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Abstract

Random matrices from the elliptic Ginibre orthogonal ensemble (GinOE) are a certain
linear combination of a real symmetric, and real anti-symmetric, Gaussian random
matrix and controlled by a parameter τ . Our interest is in the fluctuations of the
number of real eigenvalues, for fixed τ when the expected number is proportional to
the square root of the matrix size N , and for τ scaled to the weakly non-symmetric
limit, when the expected number is proportional to N . By establishing that the
generating function for the probabilities specifying the distribution of the number of
real eigenvalues has only negative real zeros, and using too the fact that variances in
both circumstances of interest tends to infinity as N → ∞, the known central limit
theorem for the fluctuations is strengthened to a local central limit theorem, and the
rate of convergence is discussed.
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1 Introduction

A property of non-Hermitian random matrices with real entries is that in general real
eigenvalues occur with non-zero probability. The first such class of random matrices
to be studied in detail from this viewpoint was the case of standard Gaussian entries
[14, 13]. This class of random matrices is now referred to as the Ginibre orthogonal
ensemble (GinOE); see the recent review [8]. Let NR denote the random variable for
the number of real eigenvalues. An early finding was for the large matrix size N of the
expected value of NR [14],

E(NR) ∼
N→∞

√
2N

π
. (1.1)

Later the large N form of the corresponding variance was shown to be proportional to
expected value [25],

σ2(NR) ∼
N→∞

(2−
√

2)E(NR). (1.2)

Ask now about the large N form of the scaled distribution

Pr
(NR − E(NR)

σ(NR)
≤ x

)
. (1.3)
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

As part of a more general study probing the asymptotic distribution of a scaled polyno-
mial linear statistic

∑N
j=1 p(λj/

√
N) [40], and extended to a more general class of test

functions in [16], it was proved (choose p(x) = 1) that (1.3) limits to a standard normal
distribution. Equivalently this establishes the central limit theorem (CLT) for the scaled
fluctuation of NR,

lim
N→∞

NR − E(NR)

σ(NR)

d
= N[0, 1]. (1.4)

Recently, as part of the review [8], the CLT (1.4) was strengthened to a local central
limit theorem (LCLT). To state the latter, let p2k,N denote the probability that an N ×N
GinOE matrix has, for N even, exactly 2k real eigenvalues (since complex eigenvalues
of real matrices occur in complex conjugate pairs, the parity of the matrix size and the
number of real eigenvalues must agree). Note that {p2k,N} define the distribution of NR.
With this notation the LCLT in question reads [8, Prop. 2.4]

lim
N→∞

supx∈(−∞,∞)

∣∣∣σ(NR)p2k,N |2k=dσ(NR)x+E(NR)e −
1√
2π
e−x

2/2
∣∣∣ = 0. (1.5)

This a stronger convergence statement than the CLT (1.4), giving precise information
about the individual probabilities, whereas the former gives an asymptotic equality for
the cumulative sum of the probabilities.

The purpose of this note is to generalise (1.5) to the setting of the real eigenvalues
for the elliptic GinOE class of random matrices. To define the latter, for G1, G2 ∈ GinOE

we define a real symmetric matrix S, and real anti-symmetric matrix A, by setting
S = 1

2 (G1 +GT1 ) and A = 1
2 (G2 −GT2 ). With τ a parameter, 0 < τ < 1, a member X of the

elliptic GinOE is defined in terms of S and A according to the linear combination

X =
√

1 + τS +
√

1− τA. (1.6)

Note that with τ = 0 a GinOE matrix is obtained, while for τ = 1 the matrix is real
symmetric and in fact a member of the Gaussian orthogonal ensemble (see e.g. [17,
§1.1]). With X 7→ X/

√
N , it is known [12, 21] that for N → ∞ the eigenvalue density

is supported in an ellipse with semi-axes A = 1 + τ , B = 1 − τ , and moreover upon
normalising to integrate to unity has the constant value 1/(π(1 − τ2)) in this support.
It is also known that setting τ = 1 − α2/N , with α > 0 fixed, allows for a well defined
weakly non-symmetric limit [27].

