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Abstract

We prove the existence and regularity of the isochron map for stable invariant
manifolds of a large class of evolution equations. Our results apply in particular to the
isochron map of reaction-diffusion equations and neural field equations. Using the
regularity properties proven here, we prove a strong Itô formula for the isochronal
phase of stochastically perturbed travelling waves and other patterns appearing in
SPDEs driven by white noise, even for SPDEs that only admit mild solutions.
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1 Introduction

This note presents simple arguments on the existence and regularity of the isochron
map for a class of dynamical systems (φt)t≥0 on a separable Banach space in the vicinity
of a stable, normally hyperbolic invariant manifold Γ. The isochron map was introduced
for stable limit cycles of dynamical systems in Rd by [15] and [35]. Our framework
encompasses infinite dimensional dynamical systems, in particular reaction-diffusion
systems and neural field equations. From the regularity properties of the isochron
map proven here, we obtain a strong Itô formula for the isochronal phase of stochastic
perturbations of reaction-diffusion systems, even when these systems only admit a mild
solution theory.

The proofs in this note are short and general, and recover results on the isochron
map proven elsewhere in the literature using different techniques [1]. As will be seen,
while [1] requires the invariant manifold to be smooth, our arguments only require Γ to
be C1. Additionally, we make no assumptions on the spectral properties of the generator
of the linearization of φt about Γ. This is of particular interest in the case where Γ is
the orbit of a non-commutative Lie group (such as SE(n) when Γ consists of spiral wave
solutions to a parabolic PDE), where trying to track the linearized dynamics along Γ can
lead to significant complications, as noted in both [24, 32].
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On the isochronal phase of SPDE

As a consequence, the approach taken in this note may lead to significant general-
izations of results obtained for travelling pulses and other transient patterns appearing
in stochastic evolution equations using other notions of “phase”. For instance, those
studied in neural field equations by [20, 25, 26], and in reaction-diffusion equations by
[13, 16, 17, 18, 22, 23, 31]. The approach of this note also allows us to prove a strong
Itô formula for the isochronal phase of SPDEs with only mild solutions, which is stronger
than the mild Itô formula proven using more complicated techniques in [11, 19].

2 Setup

We consider an evolution equation of the form

∂tx = Lx+N(x) =: V (x), (2.1)

and its stochastic perturbation

dX = (LX +N(X)) dt+ σB dW. (2.2)

Here, L is a linear operator generating a C0-semigroup on a Hilbert space H, N is
a nonlinearity defined on a subspace of H, B is a linear operator on H, (Wt)t≥0 is a
cylindrical Wiener process, as in [12, Chapter 4.1.2], and σ ≥ 0. We make the following
assumptions on the deterministic dynamics of (2.1).

Assumption 2.1. The system (2.1) satisfies the following.

(a) N is a nonlinearity defined on a dense subset E of H such that E is a Banach
space with norm ‖·‖E , and the embedding E ↪→ H is dense and continuous. N is
four times continuously Fréchet differentiable in the topology of E, with first and
second Fréchet derivatives in this topology denoted DN and D2N .

(b) L is a linear operator with a dense domain of definition D(L) in H, and generates
a C0-semigroup (Λt)t≥0 on H that restricts to E. Moreover, letting ‖·‖ denote the
norm of H, there exists ω > 0 such that sup {‖Λt‖, ‖Λt‖E} ≤ e−ωt for all t ≥ 0.

Let the flow map of (2.1) be (t, x) 7→ φt(x), and suppose that the flow can be
expressed by the variation of constants formula as

φt(x) = Λtx+

∫ t

0

Λt−sN(φs(x)) ds.

Since the nonlinearity N is C4 in the topology of E, the flow map is C3 in this topology.
The first and second derivatives of φt at x0 in directions x, y ∈ E are denoted

x 7→ Dφt(x0)[x], (x, y) 7→ D2φt(x0)[x, y]. (2.3)

We now state our assumptions on the flow of (2.1). Specifically, we assume the
existence of a stable invariant manifold Γ of (2.1) that models spatiotemporal patterns.
In particular, the following guarantees that the dynamics of (2.1) is not chaotic on Γ.

