
Electron. Commun. Probab. 29 (2024), article no. 18, 1–13.
https://doi.org/10.1214/24-ECP582
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Bounds on the covariance matrix of the

Sherrington–Kirkpatrick model

Ahmed El Alaoui* Jason Gaitonde†

Abstract

We consider the Sherrington-Kirkpatrick model with no external field and inverse
temperature β < 1 and prove that the expected operator norm of the covariance
matrix of the Gibbs measure is bounded by a constant depending only on β. This
answers an open question raised by Talagrand, who proved a bound of C(β)(logn)8.
Our result follows by establishing an approximate formula for the covariance matrix
which we obtain by differentiating the TAP equations and then optimally controlling
the associated error terms. We complement this result by showing diverging lower
bounds on the operator norm, both at the critical and low temperatures.
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1 Introduction and main result

We consider the Sherrington–Kirkpatrick model of spin glasses, a Gibbs distribution
over the hypercube {−1,+1}n given by the expression

µ(σ) =
1

Z
exp

{ β√
n

∑
i<j

gijσiσj

}
, σ ∈ {−1,+1}n , (1.1)

where β ≥ 0 is the inverse temperature parameter and (gij)i<j are the random coupling
coefficients assumed to be i.i.d. N(0, 1) random variables. We are interested in the
behavior of the n× n covariance matrix of this probability measure:(

cov(µ)
)
ij
=
〈
σi σj

〉
, i, j ∈ [1, n] . (1.2)

Here, the brackets indicate the average with respect to µ. It is expected that the operator
norm of cov(µ) is of constant order in n whenever the model is at high temperature,
i.e., for all β < 1, and that it must diverge at the critical and low temperatures β ≥ 1.
Talagrand proved that for all β < 1 there exists C(β) <∞ such that

E ‖ cov(µ)‖op ≤ C(β)(log n)8 ,

and conjectured that the logarithmic term can be removed entirely [18, Section 11.5].
His proof relies on the moment method and bounds the expectation of the trace of large
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Bounds on the covariance matrix of the Sherrington–Kirkpatrick model

powers of the covariance matrix; a method known to be loose by a logarithmic factor for
random matrices with i.i.d. entries.

Recently, Bauerschmidt and Bodineau [4] proved a decomposition theorem for Ising
measures into a log-concave mixture of product measures, provided that their interaction
matrix J is positive semi-definite and satisfies the operator norm bound ‖J‖op < 1. The
authors used this decomposition to prove a log-Sobolev inequality for such measure for a
notion of the discrete gradient. In the special case of the SK model, their decomposition
implies that E ‖ cov(µ)‖op is bounded for all β < 1/4. See also the work of Eldan, Koehler
and Zeitouni [13] who proved under the same conditions a spectral gap inequality
for Glauber dynamics. Such functional inequalities are expected to hold in the entire
high-temperature regime, this is however still an open problem. In this paper we show
boundedness of the operator norm for all β < 1:

Theorem 1.1. For β < 1 there exists C(β) < ∞ such that E ‖ cov(µ)‖op ≤ C(β) for all
n ≥ 1.

Extensions to a non-zero external field, possibly relevant to the problem of proving
Poincaré and log-Sobolev inequalities for µ for all β < 1, are discussed in Section 2.

Conversely, we show diverging lower bounds on the operator norm for β → 1−, β = 1

and β > 1:

Theorem 1.2.

• For β < 1, lim infn→∞E ‖ cov(µ)‖op ≥ 1/(1− β2).

• For β = 1, E ‖ cov(µ)‖op ≥ c
(
n
/
log n

)3/16
, where c > 0 is an absolute constant, for

all n ≥ 2.

• For β > 1, there exists c(β) > 0 such that E ‖ cov(µ)‖op ≥ c(β)n for all n ≥ 1.

