some sub-σ-
field G ⊂ F . Various conditions for E to be strongly dualizable are given in [7] (see
e.g. Theorems 3.13 and 3.14) but no measurable equivalence relation which fails to
be strongly dualizable is known to date. This suggests the conjecture that, under mild
conditions on (Ω,F) (say (Ω,F) is a standard Borel space), every measurable equivalence
relation is strongly dualizable.

This paper focus on strong duality and includes three results. In a sense, these results
state that E is strongly dualizable as soon as a few mild modifications are admitted. Let

G0 =
{
A ∈ F : 1A(x) = 1A(y) for all (x, y) ∈ E

}
be the E-invariant sub-σ-field of F . It is quite intuitive that G0 plays a role as regards
strong duality. In fact, E is strongly dualizable if and only if (E,G0) satisfies strong
duality; see [7, Proposition 3.15]. Our first result is that, for all µ, ν ∈ P(F), there is
ν0 ∈ P(F) satisfying

ν0 = ν on G0 and min
P∈Γ(µ,ν0)

(1− P (E)) = ‖µ− ν‖G0 .

Roughly speaking, the above condition means that strong duality is always true up to
changing one between µ and ν out of G0. This is quite reasonable, after all, for ‖µ− ν‖G0
only involves the restrictions of µ and ν on G0.

Next, suppose (Ω,F) is a standard Borel space and denote by F̂ the collection of
those subsets of Ω which are universally measurable with respect to F ; see Section 2.
Define

G1 =
{
A ∈ F̂ : 1A(x) = 1A(y) for all (x, y) ∈ E

}
.

This time, G1 is not a sub-σ-field of F . However, by our second result, one obtains

inf
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 for all µ, ν ∈ P(F). (1.1)

In addition, the inf is achieved if P is allowed to be finitely additive. Precisely,

min
P∈M(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 for all µ, ν ∈ P(F)

where M(µ, ν) is the collection of finitely additive probabilities on F ⊗ F with marginals
µ and ν.

To state the third result, for each B ⊂ Ω, define

GB =
{
A ∈ F : 1A(x) = 1A(y) for all (x, y) ∈ E ∩ (B ×B)

}
.

Then, for all µ, ν ∈ P(F), there is a set B ∈ F such that

µ(B) = ν(B) = 1 and inf
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖GB .
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If compared with (1.1), the latter result has the advantage that GB is a sub-σ-field of F
but the disadvantage that GB is not universal, for it depends on the pair (µ, ν). Note
also that µ(B) = ν(B) = 1 and E ∩ (B × B) is a measurable equivalence relation on B.
Therefore, for fixed (µ, ν), one can replace Ω with B and E with E ∩ (B ×B). After doing
this, everything works as regards the total variation side of strong duality.

A last remark is in order. For fixed µ, ν ∈ P(F), let us call equivalence coupling
problem the minimization of 1− P (E) over P ∈ Γ(µ, ν) and total variation problem the
maximization of |µ(A)− ν(A)| over A ∈ G. In this paper, since E is given, the equivalence
coupling problem is regarded as primal while the total variation problem is viewed as
dual. But of course this perspective can be reverted. Indeed, [7] contains results in
which the total variation problem is primal and the equivalence coupling problem is dual.

2 Preliminaries

In this section, we introduce some further notation and recall a few known facts.
Let (S, E) be a measurable space. Then, P(E) denotes the set of probability measures

on E and bE the set of bounded E-measurable functions f : S → R. For each µ ∈ P(E),
we write

µ(f) =

∫
f dµ whenever f ∈ bE ,

and we denote by µ∗ and µ∗ the outer and inner measures corresponding to µ. Precisely,
µ∗ and µ∗ are defined as

µ∗(A) = inf
{
µ(B) : B ∈ E , B ⊃ A

}
and µ∗(A) = sup

{
µ(B) : B ∈ E , B ⊂ A

}
for all A ⊂ S. Moreover, we let

Ê =
⋂

µ∈P(E)

Eµ

where Eµ is the completion of E with respect to µ. The elements of Ê are usually called
universally measurable with respect to E . With a slight abuse of notation, for each
µ ∈ P(E), the unique extension of µ to Ê is still denoted by µ.

