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Abstract

We prove that the solution to the singular-degenerate stochastic fast-diffusion equation
with parameter m ∈ (0, 1), with zero Dirichlet boundary conditions on a bounded
domain in any spatial dimension, and driven by linear multiplicative Wiener noise,
exhibits improved regularity in the Sobolev space W 1,m+1

0 for initial data in L2.
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1 Introduction

In this work, we establish higher order regularity of the strong solutions to the
stochastic fast diffusion equation perturbed by linear multiplicative Wiener noise. The
equations are set on a bounded domain O ⊂ Rd with sufficiently smooth boundary, and
formulated with zero Dirichlet boundary conditions. Our approach is independent of the
space dimension.

The singular-degenerate stochastic fast diffusion equation, m ∈ (0, 1), until the
time-horizon T > 0, is given by

du(t) = ∆
(
u[m](t)

)
dt+

∞∑
k=1

gku(t) dβk(t), t ∈ (0, T ], in O,

u(t) = 0, t ∈ (0, T ], on ∂O,
u(0) = u0, in O,

(1.1)
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Improved regularity for the stochastic fast diffusion equation

where we employ the notation x[m] := |x|m−1x, x ∈ R, m ∈ (0, 1). The stochastic driving
term is given by an independent family of standard one-dimensional Brownian motions
{βk(t)}t≥0, k ∈ N supported by a filtered probability space (Ω,F , {Ft}t≥0,P) satisfying
the usual assumptions of completeness and right-continuity. The noise coefficients gk,
k ∈ N, are assumed to satisfy

∞∑
k=1

‖gk‖2C1(O)
=: Cg <∞. (1.2)

Denote H := H−10 (O), that is, the topological dual space of H1
0 (O) = W 1,2

0 (O). Further-
more, denote the L2(O)-norm by ‖ · ‖2 and the H−10 (O)-norm by ‖ · ‖H . For v ∈ H, we
introduce the following notation for the noise coefficient,

B(v)(h) =

∞∑
k=1

gkv(ek, h)H , h ∈ H,

where ek ∈ H, k ∈ N are the elements of an orthonormal basis of H. Then B : H →
L2(H,H) is Lipschitz continuous, i.e.,

‖B(x)−B(y)‖2L2(H,H) ≤ Cg‖x− y‖
2
H , x, y ∈ H,

see [19, Section 3]. Here, L2(H,H) denotes the space of linear Hilbert-Schmidt operators
from H to H. We also obtain

‖B(x)‖2L2(H,L2(O)) ≤
∞∑
k=1

‖gk‖2C0(O)
‖x‖2L2(O), x ∈ L2(O).

The stochastic fast diffusion equation is closely related to the stochastic porous medium
equation, see [7] and the references therein. Several properties of the solutions to
stochastic fast diffusion equations have been studied, for instance, finite time extinction
[6, 17], random attractors [16], invariance of subspaces [24], ergodicity and uniqueness
of invariant measures [21, 25, 27, 4], convergence of solutions [11, 22], under general
pseudodifferential operators [29], and regularity [19]. The limiting case m = 0 exhibits
two particular frameworks, depending on how one interprets the passage to the limit for
m→ 0. The multivalued case with a step-function nonlinearity is related to models of
self-organized criticality and has been first studied in [5, 8, 3, 17] and is still an active
topic of research [1, 26]. The logarithmic diffusion case has been studied in [2, 10]. The
case m ∈ (−1, 0) is treated in [9].