In Proposition 4.4 we also prove a similar lower bound to the second bullet, albeit
not at β = 1 but at a temperature approaching criticality: β = βn → 1− as n→∞ such
that n1/3(1− β2

n)→ +∞. The arguments used to prove Theorem 1.2 follow more or less
directly from known results, so we delay their exposition to Section 4 in favor of the
high-temperature result.

Our approach to showing Theorem 1.1 is by first establishing a TAP equation for the
two-point correlations 〈σi σj〉 with an optimal error bound of 1/n2 as we write next.

Theorem 1.3. Let A ∈ Rn×n such that Aii = 0 and Aij = Aji = gij/
√
n for i < j. For

β < 1 there exists C(β) <∞ such that

E
[∥∥∥((1 + β2)I − βA

)
cov(µ)− I

∥∥∥2
F

]
≤ C(β) . (1.3)

In particular we have for i 6= j,

E
[(

(1 + β2)〈σi σj〉 −
β√
n

n∑
k=1

gik〈σk σj〉
)2]
≤ C(β)

n2
. (1.4)

An analogue of Eq. (1.4) with a weaker error bound was recently proved by Adhikari,
Brennecke, von Soosten and Yau [1] for fixed external fields parallel to the all-ones vector
1 up to an inverse temperature β0 = log 2 using what the authors call the dynamical
approach to the TAP equations. The error bound they prove is of the form C(β, ε)/n1+ε

for ε sufficiently small. This bound is unfortunately not enough to imply Theorem 1.1;
a bound of order 1/n2 seems necessary for the conclusion to follow. We elaborate on a
generalization of this result to nonzero external field in Section 2 below.

Theorem 1.1 then follows by known bounds on the tail probability of the largest
eigenvalue of a GOE matrix:
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Bounds on the covariance matrix of the Sherrington–Kirkpatrick model

Proof of Theorem 1.1. For β < 1, let ε ∈ (0, (1− β)2/(1 + β)) and define the event

E =
{
λmin

(
(1 + β2)I − βA

)
≤ ε
}
.

Observe that on E we have λmax(A) ≥ 1+β2−ε
β ≥ 2+ε where the second inequality follows

from the bound imposed on ε. It follows that P(E) ≤ exp(−c(ε)n), c(ε) > 0 by standard
results on the largest eigenvalue of a GOE matrix (see e.g., [19, Exercise 7.3.5]). Now
conditional on the complement event Ec = {λmin

(
(1 + β2)I − βA

)
> ε} we have

‖ cov(µ)‖op ≤
∥∥((1 + β2)I − βA

)−1∥∥
op
·
(∥∥((1 + β2)I − βA

)
cov(µ)− I

∥∥
op

+ 1
)

≤ ε−1
(∥∥((1 + β2)I − βA

)
cov(µ)− I

∥∥
F
+ 1
)
.

Using Theorem 1.3,

E
[
‖ cov(µ)‖op 1Ec

]
≤ ε−1

(
E
[∥∥((1 + β2)I − βA

)
cov(µ)− I

∥∥
F

]
+ 1
)

≤ ε−1C(β) .

Next, on the event E , we trivially upper bound ‖ cov(µ)‖op by n, allowing us to conclude:

E
[
‖ cov(µ)‖op

]
= E

[
‖ cov(µ)‖op 1E

]
+ E

[
‖ cov(µ)‖op 1Ec

]
(1.5)

≤ n exp(−c(ε)n) + ε−1C(β) (1.6)

≤ (ec(ε))−1 + ε−1C(β) . (1.7)

2 Nonzero external field and related work

The result of Theorem 1.3 is inspired by the following heuristic. Let us introduce an
external field y = (yi)

n
i=1 ∈ Rn to the Gibbs measure:

µy(σ) =
1

Z(y)
exp

{ β√
n

∑
i<j

gijσiσj +

n∑
i=1

yiσi

}
.