If T is any topological space, B(T ) denotes the Borel σ-field. We say that T is Polish
if its topology is induced by a distance d such that (T, d) is a complete separable metric
space. If T is Polish, each analytic subset A ⊂ T is universally measurable with respect

to B(T ), that is, A ∈ B̂(T ).
The measurable space (S, E) is a standard Borel space if E = B(S) for some Polish

topology on S.
A probability µ ∈ P(E) is perfect if, for any E-measurable function f : S → R, there is

a Borel set B ∈ B(R) such that B ⊂ f(S) and µ(f ∈ B) = 1. In a sense, perfectness is a
non-topological version of the notion of tightness. In fact, if S is separable metric and
E = B(S), then µ is perfect if and only if it is tight. In particular, each element of P(E) is
perfect whenever (S, E) is a standard Borel space. We refer to [13] for more on perfect
probability measures.

As regards duality theory in mass transportation, we just mention a result by
Ramachandran and Rüschendorf [14, Theorem 4]. For more information, the inter-
ested reader is referred to [2], [3], [9], [12], [16], [19] and references therein. Given
µ, ν ∈ P(E), let Γ(µ, ν) be the collection of probability measures P on E⊗E with marginals
µ and ν, i.e.

P (A× S) = µ(A) and P (S ×A) = ν(A) for all A ∈ E .

Moreover, let c : S × S → R be a bounded measurable cost function. (Boundedness
of c is generally superfluous and has been assumed for the sake of simplicity only). A
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primal minimizer, or an optimal coupling, is a probability measure P ∈ Γ(µ, ν) such that
P (c) ≤ Q(c) for each Q ∈ Γ(µ, ν). For a primal minimizer to exist, it suffices that S is
separable metric, E = B(S), µ and ν are perfect, and the cost c is lower semi-continuous.
To state the duality result, we denote by L the set of pairs (f, g) satisfying

f, g ∈ bE and f(x) + g(y) ≤ c(x, y) for all (x, y) ∈ S × S.

Then, in view of [14, Theorem 4], one obtains

inf
P∈Γ(µ,ν)

P (c) = sup
(f,g)∈L

{
µ(f) + ν(g)

}
provided at least one between µ and ν is perfect.

We finally turn to total variation distance. Let D ⊂ E be a sub-σ-field and µ, ν ∈ P(E).
The total variation between µ and ν on D is

‖µ− ν‖D = sup
A∈D
|µ(A)− ν(A)| = sup

f ∈ bD
0 ≤ f ≤ 1

|µ(f)− ν(f)|.

It is well known that ‖·‖D can be written as

‖µ− ν‖D = µ(A)− ν(A) for a suitable A ∈ D. (2.1)

A last remark is in order. If (Φ, C,Q) is any probability space and H ⊂ Φ is an arbitrary
subset, there is a probability measure P on the σ-field σ

(
C ∪ {H}

)
such that P = Q on C

and P(H) = Q∗(H); see e.g. Theorem 1.12.14, p. 58, of [5]. As a consequence,

‖µ− ν‖D ≤ Q∗
(
X 6= Y

)
whenever X, Y : (Φ, C)→ (S,D) are measurable maps such that Q(X ∈ A) = µ(A) and
Q(Y ∈ A) = ν(A) for all A ∈ D. Define in fact H = {X 6= Y }. Then, for every A ∈ D,

|µ(A)− ν(A)| = |Q(X ∈ A)−Q(Y ∈ A)| = |P(X ∈ A)− P(Y ∈ A)|
= |P

(
X ∈ A, X 6= Y

)
− P

(
Y ∈ A, X 6= Y

)
| ≤ P

(
X 6= Y

)
= Q∗

(
X 6= Y

)
.

3 Two weak results

The results of this section have been termed “weak” as they concern the inf and not
the min over Γ(µ, ν).