Assumption 2.2. The deterministic system (2.1) has a stable, finite dimensional, nor-
mally hyperbolic invariant manifold Γ, as defined in [4, Condition (H3)]. Γ is parameter-
ized by a manifold S ⊂ Rm, where m ∈ N. We write Γ = {γα}α∈S , and let B(Γ) denote
the basin of attraction of Γ in H. Moreover, the following hold.

(a) φt and φ−1
t are Lipschitz on Γ with uniform in time Lipschitz constants.

(b) Dφt(γα) is invertible with uniformly bounded inverse for all α ∈ S.
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On the isochronal phase of SPDE

(c) The map α 7→ γα is continuously differentiable with derivative Dγα, and Dγα is
invertible with a uniformly bounded inverse.

Definition 2.3. Assumption 2.2 implies that for each x ∈ B(Γ) there is a unique π(x) ∈ S
such that ∥∥φt(x)− φt(γπ(x))

∥∥ −−−→
t→∞

0, (2.4)

providing a well-defined map π : B(Γ)→ S. The existence and uniqueness of this map is
proven in Theorem 3.1. We refer to π as the isochron map of Γ.

Throughout this note, for δ > 0 we define Γδ :=
{
x ∈ E :

∥∥x− γπ(x)

∥∥
E
≤ δ
}
⊂ E.

When considering the SDE (2.2), we require the following additional assumptions.

Assumption 2.4. Assumption 2.1 holds, and the SDE (2.2) satisfies the following.

(a) There exists a unique E-valued mild solution (Xt)t≥0 to (2.2), satisfying

Xt = ΛtX0 +

∫ t

0

Λt−sN(Xs) ds+ σ

∫ t

0

Λt−sB dWs, X0 ∈ H, (2.5)

for X0 ∈ E and all t < τblowup, where τblowup is in (0,∞] almost surely.

(b) For x ∈ H, (φt(x))t>0 is continuous in D(L), equipped with the graph norm of L.

(c) There exists an orthonormal basis {ek}k∈N of H consisting of eigenfunctions of L,
and ek ∈ E for k ∈ N. Letting λk denote the eigenvalue of −L corresponding to ek,

Ks,r := sup
t∈[s,r]

∑
k∈N

‖ΛtBek‖E < ∞ and

∫ t

0

Ks,r ds < ∞ (2.6)

for t ∈ (0, r). Moreover, for y ∈ E ⊂ H, written y =
∑
k∈N y

kek in H,

LΛty = ΛtLy :=
∑
k∈N

ykΛtLek, with convergence in E. (2.7)

Assumption 2.4 is needed for our strong Itô formula. We remark that the assumption
is weaker than requiringXt ∈ D(L) or that E = H, so that the Itô formulas of [2, 9, 19] do
not apply to (2.2). See Remark 2.5 below. The condition (2.6) is only needed when the
noise in (2.2) is white in space, but not when the noise is trace class.

Note that with additive noise, solutions of (2.2) may be pushed out of B(Γ) in finite
time. We therefore define the exit time of the solution from B(Γ) as

τ := min {τblowup, inf {t > 0 : Xt ∈ E/B(Γ)}} . (2.8)

Since the geometry of B(Γ) is generally unknown and may be very complicated, we will
sometimes restrict our attention to Γδ for δ > 0. We define the exit time from Γδ as

τδ := min
{
τblowup, inf

{
t > 0 :

∥∥Xt − γπ(Xt)

∥∥
E

= δ
}}

. (2.9)

When Γ consists of fixed points of φt, estimates on the distribution of τδ can be found in
[27], and under more general assumptions in [32]. See also [5]. Further work is needed
to estimate the distribution of τ for more general stable invariant manifolds. We let
πt = π(Xt) be the isochronal phase of Xt for t < τ .

Remark 2.5. The present study is motivated by two classes of examples of (2.1). The
first class consists of reaction-diffusion systems

∂tx = (∆− a)x+N(x), (2.10)

ECP 29 (2024), paper 56.
Page 3/12

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP624
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On the isochronal phase of SPDE

where a > 0 and N is a vector of polynomials. With L = ∆− a, B = I, and O bounded,
we can show that (2.10) satisfies Assumptions 2.1 & 2.4. For instance if O = [0, `] with
periodic boundaries, take H = L2(O) and E = C(O), the space of continuous functions
on O with the supremum norm. In this case, it is more convenient to index the eigenpairs
by Z rather than N. We then have ek(x) = sin

(
2kπ
` x
)

and λk = 4π2k2

`2 for k < 0, and

ek(x) = cos
(

1kπ
` x
)

and λk = 4π2k2

`2 for k ≥ 0. Hence ‖ek‖E ≤ 1, and

‖Λtek‖E ≤ exp

(
−4π2k2t

`2
− at

)
for k ∈ Z and t > 0.