For a “typical” external field, the log-partition function of µy is expected to have a TAP
representation of the following form:

logZ(y) = max
m∈(−1,1)n

{
FTAP(m) + 〈y,m〉

}
+ oP(n) , where (2.1)

FTAP(m) :=
β

2
〈m,Am〉+

n∑
i=1

h(mi) +
nβ2

4
(1−Q(m))2 , (2.2)

Q(m) =
1

n
‖m‖2 , h(m) = −1 +m

2
log

(
1 +m

2

)
− 1−m

2
log

(
1−m

2

)
.

The above representation was recently proved for Gaussian external fields by Chen,
Panchenko and Subag [9]. Taking two derivatives with respect to y on both sides of
Eq. (2.1), we expect

cov(µy) :=
(
〈σiσj〉 − 〈σi〉〈σj〉

)n
i,j=1

≈ −
(
∇2FTAP(m)

)−1
(2.3)

=
(
D(m)− βA+ β2

(
1−Q(m)

)
I − (2β2/n)mm>

)−1
, (2.4)
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where m is a maximizer in (2.1) and D(m) is the diagonal matrix with entries D(m)ii =

1/(1−m2
i ). Taking y = 0, we have m = 0 and

cov(µ) ≈
(
(1 + β2)I − βA

)−1
. (2.5)

The approximate resolvent identity (2.4) was also heuristically derived by [1, Eq. (1.12)]
by directly differentiating the TAP equations for the magnetizations in the external fields,
and in fact, by much earlier work [16, Eq. (3.3)] by equating the covariance matrix with
the second-order terms in a power series expansion of the Gibbs potential.

Theorem 1.3 makes the above approximation precise in the sense of a bounded
Frobenius norm, once the inverse is eliminated from the right-hand side. This operation
will allow us to perform Gaussian integration by parts with respect to the disorder random
variables gij and this creates various overlap terms between independent replicas from
the Gibbs measure µ. Then Theorem 1.3 is proved by exploiting known asymptotics for
these overlaps in the high-temperature regime.

Similarly to the zero external field case, one can attempt to make the approxima-
tion (2.4) precise by showing that for β small enough, e.g., below the AT line when y is
Gaussian, we have

E
[∥∥∥(D(m)− βA+ β2(1−Q(m))I − (2β2/n)mm>

)
cov(µy)− I

∥∥∥2
F

]
≤ C(β) ,

where m = (〈σi〉)ni=1 is the mean vector of µy.

Boundedness of E ‖ cov(µy)‖op would then follow if one can show that
λmax

(
∇2FTAP(m)

)
≤ −ε for some ε > 0 with probability at least 1−O(1/n) (see Eq. (1.6)).

Celentano [7] recently showed that the TAP free energy FTAP is locally strongly concave
around one of its stationary points with probability 1 − on(1) by applying a Gaussian
comparison theorem carefully conditioned on a sequence of sigma-fields produced by an
Approximate Message Passing (AMP) iteration. This stationary point should presumably
be close to the mean vector 〈σ〉; see the related works [10, 8]. The standard theory of
AMP used in that paper does not yield any quantitative control on the probability of
convergence, and this approach seems to fall short of obtaining the O(1/n) rate needed
to obtain operator norm bounds in expectation.

Following the technique developed in Eldan and Shamir [14], which was later gen-
eralized in Chen and Eldan [11], a bound on operator norm of cov(µy) for an external
field y given by Eldan’s stochastic localization process can be used to prove Poincaré
and log-Sobolev inequalities for µ. Our result can be seen as a small step within this
larger scope.

We finally mention that a few weeks after a version of this manuscript was made
public, a concurrent work [5] established (2.5) in the spectral sense: ‖ cov(µ) − ((1 +

β2)I − βA)−1‖op → 0 in probability for β < 1 using the cluster expansion technique.
Their arguments are completely independent of ours. Subsequent work [6] established
boundedness in probability of ‖ cov(µh·1)‖op for any fixed h ≥ 0 in a suitable region below
the AT line by combining the approach outlined above of utilizing overlap moments and
the AMP iteration, with the dynamical techniques of [1].