It is quite intuitive that, when investigating strong duality, the partition of Ω in the
equivalence classes of E plays a role. Let Π denote such a partition, i.e.

Π =
{

[x] : x ∈ Ω
}

where [x] =
{
y ∈ Ω : (x, y) ∈ E

}
.

The σ-fields G0 and G1, introduced in Section 1, can be written as

G0 =
{
A ∈ F : A is a union of elements of Π

}
,

G1 =
{
A ∈ F̂ : A is a union of elements of Π

}
,

where F̂ denotes the universally measurable σ-field with respect to F . By “a union of
elements of Π”, we mean “an arbitrary union of elements of Π”; in particular, the union
is not necessarily countable. In descriptive set theory and ergodic theory, the sets which
are union of elements of Π are usually called E-invariant sets. Another useful fact, often
used in the sequel, is

1A(x)− 1A(y) ≤ 1− 1E(x, y) for all (x, y) ∈ Ω× Ω (3.1)

provided the set A ⊂ Ω is a union of elements of Π.
Our starting point is the following.

ECP 29 (2024), paper 17.
Page 4/12

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP586
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Duality

Theorem 3.1. If (Ω,F) is a standard Borel space, then

inf
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 for all µ, ν ∈ P(F).

Proof. Let µ, ν ∈ P(F). In the notation of Section 2, let c = 1− 1E and

L =
{

(f, g) : f, g ∈ bF and f(x) + g(y) ≤ c(x, y) for all (x, y) ∈ Ω× Ω
}
.

Since (Ω,F) is standard Borel, µ and ν are perfect. Hence, by the duality result men-
tioned in Section 2, it follows that

inf
P∈Γ(µ,ν)

(1− P (E)) = inf
P∈Γ(µ,ν)

P (c) = sup
(f,g)∈L

{
µ(f) + ν(g)

}
.

Given (f, g) ∈ L, define

φ =
(
f − sup f + 1)+ and ψ = g + sup f − 1.

On noting that
sup f + sup g = sup

(x,y)

{f(x) + g(y)} ≤ sup c ≤ 1,

one obtains (φ, ψ) ∈ L. Moreover, 0 ≤ φ ≤ 1 and µ(φ) + ν(ψ) ≥ µ(f) + ν(g). Hence,

inf
P∈Γ(µ,ν)

(1− P (E)) = sup
(f,g)∈L

{
µ(f) + ν(g)

}
= sup

(f, g) ∈ L
0 ≤ f ≤ 1

{µ(f) + ν(g)}.

Next, fix ε > 0 and take (f, g) ∈ L such that 0 ≤ f ≤ 1 and

µ(f) + ν(g) + ε > inf
P∈Γ(µ,ν)

(1− P (E)).

Define
h(x) = sup

y∈[x]

f(y)

and note that h(x) + g(y) ≤ c(x, y) for all (x, y). Letting y = x, one obtains

g(x) ≤ c(x, x)− h(x) = −h(x) for all x ∈ Ω.

Since h(x) = h(y) whenever (x, y) ∈ E, for each a ∈ R the set
{
h > a

}
is a union of

elements of Π. Moreover,{
h > a

}
=
{
x ∈ Ω : (x, y) ∈ E and f(y) > a for some y ∈ Ω

}
is the projection on the first coordinate of the set

E ∩
(
Ω× {f > a}

)
∈ F ⊗ F .

Since (Ω,F) is standard Borel, the projection theorem yields
{
h > a

}
∈ F̂ ; see e.g.

Theorem A1.4, page 562, of [8]. Hence,
{
h > a

}
∈ G1. To sum up,

h ∈ bG1, 0 ≤ h ≤ 1, h ≥ f, −h ≥ g.

Therefore,

‖µ− ν‖G1 = sup
f ∈ bG1

0 ≤ f ≤ 1

|µ(f)− ν(f)| ≥ µ(h)− ν(h)

≥ µ(f) + ν(g) > inf
P∈Γ(µ,ν)

(1− P (E))− ε.
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Finally, fix P ∈ Γ(µ, ν) and A ∈ G1. Since A is a union of elements of Π, inequality (3.1)
yields

1− P (E) ≥
∫ {

1A(x)− 1A(y)
}
P (dx, dy) = µ(A)− ν(A).