For fixed r > s > 0 we then have Ks,r = supt∈[s,r]

∑
k∈N‖Λtek‖E < ∞. Indeed, in

this case Ks,r takes the form of a Jacobi ϑ-function (as in [34, Section 21.11]), which
is integrable over [0, 1], composed with a continuous function taking values in [0, 1],
verifying (2.6). Assumption 2.4(b) holds by the regularity of solutions to the heat
equation, which can be proven as in [14, Theorem 2.3.1]. The regularity of the heat
equation also immediately implies (2.7), since LΛty is clearly equal to ΛtLy, as defined
in (2.7) for y ∈ E, and in this case the graph norm of L is just ‖·‖C2 . Finally, when B = I,
Assumption 2.4(a) is verified using the local inversion theorem as in [12], since in this
case the stochastic convolution

∫ t
0

Λt−s dWs is contained in E.
The second class consists of integro-differential equations on a spatial domain O,

∂txt = −xt + ω ∗ f(xt), ∂tyt = −ε−1yt + xt, (2.11)

where ω and f are usually bounded and Lipschitz, and the convolution is taken over
O. These equations appear in neuroscience, where they are referred to as neural field
equations [8], and ecology [30]. Mild solutions to stochastic perturbations of (2.11) only
exist when the perturbing noise is trace class [23], and in this case Assumption 2.4 is
satisfied. With L = [−1,−ε−1], Assumptions 2.1(a), (b), are satisfied, though (c) is not.
However, Assumption 2.1 (c) is only needed to prove the Itô formula for the isochronal
phase when W is not trace class, as seen in the arguments of Section 3 below.

For reaction-diffusion or neural field equations, the main examples of Γ that we
have in mind are stationary or travelling waves [3, 21, 28], and spiral waves in excitable
media, as studied in [6, 7] on unbounded domains and in [36] on bounded spatial domains
– see also [24]. We are also interested in the case of stationary patterns that remain
stationary under translation or rotation [10, 28, 33]. So long as (2.10) or (2.11) possesses
a sufficiently regular invariant manifold Γ, and the parameterization α 7→ γα is non-
degenerate, these examples satisfy Assumption 2.2. For instance, if Γ consists of
travelling wave solutions on a periodic domain, this is the case.

3 Regularity of the isochron map & a strong Itô formula

Theorem 3.1. Under Assumptions 2.1 & 2.2, there exists a unique function π : B(Γ)→
S ⊂ Rm satisfying (2.4). This function is twice continuously Fréchet differentiable at
each x0 ∈ B(Γ) ⊂ E in the topology of E.

Proof. We begin by proving that π : B(Γ)→ S is well-defined. Fix x ∈ B(Γ). Since Γ is a
stable manifold of (2.1), taking any sequence of positive numbers {εn}n∈N decreasing to
zero, there exists a sequence of times {tn}n∈N increasing to infinity and a sequence of
closed sets Un ⊂ Γ such that for all n ∈ N and γ ∈ Un, we have

‖φtn(x)− γ‖E ≤ εn/2M1 for a constant M1. (3.1)

The collection {φ−1
tn Un}n∈N is a sequence of non-empty, closed, nested subsets of the

complete metric space E. Using the bi-Lipschitz condition of φt on Γ and (3.1), we see
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that diam
(
φ−1
tn Un

)
≤ εn. In particular, the diameter of φ−1

tn Un tends to zero as n → ∞.
By Cantor’s Intersection Theorem, there is a unique γ∗ such that

⋂
n∈N φ

−1
tn Un = {γ∗}.

Since α 7→ γα is invertible, there is a unique π(x) ∈ S such that γ∗ = γπ(x). To prove that
π is C2, note that our assumptions on N implies that x 7→ φt(x) is C3 on B(Γ) ∩E in the
topology of E. Since C3 is a Banach space, the map x 7→ γπ(x) = limt→∞ φt(x) is C3 on
B(Γ) ∩ E. By assumption, (r 7→ γr) : S → Γ is invertible with C2 inverse. Denoting this
inverse by γ−1, the map x 7→ π(x) = γ−1(γπ(x)) is C2 on B(Γ) ∩ E.