For the elliptic GinOE (indicated in the notation below by the superscript τ ), one has
from [26]

E(Nτ
R) ∼

N→∞

√
2

π

1 + τ

1− τ
N. (1.7)

In the weakly non-symmetric limit this leading
√
N behaviour is replaced by an asymp-

totic form proportional to N [9]

E(Nτ
R)
∣∣∣
τ=1−α2/N

∼
N→∞

c(α)N, c(α) := e−α
2/2
(
I0(α2/2) + I1(α2/2)

)
. (1.8)

Here Iν(z) denotes the purely imaginary argument Bessel function. Also, for the corre-
sponding variances we have [9]

σ2(Nτ
R) ∼

N→∞
(2−

√
2)E(Nτ

R) (1.9)

and

σ2(Nτ
R)
∣∣∣
τ=1−α2/N

∼
N→∞

(
2− 2

c(
√

2α)

c(α)

)
E(Nτ

R). (1.10)
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

A very recent result of Byun, Molag and Simm [10] gives the CLTs

lim
N→∞

NR − E(NR)

σ(NR)

d
= N[0, 1], lim

N→∞

NR − E(NR)

σ(NR)

∣∣∣
τ=1−α2/N

d
= N[0, 1]. (1.11)

Our main result extends (1.11) to a LCLT.

Theorem 1.1. Let N be even and let pτ2k,N denote the probability that there are exactly
2k real eigenvalues for a matrix drawn from the elliptic GinOE. We have that {pτ2k,N}
satisfy the LCLT

lim
N→∞

supx∈(−∞,∞)

∣∣∣σ(Nτ
R)p2k,N |2k=dσ(Nτ

R
)x+E(Nτ

R
)e −

1√
2π
e−x

2/2
∣∣∣ = 0. (1.12)

With E(Nτ
R), σ(Nτ

R) appropriately specified, this holds both for τ fixed with respect to N ,
and for the weakly non-symmetric scaling τ = 1− α2/N .

Remark 1.2. Taking into consideration that the parity of the matrix size and the parity
of the number of real eigenvalues must be the same, for N odd the quantity pτ2k−1,N

denoting the probability that there are exactly 2k− 1 real eigenvalues for a matrix drawn
from the elliptic GinOE could similarly be considered. However, with the eigenvalues
of the (elliptic) GinOE forming a Pfaffian point process, the case of N odd requires
modification relative to that of N even [6]. While this is easy to account for (see e.g. [17,
Exercises 6.3 q.1]), as no distinct difficulties are encountered, for ease of presentation
attention in restricted to the case of N even.

2 Earlier examples of LCLTs in random matrix theory and method-
ology

To this author’s knowledge, the first example of a LCLT identified in random matrix
theory was in a setting analogous to that of Theorem 1.1 [23]. Thus for G1, G2 ∈ GinOE

form the spherical GinOE matrix G−1
1 G2, so named since upon a stereographic projection

its eigenvalues are naturally associated with a point process on the sphere [14]. For
N even let ps

2k,N denote the probability that there are exactly 2k real eigenvalues for a
matrix drawn from the spherical GinOE, and introduce the generating function

Zs
N (ζ) :=

N/2∑
k=0

ζkps
2k,N .

Note that with ζ = eit this has the interpretation as the characteristic function for the
distribution of {ps

2k,N}. In [23] the factorisation formula

Zs
N (ζ) = AN

N/2∏
l=1

(1 + ζ/ul(N)), ul(N) > 0, (2.1)

for explicit AN , ul(N) was given, establishing in particular that all the zeros of Zs
N (ζ) lie

on the negative real axis in the complex ζ-plane. We remark that this implies {ps
2k,N} is

an example of a Pólya frequency sequence [39, 37].
There are at least two significant consequences of this property with regards to

the distribution of {ps
2k,N}. One is that a CLT holds, while the other is that the CLT

can be strengthened to a LCLT. In relation to the CLT, for 0 ≤ λj ≤ 1 (j = 1, . . . , N/2)

denote by Ber[λj ] the Bernoulli distribution for a random variable xj ∈ {0, 1} specified
by Pr(xj = 1) = λj , Pr(xj = 0) = 1− λj (0 < λj < 1). Consider the sum of N/2 (N even)
such random variables

N/2∑
j=1

xj
d
=

N/2∑
j=1

Ber[λj ]. (2.2)
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

The characteristic function of this sum is

N/2∏
j=1

(1− λj + eitλj). (2.3)

Comparing (2.3) with (2.1) shows that we can identify ζ = eit and ul(N) = (1 − λl)/λl,
with the requirement that ul(N) > 0 being upheld since λl takes on values between 0

and 1. For the sum (2.2), standard arguments [15, Section XVI.5, Theorem 2], [28], [11]
gives that a CLT holds for N →∞ whenever the corresponding variance diverges in this
limit. On this latter point, it can be established that σ(N s