3 Proof of Theorem 1.3

We will show that the left-hand side in Eq. (1.3) is actually equal to

2β4

(1− β2)2
+O(1/

√
n) . (3.1)
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As an aside we note that for β small, the above quantity behaves like O(β4), which is in
agreement with the prediction made in [18, Section 11.5] that cov(µ) ' I + βA+ o(β),
since ((1 + β2)I − βA)(1 + βA)− I = O(β2).

We let

P =
(
(1 + β2)I − βA

)
cov(µ) .

We then write ∥∥P − I∥∥2
F
=
∥∥P∥∥2

F
− 2Tr(P ) + n .

We treat the above expression term by term and we show that both E ‖P‖2F and ETr(P )

are of the form

n+ C(β) +O(1/
√
n) ,

therefore canceling the terms diverging in n. We first analyze the trace term and turn to
the norm term which is more delicate.

For notation, we write ∂k` :=
d

dgk`
. Let us first record the following simple lemma for

future reference:

Lemma 3.1. For all i, j, k, `, it holds that ∂k`〈σiσj〉 = β√
n
[〈σiσjσkσ`〉 − 〈σiσj〉〈σkσ`〉].

Proof. The above is trivially true for k = ` since the Hamiltonian has no dependence on
gkk, and σ2

k = 1. Assume k 6= `. Writing 〈f〉 as a quotient, the product rule implies that
the first term can be interpreted as the Gibbs average of fσkσ`, while the second term
obtained by differentiating the partition function yields an independent Gibbs average of
σkσ`.

For ` independent replicas σ1, · · · , σ` drawn from µ, we write Ra,b =
1
n

∑n
i=1 σ

a
i σ

b
i for

the pairwise overlap between σa and σb, and

R1,··· ,` =
1

n

n∑
i=1

∏̀
a=1

σai

for the multi-overlap of the replicas σ1, · · · , σ`.

The trace term: Using Gaussian integration by parts and Lemma 3.1, we have

ETr(P ) = (1 + β2)n− βETr(A cov(µ)) = (1 + β2)n− β√
n

∑
1≤i 6=j≤n

E
[
gij〈σiσj〉

]
= (1 + β2)n− β2

n

n∑
i,j=1

(
1− E〈σiσj〉2

)
= n+ nβ2E

〈
R2

12

〉
.

From [18, Theorem 11.5.4], it known that for β < 1,

nE
〈
R2

12

〉
=

1

1− β2
+O(1/

√
n) .

Therefore

ETr(P ) = n+
β2

1− β2
+O(1/

√
n) . (3.2)
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The norm term: We now calculate E ‖P‖2F . We have

E ‖P‖2F = E

n∑
i,j=1

(
(1 + β2)〈σiσj〉 −

β√
n

∑
k 6=i

gik〈σjσk〉
)2

= E

n∑
i,j=1

(
(1 + β2)2〈σiσj〉2 − 2(1 + β2)

β√
n

∑
k 6=i

gik〈σjσk〉〈σiσj〉

+
β2

n

∑
k,` 6=i

gikgi`〈σjσk〉〈σjσ`〉
)

= I + II + III .

We deal with these terms in order. Since

n∑
i,j=1

〈σiσj〉2 =

n∑
i,j=1

〈σ1
i σ

1
jσ

2
i σ

2
j 〉 = n2〈R2

12〉 ,

the first term is

I = (1 + β2)2n2E
〈
R2

12

〉
. (3.3)

As for the second term, using Lemma 3.1 we have

β√
n
E
[
gik〈σjσk〉〈σiσj〉

]
=

β√
n
E [∂ik[〈σjσk〉〈σiσj〉]]

=
β2

n
E
[
(〈σiσj〉 − 〈σiσk〉〈σjσk〉)〈σiσj〉

+ (〈σjσk〉 − 〈σiσk〉〈σiσj〉)〈σjσk〉
]

=
β2

n
E
[
〈σiσj〉2 + 〈σjσk〉2 − 2〈σiσj〉〈σjσk〉〈σiσk〉

]
.