We denote the first and second derivatives of the isochron map at x0 ∈ B(Γ)∩E in the
directions x, y ∈ E by Dπ(x0)x and D2π(x0)[x, y]. The following theorem yields additional
regularity of the isochron map when Assumption 2.1 holds, showing in particular that its
second derivative is, in a sense, trace class.

Theorem 3.2. Under Assumptions 2.1 & 2.2, there exists Mπ ∈ (0,∞) such that∑
k∈N

∥∥D2π(x0)[Bek, Bek]
∥∥
Rm

< Mπ,
∑
k∈N

‖Dπ(x0)Bek‖Rm < Mπ,

and
∑
k∈N

‖Dπ(x0)Bek‖2Rm < Mπ,
(3.2)

uniformly in x0 ∈ Γδ. Moreover, these quantities are Lipschitz continuous in x0 ∈ Γδ.

To prove Theorem 3.2, define π̃ : Γδ → Γ as π̃(x) := γπ(x), and note that

φt(π̃(x)) = π̃(φt(x)) ∀x ∈ Γδ, t > 0. (3.3)

We show that (3.2) is satisfied by π replaced with π̃. Then, since the map α 7→ γα is C2

with uniformly bounded first derivative, (3.2) follows. From (3.3) and Assumption 2.2,

Dπ̃(x)y = [Dφt(π̃(x))]−1Dπ̃(φt(x))Dφt(x)y, and (3.4)

D2π̃(x)[y, z] = [Dφt(π̃(x))]−1

(
D2π̃(φt(x))[Dφt(x)y,Dφt(x)z] (3.5)

+Dπ̃(φt(x))D2φt(x)[y, z]−D2φt(π̃(x))[Dπ̃(x)y,Dπ̃(x)z]

)
.

We now let ‖·‖1 := ‖·‖E→E and ‖·‖2 := ‖·‖E×E→E . Since Dφt(x)−1 and Dπ̃(φt(x)) are
bounded operators, it follows that for some C > 0 independent of x ∈ B(Γ) and t > 0,∑

k∈N

‖Dπ̃(x)Bek‖E ≤
∥∥Dφt(π̃(x))−1Dπ̃(φt(x))

∥∥
1

∑
k∈N

‖Dφt(x)Bek‖E

≤ C
∑
k∈N

‖Dφt(x)Bek‖E .
(3.6)

Similarly, since Dφt(π̃(x))−1, D2π̃(φt(x)), Dπ̃(φt(x)), and D2φt(x) are bounded uniformly
in x ∈ Γδ, for some C1, C2, C3 > 0 independent of x ∈ B(Γ) and t > 0,∑

k∈N

∥∥D2π̃(x)[Bek, Bek]
∥∥

1
≤
∥∥Dφt(π̃(x))−1

∥∥
E

(∥∥D2π̃(φt(x))
∥∥

2

∑
k∈N

‖Dφt(x)Bek‖2E

+ ‖Dπ̃E(φt(x))‖1
∑
k∈N

∥∥D2φt(x)[Bek, Bek]
∥∥
E

+
∥∥D2φt(π̃(x))

∥∥
2

∑
k∈N

‖Dπ̃(x)Bek‖2E

)
≤ C1

∑
k∈N

‖Dφt(x)Bek‖2E + C2

∑
k∈N

∥∥D2φt(x)[Bek, Bek]
∥∥
E

+ C3

∑
k∈N

‖Dπ̃(x)Bek‖2E .

Hence, Theorem 3.2 immediately follows as a corollary to the following result.
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Lemma 3.3. Under Assumptions 2.1 & 2.2, there exists Mφ ∈ (0,∞) such that for any
t > 0 and small δ > 0, the following hold uniformly in x0 ∈ Γδ and s ∈ (0, t)∑

k∈N

‖Dφs(x0)[Bek]‖E < Mφ,∑
k∈N

‖Dφs(x0)[Bek]‖2E < Mφ, and
∑
k∈N

∥∥D2φs(x0)[Bek, Bek]
∥∥
E
< Mφ.

(3.7)

Moreover, these quantities are Lipschitz continuous in x0 ∈ Γδ.