Hence,
inf

P∈Γ(µ,ν)
(1− P (E)) ≥ ‖µ− ν‖G1

and this concludes the proof.

The function h involved in the proof of Theorem 3.1 is also called the least E-invariant
majorant of f . Letting c = 1− 1E and recalling that 0 ≤ f ≤ 1, one obtains

−h(x) = inf
y∈[x]

{
−f(y)

}
= inf
y∈Ω

{
1− 1E(x, y)− f(y)

}
= inf
y∈Ω

{
c(x, y)− f(y)

}
.

Hence, in the mass transportation terminology, −h is the c-transform of f . In general,
h is F̂ -measurable, as proved above, but not necessarily F -measurable; see Remarks
5.5 and 5.11 of [19]. For this reason, G1 (and not G0) comes into play. An open question
is to assign conditions on E under which h is F -measurable. Under such conditions,
‖µ− ν‖G1 could be replaced by ‖µ− ν‖G0 in Theorem 3.1. We also note that, for a lower
semi-continuous cost function c, measurability of the c-transform is discussed in [19, p.
69]. This discussion, however, does not fit to c = 1− 1E .

If regarded as a tool to get strong duality, Theorem 3.1 has two gaps:

• G1 is not a sub-σ-field of F ;

• Theorem 3.1 is a weak result, for it involves the inf and not the min over Γ(µ, ν).

The second gap is concerned in the next section. Here, we focus on the first, that is,
we replace G1 with a suitable sub-σ-field of F .

Theorem 3.2. If (Ω,F) is a standard Borel space, then, for all µ, ν ∈ P(F), there is a
set B ∈ F such that

µ(B) = ν(B) = 1 and inf
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖GB

where GB =
{
A ∈ F : 1A(x) = 1A(y) for all (x, y) ∈ E ∩ (B ×B)

}
.

Proof. Let µ, ν ∈ P(F). By (2.1) and Theorem 3.1, there is D ∈ G1 such that

inf
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 = µ(D)− ν(D).

Since D is universally measurable with respect to F , there is A ∈ F such that

µ+ ν

2

(
A∆D

)
= 0,

or equivalently µ(A∆D) = ν(A∆D) = 0. Let

T =
{

(x, y) ∈ E : 1A(x) 6= 1A(y)
}
.

Since D is a union of elements of Π, then 1D(x) = 1D(y) for all (x, y) ∈ E. Hence,

P (T ) = P
{

(x, y) ∈ E : 1D(x) 6= 1D(y)
}

= P (∅) = 0 for each P ∈ Γ(µ, ν)

where the first equality is because µ(A∆D) = ν(A∆D) = 0. By a (deep) result of Arveson,
Haydon and Shulman, since (Ω,F) is standard Borel and P (T ) = 0 for all P ∈ Γ(µ, ν),
there is B ∈ F such that µ(B) = ν(B) = 1 and

T ⊂ (Bc × Ω) ∪ (Ω×Bc);
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see [1, Theorems 1.4.2 and 1.4.3], [6, Corollary, p. 500] and [16, p. 2345]. Therefore
A ∈ GB, which in turn implies

inf
P∈Γ(µ,ν)

(1− P (E)) = µ(D)− ν(D) = µ(A)− ν(A) ≤ ‖µ− ν‖GB .

To prove the reverse inequality, fix any C ∈ GB and P ∈ Γ(µ, ν). Then,

P (B ×B) = 1 and 1C(x)− 1C(y) ≤ 1− 1E(x, y) for all (x, y) ∈ B ×B.

Hence,

µ(C)− ν(C) =

∫ (
1C(x)− 1C(y)

)
P (dx, dy) ≤ 1− P (E),

which in turn implies ‖µ− ν‖GB ≤ infP∈Γ(µ,ν)(1− P (E)).