Summing the above expression over i, j, k (note that the above is 0 for k = i) this is

2βn2E
〈
R2

12

〉
+ 2βn2E

〈
R13R12R23

〉
.

Therefore

II = −4β2(1 + β2)n2
(
E
〈
R2

12

〉
− E

〈
R12R23R13

〉)
. (3.4)

We now turn to the third term. We split the sum into a diagonal and a off-diagonal
part:

∑
k,`∈[n]\{i}

gikgi`〈σjσk〉〈σjσ`〉 =
∑
k 6=i

g2ik〈σjσk〉2 +
∑

k,`∈[n]\{i},k 6=`

gikgi`〈σjσk〉〈σjσ`〉 . (3.5)

For the diagonal term in Eq. (3.5), taking expectations and applying Gaussian integration
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by parts, we find

1

n

∑
k 6=i

E[g2ik〈σjσk〉2] =
1

n

∑
k 6=i

E[〈σjσk〉2] +
2β

n3/2

n∑
k=1

E[gik〈σjσk〉(〈σiσj〉 − 〈σiσk〉〈σjσk〉)]

=
1

n

∑
k 6=i

E[〈σjσk〉2]

+
2β2

n2

n∑
k=1

E[(〈σiσj〉 − 〈σiσk〉〈σjσk〉)2]

+
2β2

n2

n∑
k=1

E[〈σjσk〉(〈σjσk〉 − 〈σiσj〉〈σiσk〉)]

− 2β2

n2

n∑
k=1

E[〈σjσk〉(1− 〈σiσk〉2)〈σjσk〉]

− 2β2

n2

n∑
k=1

E[〈σjσk〉〈σiσk〉(〈σiσj〉 − 〈σiσk〉〈σjσk〉)]

=
1

n

∑
k 6=i

E[〈σjσk〉2]

+
2β2

n2

n∑
k=1

E
[
〈σiσj〉2 − 4〈σiσj〉〈σiσk〉〈σjσk〉+ 3〈σiσk〉2〈σjσk〉2

]
.

Summing over i, j we find that

β2

n

∑
1≤i,j,k≤n,i 6=k

E
[
g2ik〈σjσk〉2

]
= β2n(n− 1)E

〈
R2

12

〉
+ 2β4n

(
E
〈
R2

12

〉
− 4E

〈
R12R13R23

〉
] + 3E

〈
R12R34R1234

〉)
. (3.6)

For the off-diagonal term in Eq. (3.5), since the random variables gij are independent,
we have

1

n
E[gikgi`〈σjσk〉〈σjσ`〉]

=
β

n3/2
E[gi` ((〈σiσj〉 − 〈σjσk〉〈σiσk〉)〈σjσ`〉+ 〈σjσk〉(〈σiσkσjσ`〉 − 〈σiσk〉〈σjσ`〉))]

=
β2

n2
E[(〈σjσ`〉 − 〈σiσ`〉〈σiσj〉)〈σjσ`〉]

− β2

n2
E[(〈σiσjσkσ`〉 − 〈σiσ`〉〈σjσk〉)〈σiσk〉〈σjσ`〉]

− β2

n2
E[〈σjσk〉(〈σkσ`〉 − 〈σiσ`〉〈σiσk〉)〈σjσ`〉]

+
β2

n2
E[(〈σiσj〉 − 〈σjσk〉〈σiσk〉)(〈σiσj〉 − 〈σiσ`〉〈σjσ`〉)]

+
β2

n2
E[(〈σiσjσkσ`〉 − 〈σjσk〉〈σiσ`〉)(〈σiσkσjσ`〉 − 〈σiσk〉〈σjσ`〉)]

+
β2

n2
E[〈σjσk〉(〈σjσk〉 − 〈σiσjσkσ`〉〈σiσ`〉)]