For an initial datum u0 ∈ L2(Ω,F0,P;H) and all spatial dimensions d ∈ N, it is
known that there exists a unique solution {u(t)}t∈[0,T ] in the sense of stochastic vari-
ational inequalities (SVI) [19, Definition 2.1] to (1.1) in the space L2(Ω;C([0, T ], H))

by [19, Theorem 2.3], which is also a unique generalized strong solution in the sense
of [19, Definition A.1] by [19, Theorem 3.1]. At the same place, for initial data u0 ∈
Lm+1(Ω,F0,P;Lm+1(O)) ∩ L2(Ω,F0,P;H), the authors obtain that u is in fact a unique
pathwise strong solution in the sense of [19, Definition A.1], such that

u ∈ C([0, T ];Lm+1(Ω;Lm+1(O))). (1.3)

Stronger notions of solutions and non-negativity of solutions are discussed in [7, Sec-
tion 3.6], where the authors obtain u[m] ∈ L2([0, T ];H1

0 (O)) and d
dtu ∈ L

2([0, T ];H) for
d = 1, 2, 3, where m ∈ [ 15 , 1] if d = 3.

Our main result is given as follows.
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Improved regularity for the stochastic fast diffusion equation

Theorem 1.1. Assume that (1.2) holds. Then the unique strong solution u to equa-
tion (1.1) with initial datum u0 ∈ L2(Ω,F0,P;L2(O)) satisfies

u ∈ Lm+1(Ω× [0, T ];W 1,m+1
0 (O)) ∩ L∞([0, T ];L2(Ω;L2(O))).

Note that also

u ∈ C([0, T ];Lm+1(Ω;Lm+1(O))) ∩ L2(Ω;C([0, T ], H))

by the results of Gess and Röckner [19].
Our main idea is based on the observation that formally,

∆
(
u[m]

)
= div

(
∇
(
u[m]

))
= m div

(
|u|m−1∇u

)
, (1.4)

so the nonlinear drift is of the form u 7→ div(A(u)∇u), that is, a divergence-form quasi-
linear partial differential operator. The structure of the drift operator resembles the
quasi-linear operators in [14, 28], however, we would like to point out that their result
requires strong ellipticity of the nonlinear coefficient A, whereas A(u) = m|u|m−1
becomes singular for u = 0 in our case. We will justify the formal chain rule (1.4)
by a choice of suitable approximations for the nonlinearity u[m].

For the degenerate drift case, there are several strong regularity results for the
stochastic porous medium equation, that is (1.1) with m > 1, as in this case one can
treat the second order terms occurring in Itô’s formula more directly, see [15]. Recently,
optimal regularity for the stochastic porous medium equation in one spatial dimension
with multiplicative space-time white noise was obtained using the so-called Stroock-
Varopoulos inequality by Dareiotis, Gerencsér and Gess [13], see [18, 20, 23] for further
results proving improved regularity for porous media equations. We note that the
application of the Stroock-Varopoulos inequality requires m > 1 and cannot be applied in
our case.

Furthermore, we would like to point out that our upper estimate contains a factor
m−

m+1
2 , so our argument does not to carry over to the singular multi-valued case m = 0.

Looking closer at our proof below, one observes that for m = 0, we may obtain an upper
bound containing a term 1

δ ‖u‖
3
L3(O), with δ → 0, so even the improved integrability

results from [5] in spatial dimensions d = 1, 2, 3 cannot resolve this issue. A result of
improved regularity in this limiting case remains an open problem.

2 Proof of the main result

Let us introduce a regularization for the nonlinearity r 7→ r[m], for δ ≥ 0, let

φδ(r) := (r2 + δ)
m−1

2 r,

where φδ ∈ C1(R) for δ > 0 with derivative

φ′δ(r) = (r2 + δ)
m−3

2 (δ +mr2) ≥ 0.

Now, we need to regularize the original equation (1.1) with parameter ε > 0, δ ≥ 0
duε,δ(t) = ∆ (φδ(uε,δ(t)) + εuε,δ(t)) dt+B (uε,δ(t)) dW (t), t ∈ (0, T ], in O,
uε,δ(t) = 0, t ∈ (0, T ], on ∂O,
uε,δ(0) = u0, in O.