R)→∞ as N →∞ [23] (in fact
structurally the same asymptotic relation as (1.9) holds true, with the asymptotic value
of the expectation on the RHS E(N s

R) now being given by
√
πN/2 which is π/2 times

(1.1)). Hence, by the Bernoulli random variable interpretation of (2.1), we can conclude
the validity of the CLT (1.11) with NR replace by N s

R.
We now come to the consequence of the factorisation (2.1) in relation to the validity

of a LCLT. By a theorem attributed to Newton relating to a property of the elementary
symmetric polynomials (here in the variables {ul(N)}), see e.g. [36], the fact that
ul(N) ≥ 0 (l = 1, . . . , N/2) implies that the coefficients of the series expansion of Zs

N (ζ),
i.e. {ps

2k,N}, form a log-concave sequence,

log ps
2(k+1),N − 2 log ps

2k,N + log ps
2(k−1),N ≤ 0. (2.4)

It is proved in [2, Th. 2] that (2.4) together with the CLT (2.3) are sufficient for the
validity of the LCLT (1.5) with NR replaced by N s

R.
Subsequent to [23], in [22] a related but distinct setting in random matrix theory

giving rise to LCLTs was identified. This is in relation to the random variable N(Λ) for
the number of eigenvalues in a region Λ, in the circumstance that the volume |Λ| → ∞
and that the eigenvalues for a determinantal point process with an Hermitian kernel
(for more on the latter see e.g. [5]). As an explicit example, consider the Ginibre unitary
ensemble (GinUE) of standard complex Gaussian entries. In the limit N → ∞ the
eigenvalues form a determinantal point process with Hermitian kernel

1

π
e−(|w|2+|z|2)/2ewz̄; (2.5)

see the recent review [7]. Let Ek(0; Λ) denote the probability that there are no eigen-
values in the region Λ, with {Ek(0; Λ)} specifying the random variable N(Λ). The fact
that (2.5) is an Hermitian kernel can be used to show that the generating function∑∞
k=0 z

kEk(0; Λ) only has negative real zeros. With it being known that the correspond-
ing variance σ2(N(Λ)) tends to infinity as |Λ| → ∞ [34] (see too the recent review [18,
§2.9]), the same reasoning as used in the paragraph containing (2.2) giving the CLT
(1.11) with N e

R replace by N s
R, and in the above paragraph containing (2.4) strengthening

this to a LCLT, again applies. Consequently a LCLT theorem holds for the probabilities
Ek(0; Λ) (replace pτ2k,N with Ek(0; Λ), and Nτ

R by N(Λ) in (1.12)).
We see then that the main task in establishing a LCLT according to this strategy,

after establishing that the variance diverges as N →∞, is to be able to show that the
generating function for the underlying probabilities has all its zeros on the negative real
axis. For the spherical GinOE this was immediate by knowledge of the explicit factorisa-
tion (2.1). In the recent review [8], a method independent of an explicit factorisation
was introduced in the case of the {p2k,N} for GinOE. Specifically, this was shown as a
consequence of the determinant formula [30]

N/2∑
k=0

zkp2k,N = det

[
δj,k +

(z − 1)√
2π

Γ(j + k − 3/2)√
Γ(2j − 1)Γ(2k − 1)

]N/2
j,k=1

. (2.6)
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

Thus let {zp}p=1,...,N/2 denote the zeros of (2.6). We observe that {1/(1− zp)}p=1,...,N/2

are the eigenvalues of the matrix[
1√
2π

Γ(j + k − 3/2)√
Γ(2j − 1)Γ(2k − 1)

]N/2
j,k=1

. (2.7)

This is a real symmetric matrix and so all the eigenvalues are real, and hence so are
the zeros {zp}. Moreover, since {p2k,N} are probabilities, these zeros are both real and
non-positive (in fact since as established in [30] p0,N > 0, which tells us that all the zeros
are in fact negative), which is the required result.