− β2

n2
E[〈σjσk〉(〈σkσ`〉 − 〈σiσk〉〈σiσ`〉)〈σjσ`〉]

− β2

n2
E[〈σjσk〉〈σiσk〉(〈σiσj〉 − 〈σjσ`〉〈σiσ`〉)] .
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Let’s call the above expression Oijk`. Summing this expression over all i, j, k, ` and
only subtracting off the diagonal terms corresponding to k = ` later (note again that the
terms k = i or ` = i vanish) gives

∑
i,j,k,`

Oijk` =
β2

n2
E[n4〈R2

12〉 − n4〈R12R13R23〉]

− β2

n2
E[n4〈R2

12R
2
13〉 − n4〈R13R24R23R14〉]

− β2

n2
E[n4〈R12R13R23〉 − n4〈R13R14R24R23〉]

+
β2

n2
E[n4〈R2

12〉 − 2n4〈R12R13R23〉+ n4〈R14R13R23R24〉]

+
β2

n2
E[n4〈R4

12〉 − 2n4〈R2
12R

2
13〉+ n4〈R14R13R23R24〉]

+
β2

n2
E[n4〈R2

12〉 − n4〈R2
12R

2
23〉]

− β2

n2
E[n4〈R12R13R23〉 − n4〈R14R12R23R34〉]

− β2

n2
E[n4〈R12R13R23〉 − n4〈R12R13R24R34〉] .

Collecting terms and multiplying by β2, we get

β2
∑
i,j,k,`

Oijk` = β4n2E
[
3〈R2

12〉+ 〈R4
12〉 − 6〈R12R13R23〉 − 4〈R2

12R
2
23〉+ 6〈R12R23R34R14〉

]
.

(3.7)

Now considering the diagonals of that expression where k = `, and summing over
i, j, k, and multiplying by β2 again, we get

β2
∑
i,j,k

Oijkk =
β4

n2
E[n3〈R2

12〉 − n3〈R12R13R23〉]

− β4

n2
E[n3〈R12R23R13〉 − n3〈R13R24R1234〉]

− β4

n2
E[n3〈R2

12〉 − n3〈R13R24R1234〉]

+
β4

n2
E[n3〈R2

12〉 − 2n3〈R12R23R13〉+ n3〈R13R24R1234〉]

+
β4

n2
E[n3〈R2

12〉 − 2n3〈R12R23R13〉+ n3〈R13R24R1234〉]

+
β4

n2
E[n3〈R2

12〉 − n3〈R12R23R13〉]

− β4

n2
E[n3〈R2

12〉 − n3〈R13R24R1234〉]

− β4

n2
E[n3〈R12R23R13〉 − n3〈R13R24R1234〉] .

After simplification,

β2
∑
i,j,k

Oijkk = β4nE
[
2〈R2

12〉 − 8〈R12R13R23〉+ 6〈R13R24R1234〉
]
. (3.8)
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Putting together (3.6), (3.7) and (3.8), we obtain

III = β2n(n− 1)E[〈R2
12〉] + 2β4n

(
E[〈R2

12〉]− 4E[〈R12R13R23〉] + 3E[〈R12R34R1234〉]
)

+ β4n2E[3〈R2
12〉+ 〈R4

12〉 − 6〈R12R13R23〉 − 4〈R2
12R

2
23〉+ 6〈R12R23R34R14〉]

−
(
β4nE[2〈R2

12〉 − 8〈R12R13R23〉+ 6〈R13R24R1234〉]
)

= β2n(n− 1)E[〈R2
12〉]

+ β4n2E[3〈R2
12〉+ 〈R4

12〉 − 6〈R12R13R23〉 − 4〈R2
12R

2
23〉+ 6〈R12R23R34R14〉] . (3.9)

Combining (3.3), (3.4) and (3.9), we obtain an expression for E ‖P‖2F :