(2.1)

Here, {W (t)}t≥0 denotes the cylindrical Wiener process in H on (Ω,F , {Ft}t≥0,P), con-
structed with respect to the {βk}k∈N introduced in the description of the equation (1.1)
and the orthonormal basis {ek}k∈N of H.
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By [19, Proof of Theorem 3.1], see also [22, Theorem 6.4], we get that there exist
unique solutions uε,δ to (2.1) for any ε > 0, δ ≥ 0, and we obtain the following weak con-
vergences (weak∗ convergence, respectively) for a subsequence {δn}n∈N, limn→∞ δn = 0,

uε,δn ⇀ uε in L2(Ω× [0, T ];H1
0 (O)) as n→∞,

uε,δn ⇀
∗ uε in L2(Ω;L∞([0, T ];L2(O))) as n→∞,

∆φδn(uε,δn) ⇀ ∆u[m]
ε in L2(Ω× [0, T ];H) as n→∞,

uε ⇀ u in L2(Ω;C([0, T ];H)) as ε↘ 0,

(2.2)

where u is the unique solution to (1.1) in the sense of [19, Definition A.1]. On the other
hand, uε,δ ∈ L2(Ω× [0, T ];H1

0 (O)), for any ε > 0, δ ≥ 0.

Proof of Theorem 1.1. We recall that we have assumed (1.2) to hold. Note that by the
chain rule for Sobolev functions, as φδ ∈ C1(R) for δ > 0 (composing φδ with a smooth
cut-off function if necessary), we get that for all v ∈ H1

0 (O),

∇(φδ(v)) = φ′δ(v)∇v.

In the sequel, let us fix t ∈ [0, T ]. By Itô’s formula [12, Theorem 4.32] for the functional

(v, t) 7→ ‖v‖22 e−Kt, v ∈ L2(O), t ∈ [0, T ],

for some K ≥ 0, and by integration by parts in O, we get that

E‖uε,δ(t)‖22 e−tK = E‖u0‖22 − 2E

∫ t

0

∫
O
e−Ks(φ′δ(uε,δ) + ε)(∇uε,δ · ∇uε,δ) dξ ds

+

∞∑
k=1

E

∫ t

0

∫
O
e−Ks|gkuε,δ|2 dξ ds−KE

∫ t

0

∫
O
e−Ks|uε,δ|2 dξ ds

≤ E‖u0‖22 − 2E

∫ t

0

∫
O
e−Ks(φ′δ(uε,δ) + ε)|∇uε,δ|2 dξ ds

+ (Cg −K)E

∫ t

0

∫
O
e−Ks|uε,δ|2 dξ ds

For notation purposes, we have dropped the dependency on the time s ∈ [0, t] and the
space variable ξ ∈ O for the functions uε,δ under the integrals. This convention will be
kept throughout the arguments below.

Choosing K = Cg, we obtain for ε, δ ∈ (0, 1],

E‖uε,δ(t)‖22 + 2E

∫ t

0

∫
O

(φ′δ(uε,δ) + ε)|∇uε,δ|2 dξ ds

≤ E‖u0‖22 eCgt.
(2.3)

We shall use this estimate to get the regularity of the solution as follows. We first rewrite
for β > 0,

E

∫ t

0

∫
O
|∇uε,δ|m+1 dξ ds = E

∫ t

0

∫
O

(φ′δ(uε,δ))
β |∇uε,δ|m+1(φ′δ(uε,δ))

−β dξ ds,

and use Hölder’s inequality for p =
2

m+ 1
and q =

2

1−m
.
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We obtain

E

∫ t

0

∫
O

(φ′δ(uε,δ))
β |∇uε,δ|m+1(φ′δ(uε,δ))

−β dξ ds

≤
(
E

∫ t

0

∫
O

(
(φ′δ(uε,δ))

β |∇uε,δ|m+1
) 2
m+1 dξ ds

)m+1
2
(
E

∫ t

0

∫
O

(φ′δ(uε,δ))
−β 2

1−m dξ ds

) 1−m
2

=

(
E

∫ t

0

∫
O

(φ′δ(uε,δ))
2β
m+1 |∇uε,δ|2 dξ ds

)m+1
2
(
E

∫ t

0

∫
O

(φ′δ(uε,δ))
− 2β

1−m dξ ds

) 1−m
2

.