The advantage of Theorem 3.2 with respect to Theorem 3.1 is that GB is a sub-σ-field
of F while G1 is not. The disadvantage is that GB is not universal, for it depends on
the pair (µ, ν). However, for fixed (µ, ν), since µ(B) = ν(B) = 1 and E ∩ (B × B) is a
measurable equivalence relation on B, it is reasonable to replace Ω with B and E with
E ∩ (B ×B). In other terms, for fixed (µ, ν), it makes sense to involve GB in the notion of
strong duality.

4 Existence of primal minimizers

Quite surprisingly, in mass transportation theory, existence of primal minimizers
seems to have received only a little attention to date; see e.g. [2] and [7, p. 4]. To
our knowledge, when the cost c is not lower semi-continuous, the only available results
are in [12, Theorem 2.3.10] and require c to be suitably approximable by regular costs.
However, such results do not apply to our case where c = 1− 1E .

Let (Ω,F) be a standard Borel space and c = 1− 1E . Then, c is lower semi-continuous
if and only if E is closed, and in this case E is strongly dualizable. Similarly, E is strongly
dualizable if its equivalence classes are the atoms of a countably generated sub-σ-field
of F , or if E is the union of an increasing sequence of strongly dualizable equivalence
relations; see [7, Theorems 3.13 and 3.14] and [11, Theorem 1]. As noted above, however,
we are not aware of any general condition for a primal minimizer to exist. In the sequel,
we discuss two strategies for circumventing this problem.

The first strategy is possibly expected and lies in using finitely additive probabilities.
Let

M(µ, ν) =
{

finitely additive probabilities on F ⊗ F with marginals µ and ν
}
.

Theorem 4.1. Let (Ω,F) be a standard Borel space. Then,

min
P∈M(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 for all µ, ν ∈ P(F).

Moreover, for all µ, ν ∈ P(F) there is B ∈ F such that

µ(B) = ν(B) = 1 and min
P∈M(µ,ν)

(1− P (E)) = ‖µ− ν‖GB .

Proof. Just apply Theorems 3.1 and 3.2 and note that, by Theorem 2 of [17],

min
P∈M(µ,ν)

(1− P (E)) = inf
P∈Γ(µ,ν)

(1− P (E)).
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A remark on Theorem 4.1 is in order. Let P be a finitely additive primal minimizer, in
the sense that P ∈M(µ, ν) and 1−P (E) = infQ∈Γ(µ,ν)(1−Q(E)). Moreover, let R be the
field generated by the measurable rectangles A×B with A, B ∈ F . Since µ and ν are
perfect (due to (Ω,F) is standard Borel), the restriction P |R is σ-additive; see e.g. [15,
Theorem 6]. Hence, it is tempting to define P ′ as the only σ-additive extension of P |R
to σ(R) = F ⊗ F . Then, P ′ ∈ Γ(µ, ν) but it is not necessarily true that P ′(E) = P (E).
Hence, P ′ needs not be a primal minimizer.

The second strategy for dealing with primal minimizers is summarized by the next
result.

Theorem 4.2. For all µ, ν ∈ P(F), there is ν0 ∈ P(F) such that

ν0 = ν on G0 and min
P∈Γ(µ,ν0)

(1− P (E)) = ‖µ− ν‖G0 .

Before proving Theorem 4.2, we provide a lemma (which is possibly of some indepen-
dent interest).

Lemma 4.3. Let (S, E) be a measurable space, D ⊂ E a sub-σ-field and µ, ν ∈ P(E). Then,
there are a probability space (Φ,A,P) and two measurable maps X, Y : (Φ,A)→ (S, E)

such that

P(X ∈ A) = µ(A) for all A ∈ E , P(Y ∈ A) = ν(A) for all A ∈ D,{
X 6= Y

}
∈ A and P(X 6= Y ) = ‖µ− ν‖D.