E ‖P‖2F = (1 + β2)2n2E[〈R2
12〉]− 4β2(1 + β2)n2

(
E[〈R2

12〉]− E[〈R12R13R23〉]
)

+ β2n(n− 1)E[〈R2
12〉]

+ β4n2E[3〈R2
12〉+ 〈R4

12〉 − 6〈R12R13R23〉 − 4〈R2
12R

2
23〉+ 6〈R12R23R34R14〉]

= (1− β2)n2E[〈R2
12〉]− β2nE[〈R2

12〉] +
(
4β2(1 + β2)− 6β4

)
n2E[〈R12R13R23〉]

+ β4n2E[〈R4
12〉]− 4β4n2E[〈R2

12R
2
23〉] + 6β4n2E[〈R12R23R34R14〉] . (3.10)

From Talagrand [18, Theorem 11.5.4] and Bardina, Márquez-Carreras, Rovira and
Tindel [3], we have the precise asymptotic expansions up to order O(n−5/2) of all the
overlaps involved in the above expressions:

E
〈
R2

12

〉
=

1

n(1− β2)
+
−β2(1 + β2)

n2(1− β2)4
+O(1/n5/2) ,

E
〈
R12R13R23

〉
=

1

n2(1− β2)3
+O(1/n5/2) ,

E
〈
R4

12

〉
=

3

n2(1− β2)2
+O(1/n5/2) ,

E
〈
R2

12R
2
23

〉
=

1

n2(1− β2)2
+O(1/n5/2)

E
〈
R12R23R34R14

〉
= O(1/n5/2) .

From this we deduce

E ‖P‖2F = n− β2

1− β2
− β2(1 + β2)

(1− β2)3
+

4β2(1 + β2)− 6β4

(1− β2)3

+
3β4

(1− β2)2
− 4β4

(1− β2)2
+O(1/

√
n)

= n+
2β2

(1− β2)2
+O(1/

√
n) .

Finally, combining the above formula with Eq. (3.2) for ETr(P ) we obtain

E
[∥∥P − I∥∥2

F

]
=

2β4

(1− β2)2
+O(1/

√
n) . (3.11)

4 Lower bounds at the critical temperature and low temperatures

In this section, we investigate the tightness of our results. In particular, we show
that the expected operator norm necessarily diverges as β → 1. In the low temperature
regime where β > 1, we provide a simple linear lower bound on the expected operator
norm. Finally, we consider the behavior of the operator norm near and at the critical
temperature β = 1.

Below, we write cov(µβ,n) to emphasize the dependence on the inverse temperature
β and n. Our results are derived using available results on moment overlaps combined
with the following elementary claim:
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Lemma 4.1. For any β ≥ 0, it holds that

E
[
‖cov(µβ)‖op

]
≥ nE〈R2

12〉.

Proof. By the variational formula for eigenvalues, it holds deterministically that for any
σ ∈ {−1, 1}n,

‖cov(µβ)‖op ≥
1

n
σ>cov(µβ)σ =

1

n
σ>〈σ1σ>1 〉σ.

Averaging over σ ∼ µβ and then taking expectations over the disorder yields the claim.

4.1 High, near critical temperature

A simple consequence of 4.1 is that the expected operator norm necessarily diverges
as β → 1−:

Proposition 4.2. For β < 1, it holds that

lim inf
n→∞

E
∥∥ cov(µβ,n)∥∥op

≥ 1

1− β2
. (4.1)

In particular,
lim
β→1−

lim inf
n→∞

E
∥∥ cov(µβ,n)∥∥op

= +∞ . (4.2)

Proof. From Lemma 4.1 and using Talagrand [18, Theorem 11.5.4], we immediately
obtain

E[‖cov(µβ)‖op] ≥ nE[〈R2
12〉] ≥

1

1− β2
−O(1/n).

Note that the previous result does not appear to immediately have any bearing on
the behavior at β = 1 due to the subtlety of interchanging limits. We treat the case β = 1

below using a similar analysis and leveraging some of the few known results in this
regime.