Proof. We consider the evolution equations of the operators defined in (2.3), written as

Dφt(x0)[x] = ΛtDφ0(x0)[x] +

∫ t

0

Λt−sDN(φs(x0))Dφs(x0)[x] ds,

D2φt(x0)[x, y] = ΛtD
2φ0(x0)[x, y] +

∫ t

0

Λt−sDN(φs(x0))D2φs(x0)[x, y] ds

+

∫ t

0

Λt−sD
2N(φs(x0))

[
Dφs(x0)[x], Dφs(x0)[y]

]
ds,

(3.8)

where DN and D2N are the first and second Fréchet derivatives of N . Observing that
Dφ0(x0)[x] = x and applying Tonelli’s theorem,∑
k∈N

‖Dφt(x0)[Bek]‖E ≤
∑
k∈N

‖ΛtBek‖E +
∑
k∈N

∫ t

0

‖Λt−sDN(φs(x0))‖1‖Dφs(x0)[Bek]‖E ds

≤
∑
k∈N

‖ΛtBek‖E + C0

∫ t

0

∑
k∈N

‖Dφs(x0)[Bek]‖E ds

for some C0 > 0 which is independent of x0 (using Assumption 2.1, and the fact that N
is uniformly Lipschitz on Γδ in the topology of E). Taking s ∈ (0, t) and letting r 7→ Ks,r

be the non-decreasing function defined in (2.6), we apply Grönwall’s inequality to obtain∑
k∈N

‖Dφt(x0)[Bek]‖E ≤ Ks,re
C0t < ∞ for arbitrary r > t. (3.9)

Furthermore, (2.6) & (3.9) imply local integrability of the sum:∑
k∈N

∫ t

0

‖Dφs(x0)[Bek]‖E ds =

∫ t

0

∑
k∈N

‖Dφs(x0)[Bek]‖E ds < eC0t

∫ t

0

Ks,r ds.

We remark that the constants appearing in this bound are independent of x0 ∈ Γδ,
implying the first uniform bound (3.7). Similarly, observe that∑
k∈N

‖Dφt(x0)[Bek]‖2E ≤
∑
k∈N

‖ΛtBek‖2E + 2C0

∑
k∈N

(
‖ΛtBek‖E

∫ t

0

‖Dφs(x0)[Bek]‖E ds
)

+ C2
0

∑
k∈N

(∫ t

0

‖Dφs(x0)[Bek]‖E ds
)2

.

The first and second sums are bounded, respectively, by (2.6) & (3.9). Hence,

∑
k∈N

‖Dφt(x0)[Bek]‖2E ≤ K2
s,r + 2K2

s,re
C0t + C2

0

∑
k∈N

(∫ t

0

‖Dφs(x0)[Bek]‖E ds
)2

≤ K2
s,r

(
1 + 2eC0t

)
+ C2

0

∫ t

0

∑
k∈N

‖Dφs(x0)[Bek]‖2E ds,
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for arbitrary s < t < r. Applying Grönwall’s inequality, we find that
∑
k∈N‖Dφt(x0)[Bek]‖2E

is finite and locally integrable in t > 0. We remark that the constants appearing in the
second bound of (3.7) obtained by these arguments are independent of x0.

Having obtained the first two bounds in (3.7), we can similarly obtain the third:∑
k∈N

∥∥D2φt(x0)[Bek, Bek]
∥∥
E
≤
∑
k∈N

‖ΛtBek‖E + C1

∫ t

0

∑
k∈N

∥∥D2φs(x0)[Bek, Bek]
∥∥
E
ds

+ C1

∫ t

0

∑
k∈N

‖Dφs(x0)[Bek]‖2E ds,

since D2φ0(x0)[x, x] = x. By our previous results, the first and third sum in the above
are finite. Therefore for arbitrary s < t < r, for another constant Ls,r > 0 we have∑

k∈N

∥∥D2φt(x0)[Bek, Bek]
∥∥
E
≤ Ls,r + C

∫ t

0

∑
k∈N

∥∥D2φs(x0)[Bek, Bek]
∥∥
E
ds

Grönwall’s inequality then yields the third bound in (3.7) with x0-independent constants.
To see Lipschitz continuity of the maps defined by taking x0 to the values in (3.7), we

remark that the first part of this proposition implies that the finite sums

K∑
k=1

‖Dφt(x0)[Bek]‖E < Mφ,

K∑
k=1

‖Dφt(x0)[Bek]‖2E < Mφ, and
K∑
k=1

∥∥D2φt(x0)[Bek, Bek]
∥∥
E
< Mφ,

converge uniformly in x0 ∈ Γδ to the series in (3.7) as K → ∞. Hence we need only
prove that the finite sums are Lipschitz. But, from the fact that x0 7→ φt(x0) is C3 in the
topology of E (since N is C4), we know that each of the summands is Lipschitz in Γδ.