Let’s return now to the consideration of a LCLT for {pτ2k,N} as relates to the random
variable Nτ

R. The asymptotic formulas (1.9) and (1.10) tell us that σ2(Nτ
R) → ∞ as

N → ∞ in both cases of interest, τ fixed and τ = 1 − α2/N . Thus to give a proof of
Theorem 1.1 it is sufficient to establish that the generating function

ZτN (z) :=

N/2∑
k=0

zkpτ2k,N (2.8)

has all its zeros real and non-positive in the complex z-plane. We have seen in (2.6)
for the GinOE probabilities {p2k,N} that an avenue to deduce the location of the zeros
is through a determinant formula involving a real symmetric matrix. In fact, as to be
revised and discussed in the next section, such a formula has been given in the recent
work [10].

3 The zeros of Zτ
N(z) and a proof of Theorem 1.1

Let Hn(x) denote the Hermite polynomials. The following determinant formula for
ZτN (z) holds.

Proposition 3.1. (Prop. 2.1 of [10]) We have

ZτN (z) = det
[
δj,k + (z − 1)Mτ

N (j, k)
]
j,k=1,...,N/2

, (3.1)

where

Mτ
N (j, k) =

1√
2π

(τ/2)j+k−2√
Γ(2j − 1)Γ(2k − 1)

∫ ∞
−∞

e−x
2/(1+τ)H2j−2(x/

√
2τ)H2k−2(x/

√
2τ) dx.

(3.2)

Proof. It is remarked in [10] that (3.1) is equivalent to a determinant formula for pτ2k,N
given in [26, Eq. (3.8)]. Not starting from the latter formula directly, but using other
formulas from [26], working is given in [10] to deduce (3.1). Due to the importance
of this result to the proof of Theorem 1.1, we will give a derivation here too, which in
comparison to the one in [10] differs for the emphasis we place on a derivative structure
present in the underlying skew orthogonal polynomials.

We will take as our starting point a minor variation of [26, Eq. (3.8) with the change
of variables x 7→ x/

√
1 + τ , y 7→ y/

√
1 + τ ], which states

ZτN (z) =
(1 + τ)−N/2

2N(N+1)/4
∏N
l=1 Γ(l/2)

det[zα2j−1,2k + β2j−1,2k]j,k=1,...,N/2. (3.3)

Here, with {pn(x)} a set of monic polynomials of the indexed degree, and further
having the same parity under the mapping x 7→ −x as the index, the quantities in the
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

determinant are specified by

αj,k =

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−(x2+y2)/(2(1+τ))pj−1(x)pk−1(y)sgn (y − x)

βj,k = 2i

∫ ∞
0

dx

∫ ∞
−∞

dy e(y2−x2)/(1+τ)erfc
(√ 2

1− τ2
y
)

×
(
pj−1(x+ iy)pk−1(x− iy)− pk−1(x+ iy)pj−1(x− iy)

)
. (3.4)

(In [26, Eq. (3.8)] the particular choice of monic polynomials with the required parity
property pj(x) = xj is made, but this is not what we want here.)

From the definitions one sees that

〈pj−1, pk−1〉 := αj,k + βj,k

defines a skew-symmetric inner product. We know from [26, Th. 1 and Eq. (4.40)] that
with

Ck(z) :=
(τ

2

)k/2
Hk(z/

√
2τ),

the choice of monic polynomials pj(z) = qj(z), where

q2k(z) = C2k(z), q2k+1(z) = −(1 + τ)ez
2/(2(1+τ)) d

dz

(
e−z

2/(2(1+τ))C2k(z)
)
, (3.5)

have the skew orthogonality property

〈q2j , q2k〉 = 〈q2j+1, q2k+1〉 = 0 (j, k = 0, 1, . . . ), 〈q2j , q2k+1〉 = 0 (j, k = 0, 1, . . . (j 6= k))

(3.6)
with the normalisation

〈q2j , q2j+1〉 = (2j)!2
√

2π(1 + τ). (3.7)

The monic skew orthogonal polynomials (3.6) have the required parity property and
so can be substituted in (3.4). Doing this, and substituting the result in (3.3), simple
manipulation using the skew orthogonality property shows

ZτN (z) = det

[
δj,k + (z − 1)

1

2
√

2π(1 + τ)

1√
Γ(2j − 1)Γ(2k − 1)

α2j−1,2k

]
j,k=1,...,N/2

. (3.8)

From the definition in (3.4) of α2j−1,2k, one has the double integral formula

α2j−1,2k = −(1 + τ)
(τ

2

)j+k−2
∫ ∞
−∞

dx e−x
2/(2(1+τ))H2j−2(x/

√
2τ)

×
∫ ∞
−∞

dy
( d
dy

(
e−y

2/(2(1+τ))H2k−2(y/
√

2τ)
)

sgn (y − x). (3.9)

Using the fact that d
dy sgn(y−x) = 2δ(y−x), integration by parts allows for the y-integral

herein to be evaluated to equal −2e−x
2/(2(1+τ))H2k−2(x/

√
2τ). This gives a single integral

formula for (3.9), which reduces (3.8) to the form (3.1), as required.