4.2 Low temperature

Next, we show that the boundedness of the operator norm cannot extend past β = 1;
in fact, the operator norm necessarily grows linearly in n.

Proposition 4.3. For every β > 1, there exists a constant c(β) > 0 such that

E
∥∥ cov(µβ,n)∥∥op

≥ c(β)n . (4.3)

Proof. From Talagrand [18, Equation (14.417)], it holds that

lim
n→∞

E
〈
R2

12

〉
=

∫
q2ζ∗β(dq) , (4.4)

where ζ∗β is called the Parisi measure and is the unique minimizer of the Parisi functional;
see [2] and [18, 15] for definitions. It is further known that ζ∗β 6= δ0 when β > 1, so the
right-hand side in (4.4) is some constant c(β) > 0; see [12, Section 5.2] for more details.
The previous display with Lemma 4.1 yields the desired lower bound.

4.3 At the transition

To complete this picture, we now consider the operator norm near and at the critical
temperature β = 1. The next result refines Proposition 4.2 by showing that for a
sequence βn → 1−, one can obtain similar lower bounds on the operator norm with
different exponents:
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Proposition 4.4. Fix any nonnegative function f(n) satisfying f(n) → ∞ and f(n) =

o(n1/3). There exists a sequence βn → 1− such that for all but finitely many n,

E
∥∥ cov(µβn,n)

∥∥
op
≥ f(n) . (4.5)

Proof. For any such function f(n), define a sequence βn by f(n) = 1
2

1
1−β2

n
. Then n1/3(1−

β2
n)→∞ by construction. From Talagrand [18, Theorem 11.7.1], this condition implies

n(1− β2
n)E[〈R2

12〉]→ 1 .

This implies by Lemma 4.1 that for all large enough n, E
∥∥ cov(µβn,n)

∥∥
op
≥ 1

2(1−β2
n)
≥ f(n)

as needed.

Finally, we directly consider the behavior at the critical temperature β = 1. While
it is expected that E〈R2

12〉 is increasing with respect to β, which would imply a lower
bound from the previous results, this does not appear to be known. Instead, we give a
slightly weaker polynomial lower bound that holds unconditionally by applying known
results in this setting:

Proposition 4.5. For β = 1, there is an absolute constant c > 0 such that

E
∥∥ cov(µβ,n)∥∥op

≥ c
( n

log n

)3/16
. (4.6)

Proof. We leverage some known results on overlap convergence at β = 1. First, a result
of Chatterjee [18, Theorem 11.7.6] shows a lower bound on the third moment of R12:
there exists a constant L > 0 such that

E
〈
|R12|3

〉
≥ 1

Ln
. (4.7)

Next, we need a bound on the decay of tail probability of R12. This is the content of
a result of Talagrand [17, Theorem 2.14.5] which we quote here: for β ≤ 1 and for all
x ≥ L(log n/n)3/8 where L = L(β) <∞, it holds that

P
(
|R12| ≥

√
x
)
≤ Ln exp

(
− nx2

/
L
)
+ exp

(
− n3/2x4

/
(L
√
log n)

)
, (4.8)

where the probability is over the distribution of R12 induced by the measure E〈 · 〉⊗2.
Taking x = max{1, (2/L3)1/4} · L(log n/n)3/8, we find that for n large enough,

P
(
|R12| ≥

√
x
)
≤ 2

n2
. (4.9)

Combining these results shows that

1

Ln
≤ E

〈
|R12|31|R12|≥

√
x

〉
+ E

〈
|R12|31|R12|<

√
x

〉
≤ P

(
|R12| ≥

√
x
)
+
√
xE

〈
R2

12

〉
.

Using (4.9) and rearranging yields

E
〈
R2

12

〉
≥ c

n13/16(log n)3/16
, (4.10)

for some constant c > 0. The result then follows immediately from Lemma 4.1.
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