We now prove a strong Itô formula for π(Xt) that holds for t < τ . We need the
following two lemmas.

Lemma 3.4. Let Assumptions 2.2 & 2.4 hold. For each t > 0, the following Itô integral
is well-defined as an Rm-valued random variable:∫ t∧τ

0

Dπ(Xs)B dWs. (3.10)

Proof. For a collection of independent identically distributed Brownian motions {βk}k∈N,
write Wt =

∑
k∈N ekβ

k
t . Of course, this sum does not converge in any sense as an

H-valued random variable, but as an H0-valued random variable for some Hilbert space
H0 ⊃ H (see [12, Chapter 4] for details). However, we need not specify H0 here. Indeed,
the integral (3.10) can be made sense of as the limit in expectation of the finite sums

K∑
k=1

∫ t∧τ

0

Dπ(Xs)Bek dβ
k
s =:

K∑
k=1

β̃kt ,

which converge in mean square. Using Theorem 3.2 and Itô’s isometry, we obtain

E

[∥∥∥∥∥∑
k∈N

β̃kt

∥∥∥∥∥
Rm

]2

≤
∑
k,`∈N

E
[〈
β̃kt , β̃

`
t

〉
Rm

]
≤
∑
k∈N

E

[∫ t∧τ

0

‖Dπ(Xs)Bek‖2Rm ds
]

≤ t sup
x∈Γδ

∑
k∈N

‖Dπ(x)Bek‖2Rm < tMπ,

(3.11)
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where E
[〈
β̃kt l, β̃

`
t

〉]
= 0 for k = ` by the covariation of β̃kt and β̃`t .

Lemma 3.5. Let Assumptions 2.2 & 2.4 hold. Then, Dπ(x)Ly :=
∑
k∈N y

kDπ(x)Lek
exists in Rm for all x, y ∈ E, where {yk}k∈N are the {ek}k∈N basis coefficients of y in H.
Moreover, ∂tπ(φt(x)) = Dπ(φt(x))V (φt(x)).

Proof. Write y =
∑
k∈N y

kek, converging in H. Note that the sum Ly =
∑
k∈N y

kλkek
does not necessarily converge in H, but in a larger Hilbert space HL. Recall that for
t > 0 and x ∈ E, Dπ(x) = M(x)Dφt(x) for a bounded linear operator M(x) on E. Hence,
‖Dπ(x)Ly‖E ≤ c‖Dφt(x)Ly‖E for some c > 0, and

‖Dφt(x)Ly‖E ≤ ‖ΛtLy‖E +

∫ t

0

‖Λt−sDN(φs(x))‖1‖Dφs(x)Ly‖E ds.

Assumption 2.4(c) and Grönwell’s inequality complete the proof of the convergence of
Dπ(x)Ly. The statement ∂tπ(φt(x)) = Dπ(φt(x))V (φt(x)) follows from the chain rule.

Theorem 3.6. Let Assumptions 2.2 & 2.4 hold. Then,

π(Xt∧τ ) = π(X0) +

∫ t∧τ

0

Dπ(Xs)V (Xs) ds+
σ2

2

∫ t∧τ

0

∑
k∈N

D2π(Xs)[Bek, Bek] ds

+ σ

∫ t∧τ

0

Dπ(Xs)B dWs,

(3.12)

and all of the terms in the above expression are well-defined in Rm.