Proof. For any measure γ on E , we write γ|D to denote the restriction of γ on D.
Suppose first µ|D = ν|D. Let Φ = S × S, C = E ⊗ E and X(a, b) = a and Y (a, b) = b for

all (a, b) ∈ S × S. Define also

Q(C) = µ
{
x ∈ S : (x, x) ∈ C

}
for all C ∈ C.

Then, Q(X ∈ A) = Q(Y ∈ A) = µ(A) for all A ∈ E . In particular, since µ = ν on D,
then Q(Y ∈ A) = ν(A) for all A ∈ D. Moreover, since Q(C) = 0 whenever C ∈ C
and C ⊂

{
X 6= Y

}
, one obtains Q∗

(
X 6= Y

)
= 0 (where Q∗ is the inner measure

corresponding to Q). Hence, by the extension theorem mentioned in Section 2, Q can be
extended to a probability measure P on

A = σ
(
C ∪

{
X 6= Y

})
such that

P(X 6= Y ) = Q∗
(
X 6= Y

)
= 0 = ‖µ− ν‖D.

Suppose now that µ|D 6= ν|D. Define

λ = µ+ ν, f =
d (µ|D)

d (λ|D)
, g =

d (ν|D)

d (λ|D)
, and

γ(A) =
1

‖µ− ν‖D

∫
A

(g − f)
+
dλ for all A ∈ E .

Since
∫

(g − f)
+
dλ = ‖µ− ν‖D, such a γ is a probability measure on E . Let (Φ, C,Q) be

any probability space which supports three independent random variables U, X, Z with
U uniformly distributed on (0, 1) and

Q(X ∈ A) = µ(A) and Q(Z ∈ A) = γ(A) for all A ∈ E .

Define

G =
{
f(X)U > g(X)

}
, Y = Z on G and Y = X on Gc.
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Then,

Q(G) = Q

[
f(X) > g(X), U >

g(X)

f(X)

]
=

∫
{f>g}

(
1− g

f

)
f dλ

=

∫
{f>g}

(f − g) dλ = ‖µ− ν‖D.

Moreover, for each A ∈ E ,

Q(Y ∈ A) = Q
(
G ∩ {Z ∈ A}

)
+Q

(
Gc ∩ {X ∈ A}

)
= Q(G)Q(Z ∈ A) +Q [f(X)U ≤ g(X), X ∈ A]

=

∫
A

(g − f)+dλ+

∫
A∩{f>g}

g

f
dµ+ µ

(
A ∩ {f ≤ g}

)
.

If A ∈ D, since f = d (µ|D)
d (λ|D) , one obtains∫

A∩{f>g}

g

f
dµ+ µ

(
A ∩ {f ≤ g}

)
=

∫
A∩{f>g}

g

f
f dλ+

∫
A∩{f≤g}

f dλ =

∫
A

(f ∧ g) dλ.

Therefore,

Q(Y ∈ A) =

∫
A

(g − f)+dλ+

∫
A

(f ∧ g) dλ =

∫
A

g dλ = ν(A) for each A ∈ D.

It follows that

‖µ− ν‖D ≤ Q∗(X 6= Y ) ≤ Q∗(X 6= Y ) ≤ Q(G) = ‖µ− ν‖D

where the first inequality has been discussed in Section 2. Hence, to conclude the proof,
it suffices to take (Φ,A,P) as the completion of (Φ, C,Q).

Lemma 4.3 slightly improves some known results; see [4, Proposition 3.1] and [18,
Lemma 2.1]. We also recall that the diagonal ∆ = {(x, x) : x ∈ S} does not necessarily
belong to E ⊗ E; see e.g. Exercise 3.10.44 of [5]. A characterization of the measurable
spaces (S, E) such that ∆ ∈ E ⊗ E is in [5, Theorem 6.5.7].

Proof of Theorem 4.2. By Lemma 4.3, applied with S = Ω, E = F and D = G0, there
are a probability space (Φ,A,P) and two measurable maps X, Y : (Φ,A)→ (Ω,F) such
that

P (X ∈ A) = µ(A) for all A ∈ F , P (Y ∈ A) = ν(A) for all A ∈ G0,{
X 6= Y

}
∈ A and P(X 6= Y ) = ‖µ− ν‖G0 .