If we choose β = m+1
2 , we get from the previous computations that for ε, δ ∈ (0, 1],

E

∫ t

0

∫
O
|∇uε,δ|m+1 dξ ds

≤
(
E

∫ t

0

∫
O
φ′δ(uε,δ)|∇uε,δ|2 dξ ds

)m+1
2
(
E

∫ t

0

∫
O

(φ′δ(uε,δ))
−m+1

1−m dξ ds

) 1−m
2

=

(
E

∫ t

0

∫
O
φ′δ(uε,δ)|∇uε,δ|2 dξ ds

)m+1
2

×
(
E

∫ t

0

∫
O

(u2ε,δ + δ)
(m−3)(m+1)

2(m−1) (δ +mu2ε,δ)
−m+1

1−m dξ ds

) 1−m
2

≤
(
E

∫ t

0

∫
O
φ′δ(uε,δ)|∇uε,δ|2 dξ ds

)m+1
2

×
(
E

∫ t

0

∫
O

(u2ε,δ + δ)
(m−3)(m+1)

2(m−1) (mδ +mu2ε,δ)
−m+1

1−m dξ ds

) 1−m
2

≤
(
E

∫ t

0

∫
O
φ′δ(uε,δ)|∇uε,δ|2 dξ ds

)m+1
2

× C(m)

(
E

∫ t

0

∫
O

(u2ε,δ + δ)
(m−3)(m+1)+2m+2

2(m−1) dξ ds

) 1−m
2

≤
(
E

∫ t

0

∫
O
φ′δ(uε,δ)|∇uε,δ|2 dξ ds

)m+1
2

× C(m)

(
E

∫ t

0

∫
O

(u2ε,δ + δ)
m+1

2 dξ ds

) 1−m
2

≤
(
E

∫ t

0

∫
O
φ′δ(uε,δ)|∇uε,δ|2 dξ ds

)m+1
2

× C(m)

(
E

∫ t

0

∫
O

(
|uε,δ|m+1 + δ

m+1
2

)
dξ ds

) 1−m
2

,

(2.4)

where C(m) := m−
m+1

2 . The first factor is bounded by (2.3) and the second factor is
bounded by (1.3), where the bounds do not depend on ε, δ ∈ (0, 1], compare with [19,
Theorem 3.1, Lemma 3.3 and the respective proofs]. By (2.3) or (2.2), we know that

uε,δn ∈ L2(Ω× [0, T ];H1
0 (O)), ε > 0, δ ≥ 0. (2.5)

By (2.2), and the fact that

L2(Ω× [0, T ];H1
0 (O)) ⊂ Lm+1(Ω× [0, T ];W 1,m+1

0 (O)) =: X,
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we may take the limit n → ∞, and, in virtue of the uniform estimate in δ from [19,
Theorem 3.1], obtain that (2.4) holds for uε, ε ∈ (0, 1]. Also, as the bounds used above
are independent of ε ∈ (0, 1], so we get that the family {uε}ε>0 is uniformly bounded
in the reflexive Banach space X, where the Sobolev trace is seen to be zero on ∂O
P⊗ dt-a.e. by (2.5). Thus, we can extract a weakly convergent subsequence {uεk}k∈N,
limk→∞ εk = 0 with a weak limit ũ ∈ X. By the weak convergence (2.2) uε ⇀ u as ε↘ 0

in the Hilbert space L2(Ω× [0, T ];H), we obtain easily by duality arguments that u = ũ

P⊗ dt-a.e. in W 1,m+1
0 (O).

The uniform bound of {uε,δ}ε,δ∈(0,1] in L∞([0, T ];L2(Ω;L2(O))) follows from (2.3),
where we can obtain u ∈ L∞([0, T ];L2(Ω;L2(O))) by similar weak convergence argu-
ments.
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