We are now in a position to establish the required property of the zeros of ZτN (z) and
thus to conclude the proof of Theorem 1.1. The matrix

Mτ
N := [Mτ

N (j, k)]j,k=1,...,N/2 (3.10)

in (3.1) is real symmetric and so its eigenvalues are real (in fact they are positive since it
is easy to verify from (3.2) that Mτ

N is positive definite). The reasoning of the paragraph
containing (2.7) tells us that all the zeros of ZτN (z) are on the negative real axis in the
complex z-plane. As noted in the final paragraph of Section 2, this implies the validity of
Theorem 1.1.
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

4 Numerical calculations and discussion

The integral expression (3.2) defining the matrix elements Mτ
N (j, k) is shown in [10,

Prop. 2.1] to permit an evaluation in terms of the 2F1 hypergeometric function

Mτ
N (j, k) =

1

2
√

2π

(1 + τ

1− τ

)1/2 Γ(k − j − 3/2)√
Γ(2j − 1)Γ(2k − 1)

× 2F1(k − j + 1/2, j − k + 1/2;−j − k + 5/2;−τ/(1− τ)). (4.1)

With {λτj (N)}j=1,...,N/2 the eigenvalues of the matrix Mτ
N (3.10), it follows from (2.8) that

ZτN (z) =

N/2∏
l=1

(1 + (z − 1)λτj (N)). (4.2)

For given τ , the matrix elements in (4.1) can be computed to high precision, using
the computer algebra software Mathematica for example. With N fixed, this allows the
eigenvalues of Mτ

N to be computed to high precision. Hence by (4.2) ZτN (z) is known in
product form. The coefficients in the series expansion of this product form are, by (2.8),
{pτ2k,N}. These can be extracted from the formula for a Fourier coefficient of a Fourier
series

pτ2k,2M =
1

M

M−1∑
l=0

ZτN (e2πil/M )e−2πilk/M ,

where we have set M = N/2 for convenience. This gives rise to high precision evaluation
of {pτ2k,N}, as can be checked from the requirement that the probabilities sum to 1. As
an example

pτ2k,N

∣∣∣
N=80,k=20
τ=1/2

= 7.946014632966 · · · × 10−23. (4.3)

It turns out that knowledge of the eigenvalues can also be used to compute a large N
Stirling-type asymptotic expression for {pτ2k,N} [29, 37]. For r > 0 define

a(r) = r
d

dr
logZτN (r) = r

N/2∑
l=1

λτl (N)

1 + (r − 1)λτl (N)
,

b(r) = r
d

dr
a(r) = r

N/2∑
l=1

λτl (N)(1− λτl (N))

(1 + (r − 1)λτl (N))2
. (4.4)

These correspond to the mean and variance of the discrete probability sequence
{rkpτ2k,N/ZτN (r)}N/2k=0. In the setting that all the zeros of ZτN (z) are on the negative
real axis in the complex z-plane, one has that the equation a(r) = k has a unique positive
solution rk say; see [37, below (18)]. The Stirling-like formula is in terms of b(r) in (4.4),
the generating function ZτN (r) and rk, and reads [37, Eq. (26)]

pτ2k,N =
1√

2πb(rk)

ZτN (rk)

(rk)k
(1 + εk). (4.5)

Here |εk| is bounded by C/b(rk)1/2 for some C > 0 independent of k (in [37, text below
(27)] it is suggested that in the bound b(rk)1/2 can be replaced by b(rk)). Computing the
approximation (4.5) for the setting of (4.3) gives

pτ2k,N

∣∣∣
N=80,k=20
τ=1/2

≈ 7.943× 10−23. (4.6)
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LCLT for real eigenvalue fluctuations of elliptic GinOE matrices

Figure 1: Plot of the difference (4.7) as a function of k for N = 100 and τ = 0.99, for
which EτR/2 ≈ 41.1 and σ2(Nτ

R) ≈ 25.9.