Up to replacing (Φ,A,P) with its completion, it can be assumed that (Φ,A,P) is complete.
Because of (3.1),

1{X∈A} − 1{Y ∈A} ≤ 1{(X,Y )/∈E} ≤ 1{X 6=Y } for each A ∈ G0.

Therefore,

µ(A)− ν(A) =

∫ (
1{X∈A} − 1{Y ∈A}

)
dP ≤ P∗

(
(X,Y ) /∈ E

)
≤ P∗

(
(X,Y ) /∈ E

)
≤ P(X 6= Y ) = ‖µ− ν‖G0 for each A ∈ G0,

which in turn implies

‖µ− ν‖G0 ≤ P∗
(
(X,Y ) /∈ E

)
≤ P∗

(
(X,Y ) /∈ E

)
≤ ‖µ− ν‖G0 .
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Since (Φ,A,P) is complete, one obtains{
(X,Y ) /∈ E

}
∈ A and P

(
(X,Y ) /∈ E

)
= ‖µ− ν‖G0 .

To conclude the proof, note that
{

(X,Y ) ∈ H
}
∈ A for each H ∈ F ⊗ F and define

ν0(A) = P(Y ∈ A) and P (H) = P
(
(X,Y ) ∈ H

)
for all A ∈ F and H ∈ F ⊗ F .

Then, ν0 = ν on G0, P ∈ Γ(µ, ν0) and

1− P (E) = ‖µ− ν‖G0 ≤ 1−Q(E) for each Q ∈ Γ(µ, ν0).

It is worth noting that, in Theorem 4.2, (Ω,F) is not required to be a standard Borel
space. In addition, Theorem 4.2 has the following useful consequence.

Corollary 4.4. Let (Ω,F) be a standard Borel space.

(a) If E ∈ F ⊗ G0, then

min
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G0 for all µ, ν ∈ P(F).

(b) If E ∈ F̂ ⊗ G1 (and even if E /∈ F ⊗ F), then

min
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 for all µ, ν ∈ P(F).

Proof. Recall that, for each γ ∈ P(F), the only extension of γ to F̂ is still denoted by γ.
Moreover, since (Ω,F) is standard Borel, every probability measure on F̂ is perfect.

Part (a). Suppose E ∈ F ⊗ G0. Given µ, ν ∈ P(F), by Theorem 4.2, there are ν0 ∈ P(F)

and P0 ∈ Γ(µ, ν0) such that ν0 = ν on G0 and 1− P0(E) = ‖µ− ν‖G0 . In addition, since µ
and ν are perfect, by Theorem 9 of [15], there is P ∈ Γ(µ, ν) such that P = P0 on F ⊗ G0.
Since E ∈ F ⊗ G0, one obtains P (E) = P0(E). Therefore,

P ∈ Γ(µ, ν) and 1− P (E) = ‖µ− ν‖G0 ≤ 1−Q(E) for each Q ∈ Γ(µ, ν)

where the inequality is by (3.1).

Part (b). Suppose E ∈ F̂ ⊗ G1. Let Γ̂(µ, ν) be the collection of probability measures P̂
on F̂ ⊗ F̂ such that

P̂ (A× Ω) = µ(A) and P̂ (Ω×A) = ν(A) for all A ∈ F̂ .

Since E ∈ F̂ ⊗G1 and µ and ν are perfect (where µ and ν are now regarded as probability
measures on F̂) the proof of part (a) can be repeated with (Ω, F̂) and G1 in the place of
(Ω,F) and G0. Hence,

1− P̂ (E) = ‖µ− ν‖G1 for some P̂ ∈ Γ̂(µ, ν).

Finally, denoting by P the restriction of P̂ on F ⊗ F , one obtains

P ∈ Γ(µ, ν) and 1− P (E) = ‖µ− ν‖G1 ≤ 1−Q(E) for each Q ∈ Γ(µ, ν).