Proof. The proof now follows as in [1]. Taking t > 0, partition [0, t] as {tk}Mk=1. Let
t∗ := t ∧ τ , and set t∗i := ti ∧ τ for i ∈ {1, . . . ,M}. By Theorem 3.1, we write π(Xt∗) as

π(Xt∗) = π(X0)+

M∑
i=1

(
Dπ(Xt∗i

)[Xt∗i+1
−Xt∗i

]+D2π(wi)[Xt∗i+1
−Xt∗i

, Xt∗i+1
−Xt∗i

]
)
, (3.13)

where wi = aiXt∗i
+ (1− ai)Xt∗i+1

for ai ∈ [0, 1]. As (Xt)t≥0 is a mild solution of (2.2),

Xt∗i+1
−Xt∗i

=
[
Λt∗i+1−t∗i − I

]
X0 +

∫ t∗i+1

t∗i

Λt∗i+1−sN(Xs) ds+ σ

∫ t∗i+1

t∗i

Λt∗i+1−sB(Xs) dWs

=: U1
i + U2

i + σU3
i .

Combining this with (3.13), we obtain

π(Xt∗)− π(X0) =

M∑
i=1

Dπ(Xt∗i
)
[
U1
i

]
+

M∑
i=1

Dπ(Xt∗i
)
[
U2
i

]
+ σ

M∑
i=1

Dπ(Xt∗i
)
[
U3
i

]
+

M∑
i=1

D2π(wi)
[
U1
i + U2

i , U
1
i + U2

i

]
+ 2σ

M∑
i=1

D2π(wi)
[
U1
i + U2

i , U
3
i

]
+ σ2

M∑
i=1

D2π(wi)
[
U3
i , U

3
i

]
=: I + II + III + IV + V + V I.

(3.14)
Let the mesh size of {ti}Mi=1 be h > 0, and for arbitrary i ∈ {1, . . . ,M} let (X̂s)s∈[ti,ti+1]

be defined by the solution to (2.1) with initial condition Xti ,

X̂ti = Xti , X̂s = Λs−tiXti +

∫ s

ti

Λs−rN(X̂r) dr for s ∈ [ti, ti+1].
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By Assumption 2.4(b), note that (X̂s)s∈[t∗i ,t
∗
i+1] exists as a continuous path in D(L) (in the

topology of the graph norm of L), and hence

sup
s∈[t∗i ,t

∗
i+1]

lim
h→0

h−1
∥∥∥(Λh − I) X̂s

∥∥∥
E
< ∞.

Consequently, we have the following fact, which will prove to be useful below:

sup
s∈[t∗i ,t

∗
i+1]

lim
h→0

h−1/2
∥∥∥(Λh − I) X̂s

∥∥∥
E

= 0. (3.15)

We now show that (I + II)→
∫ t∗

0
Dπ(Xs)V (Xs) ds as h→ 0. To do so, we apply the

second order Taylor’s theorem to π(X̂t∗i+1
) centered at X̂ti to obtain

Dπ(X̂t∗i
)
[
X̂t∗i+1

− X̂t∗i

]
+D2π(U5

i )
[
X̂t∗i+1

− X̂t∗i
, X̂t∗i+1

− X̂t∗i

]
= π(X̂t∗i+1

)− π(X̂t∗i
),

where U5
i is defined for some a5

i ∈ [0, 1] as

U5
i := a5

i X̂t∗i
+ (1− a5

i )U
4
i .

By Grönwall’s inequality and the Lipschitz property of N (on Γδ), it can be seen that∥∥∥Xs − X̂s

∥∥∥
E
∼ O(h2) for s ∈ [ti, ti+1]. (3.16)

It then follows that∥∥∥∥∥X̂t∗i+1
− X̂t∗i

−

[
(Λt∗i+1−t∗i − I)Xt∗i

+

∫ t∗i+1

ti

Λt∗i+1−sN(Xs) ds

]∥∥∥∥∥
E

≤ K0h sup
s∈[t∗i ,t

∗
i+1]

∥∥∥X̂s −Xs

∥∥∥
E
≤ K1h

2

for some constants K0,K1 > 0. Using (3.15), for all t ∈ (ti, ti+1) we have,∥∥∥X̂t∗ − X̂t∗i

∥∥∥
E
∼ o(h1/2). (3.17)

Hence, using Lemma 3.5 each summand in (I + II) is estimated as

Dπ(Xt∗i
)

[
(Λt∗i+1−t∗i − I)Xt∗i

+

∫ ti+1

ti

Λti+1−sN(Xs) ds

]
= −D2π(U5

i )
[
X̂t∗i+1

− X̂t∗i
, X̂t∗i+1

− X̂t∗i

]
+O(h2) + π(X̂t∗i+1

)− π(X̂t∗i
)

= o(h) + π(X̂t∗i+1
)− π(X̂t∗i

) = o(h) + hDπ(X̂t∗i
)V (X̂t∗i

).