The ratio of the approximation (4.6) to the exact value (4.3) is 0.9996. On the other
hand b(rk) evaluates to 1.249 · · · so the bound(s) noted below (4.5) is not quantatively
informative. We remark that a Stirling-like formula analogous to (4.6) has been used in
the recent work [3] in the context of a study of corrections to the known random matrix
limit for the distribution of the longest increasing subsequence length of a random
permutation. We remark too that for τ = 0 (GinOE case) and k proportional to N ,
k/N = µ say, the asymptotic formula pτ2k,N |τ=0 ∼ e−c(µ)N2

has been established, where
the proportionality c(µ) can be interpreted as an energy for a certain two-dimensional
electrostatics problem [35].

Of interest is the rate of convergence to the limit law implied by (1.12), and thus a
bound on the difference

p2k,N −
1√

2πσ2(Nτ
R)
e−(2k−E(NτR ))2/(2σ2(NR)). (4.7)

In fact [37, Eq. (25)] gives that there exists a C > 0 such that the absolute value of (4.7)
is less than C/σ2(Nτ

R) for each k = 0, 1, . . . , N/2. This bound is evident from numerical
computation (see Figure 1), which moreover suggests that (4.7) when multiplied by
σ2(Nτ

R) tends to a well defined limiting functional form. See [24, 3, 4] for the recent
identification and study of an analogous property for the longest increasing subsequence
problem alluded to in the previous paragraph.

Below (1.6) it was noted that the τ = 0 case of the elliptic GinOE corresponds to
the GinOE, so the former is a generalisation of the latter. Another generalisation of the
GinOE is to consider products of m independent GinOE matrices. A determinant formula
for the generating function of the probabilities of the real eigenvalues, which like (2.6)
and (3.1) is derived based on a skew orthogonal polynomial formalism, has been given in
[19, Th 1]. While this allows for exact computation of the probabilities for small matrix
size in the case m = 2, the matrix in the determinant formula is not symmetric and so
the location of its zeros are not evident. As emphasised in the proof of Proposition 3.1,
a key ingredient in deducing a determinant formula involving a symmetric matrix in
the skew orthogonal polynomial formalism is a derivative formula for q2k+1(z) as in
(3.5). In the case of products, while q2k+1(z) remains a simple linear combination of
two monomials, a derivative formula no longer holds. Nonetheless, since by the use of
hypergeometric polynomial evaluation formulas for the underlyiing Meijer G-functions
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[32] we have available the exact probabilities of the real eigenvalues for m = 2 and small
N (specifically N = 6; see [19, Table 1]), we can compute the location of the zeros the
generating function numerically. It is found that all the zeros are again on the negative
real axis. The mechanism for this, and thus a LCLT remains to be found. Using analysis
that is independent of the location of the zeros of the generating function, but rather
based instead on the Pfaffian point process structure of the correlation functions, a CLT
in this setting has been established in [40, 16]. Further, in [1], formulas from the Pfaffian
point process structure have further been used to determine the asymptotic form of
E(Nm

R ) and σ2(Nm
R ) (here the use of the superscript m denotes the m products) in the

double scaling N,m→∞ with m/N fixed limit.
Exact results for the probability of a prescribed number of real eigenvalues for

products of m real random matrices are also known in the case that the individual
matrices are constructed from an N×N truncation of a Haar distributed (n+N)×(n+N)

real orthogonal matrix [20]. The case m = 1 was further considered in the review [8].
There, due to a derivative structure for the odd indexed skew orthogonal polynomials
analogous to that in (3.5), a real symmetric matrix formula for the generating function
of the probabilities was shown to hold true, from which the validity of a LCLT follows [8,
paragraph below Prop. 4.7]. In the case n = 1 this generating function first appeared in
the work [38]. However, as for the products of GinOE matrices, a derivative structure for
the odd indexed skew orthogonal polynomials in the cases m ≥ 2 no longer holds, and
the matrix in the determinant formula for the generating function is no longer symmetric.
From the tabulation [20, Table 1] low order cases (specifically n = N = 4, m = 2 and
m = 3) can be explored numerically, with the result that the zeros are found to be on the
negative real axis. It seems that the alternative method of [40, 16] of studying a CLT
for the real eigenvalue fluctuations via the underlying Pfaffian point process structure
has yet to be followed through, although the work [33] (see [31] for the case n = 1) has
made use of this structure to compute the asymptotics of the expected number of real
eigenvalues in various regimes, in particular n fixed and n proportional to N .
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