Corollary 4.4-(a) slightly improves [7, Theorem 3.13]. The former requires in fact
E ∈ F ⊗G0 while the latter E ∈ G0⊗G0. However, we do not know of any example where
E ∈ F ⊗ G0 but E /∈ G0 ⊗ G0. Instead, to our knowledge, Corollary 4.4-(b) is new. Among
other things, since E is not forced to belong to F ⊗ F , it allows to handle situations
where E is analytic but not Borel.
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Example 4.5. Let Ω be a Polish space and F = B(Ω). A subset of Ω is a Gδ if it is a
countable intersection of open sets. In particular, open and closed subsets of Ω are both
Gδ. The next result is a consequence of Corollary 4.4-(b).

If E is analytic and the equivalence classes of E are Gδ, then

min
P∈Γ(µ,ν)

(1− P (E)) = ‖µ− ν‖G1 for all µ, ν ∈ P(F).

To prove this claim, it suffices to show that E ∈ F̂ ⊗ G1. For A ∈ F , define

A∗ = {x ∈ Ω : ∃ y ∈ A such that (x, y) ∈ E}.

Then, A∗ is analytic, as it is the projection on the first coordinate of the analytic set
E ∩ (Ω× A). Hence, A∗ ∈ F̂ . Since A∗ is a union of equivalence classes of E, one also
obtains A∗ ∈ G1. Having noted this fact, fix a countable basis U for the topology of Ω and
define

V = σ(U∗ : U ∈ U).

Then, V is countably generated and V ⊂ G1. If A and B are any disjoint Gδ sets, there is
U ∈ U such that

A ∩ U 6= ∅ and B ∩ U = ∅ or A ∩ U = ∅ and B ∩ U 6= ∅;

see the proof of Lemma 2 in [10]. Hence, if A and B are two disjoint equivalence classes
of E, then

A ⊂ U∗ and B ∩ U∗ = ∅ or A ∩ U∗ = ∅ and B ⊂ U∗

for some U ∈ U . This implies that the equivalence classes of E are precisely the atoms
of V. Finally, since V is countably generated, there is a function f : Ω → R such that
V = σ(f). Therefore,

E =
{

(x, y) : f(x) = f(y)
}
∈ V ⊗ V ⊂ F̂ ⊗ G1.

We close this paper with a last result. While not practically useful, it still provides
some information on primal minimizers.

Theorem 4.6. Let (Ω,F) be a standard Borel space and P ∈ Γ(µ, ν) for some µ, ν ∈
P(F). Then, P is a primal minimizer (with respect to c = 1− 1E) if and only if

P (E) = 1− P (A×Ac) for some A ∈ G1. (4.1)

Proof. By (2.1), there is A ∈ G1 such that ‖µ − ν‖G1 = µ(A) − ν(A). Hence, if P is a
primal minimizer, Theorem 3.1 implies

1− P (E) = ‖µ− ν‖G1 = µ(A)− ν(A) =

∫ (
1A(x)− 1A(y)

)
P (dx, dy)

≤ P (A×Ac) ≤ P (Ec) = 1− P (E).

Thus, condition (4.1) holds. Conversely, if (4.1) holds for some A ∈ G1, then

P
{

(x, y) : 1A(x)− 1A(y) = 1− 1E(x, y)
}

= P (E) + P
{

(x, y) ∈ Ec : 1A(x)− 1A(y) = 1
}

= P (E) + P
(
Ec ∩ (A×Ac)

)
= P (E) + P (A×Ac) = 1.

Therefore, for each Q ∈ Γ(µ, ν),

1− P (E) =

∫ (
1A(x)− 1A(y)

)
P (dx, dy) = µ(A)− ν(A)

=

∫ (
1A(x)− 1A(y)

)
Q(dx, dy) ≤ 1−Q(E)

where the last inequality is by (3.1). Hence, P is a primal minimizer.
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Theorem 4.6 is very similar to Proposition 3.12 of [7]. Both provide characterizations
of primal minimizers. The only difference is that, in Proposition 3.12, it is required a
priori that E is strongly dualizable.
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