Noting that X̂t∗i
= Xt∗i

, summing over {t∗i }Mi=1, and taking h→ 0 yields the result.

To show III →
∫ t∗

0
Dπ(Xs)B dWs, we Taylor expand Λti+1−s about s = ti+1,

Λti+1−s = I + LΛu(ti+1 − s) (3.18)

for some u ∈ (s, ti+1). Hence, for arbitrary x ∈ Γδ

Dπ(x)

∫ t∗i+1

t∗i

Λt∗i+1−sB dWs =

∫ t∗i+1

t∗i

Dπ(x) (I + (ti+1 − s)LΛu)B dWs

= Dπ(x)B[Wt∗i+1
−Wt∗i

] +

∫ t∗i+1

t∗i

(ti+1 − s)Dπ(x)LΛuB dWs.
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By Lemma 3.5, Dπ(x)LΛuB : H → Rm is a bounded linear operator, which we may
identify with an element of H. Hence, applying the Burkholder-Davis-Gundy from [29],

Ex

∥∥∥∥∥
∫ t∗i+1

t∗i

(ti+1 − s)Dπ(x)LΛuB dWs

∥∥∥∥∥
2

Rm

 ≤ hEx

[∫ t∗i+1

t∗i

‖Dπ(x)LΛuB‖2Hm ds

]
≤ h2‖Dπ(x)L‖2‖B‖2e−2ωt∗i .

Therefore for small h > 0 and any i ∈ N,

Dπ(Xt∗i
)

∫ t∗i+1

t∗i

Λt∗i+1−sB dWs = Dπ(Xt∗i
)B[Wt∗i+1

−Wt∗i
] + o

(
h2
)
.

Observing that K = bt/hc, we have the following in probability

III =

K∑
i=0

Dπ(Xt∗i
)

[∫ t∗i+1

t∗i

Λt∗i+1−sB dWs

]

=

K∑
i=0

Dπ(Xt∗i
)B[Wt∗i+1

−Wt∗i
] + o

(
h1/2

)
−−−→
h→0

∫ t∗

0

Dπ(Xs)B dWs.

We now show that V I → σ2
∫ t∗

0

∑
k∈ND

2π(Xs) [Bek, Bek] ds as h→ 0. By (3.18),∫ t∗i+1

t∗i

∑
k∈N

D2π(wi)
[
Λt∗i+1−sBek, Λt∗i+1−sBek

]
ds

=

∫ t∗i+1

t∗i

∑
k∈N

(
D2π(wi) [Bek, Bek] + 2D2π(wi) [LΛuBek, Bek] (t∗i+1 − s)

+D2π(wi) [LΛuBek, LΛuBek] (t∗i+1 − s)2

)
ds

= (t∗i+1 − t∗i )
∑
k∈N

D2π(wi) [Bek, Bek] +O(h2).

(3.19)

Itô’s isometry and (3.19) then imply that∣∣∣∣∣E
[
D2π(wi)

[∫ t∗i+1

t∗i

Λt∗i+1−sB
∑
k∈N

ek dβ
k
s ,

∫ t∗i+1

t∗i

Λt∗i+1−sB
∑
`∈N

e` dβ
`
s,

]

−
∫ t∗i+1

t∗i

∑
k∈N

D2π(wi)
[
Λt∗i+1−sBek, Λt∗i+1−sBek

]
ds

]∣∣∣∣∣
≤ ‖π‖C2

∣∣∣∣∣∣
∑
k∈N

E

∥∥∥∥∥
∫ t∗i+1

t∗i

Λt∗i+1−sBek dβ
k
s

∥∥∥∥∥
2

−
∫ t∗i+1

t∗i

∥∥∥Λt∗i+1−sBek

∥∥∥2

ds

∣∣∣∣∣∣ = 0,

(3.20)

where we use (3.19) to exchange the sum and expectation in (3.20). Taking (3.19) & (3.20)
together, summing over k ∈ {1, . . .K}, and letting h→ 0, we have convergence in proba-
bility of V I. Finally, IV and V tend to zero as h→ 0 by (3.15) and (3.16).
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