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Abstract

Consider a stationary Poisson process of horospheres in a d-dimensional hyperbolic
space. In the focus of this note is the total surface area these random horospheres
induce in a sequence of balls of growing radius R. The main result is a quantitative,
non-standard central limit theorem for these random variables as the radius R of the
balls and the spatial dimension d tend to infinity simultaneously.
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1 Introduction and main result

The study of random geometric systems in non-Euclidean geometries is a recent and
fast growing branch of stochastic geometry. We refer to [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 17]
for selected works on hyperbolic random geometric graphs, random tessellations and
random polytopes.

In this note we address an interesting generalization of the Poisson hyperplane
process to hyperbolic geometry. The study of Euclidean Poisson hyperplanes is by now
classical [11, 16, 18, 21] and was extended in [12] to hyperbolic space, where Poisson
processes of totally geodesic hypersurfaces are studied, see also [20] for mean values in
the planar case. Even more recently, in [13] it was observed that this model fits into a
one-parameter family of so-called Poisson λ-geodesic hyperplanes, and the fluctuations
of the total hyperbolic surface area of such a process within a sequence of growing balls
were examined in detail. The special case we consider here is the Poisson horosphere
process, which corresponds to the choice λ = 1 in [13]. In that paper it was shown that,
in contrast to other choices of λ ∈ [0, 1), these fluctuations are Gaussian in all spatial
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A quantitative CLT for Poisson horospheres in high dimensions

Figure 1: Simulation of a Poisson process of horospheres in the Poincaré disc model for
the hyperbolic plane.

dimensions. The purpose of the present note is to quantify this result and to extend it to
the setting of growing dimension.

Let us recall some definitions; for more details we refer the reader to [13] and
the references cited therein. A horosphere in a d-dimensional hyperbolic space Hd is,
intuitively speaking, a sphere of infinite radius. More formally, it is a complete totally
umbilic hypersurface of constant normal curvature 1. For concreteness, in the Poincaré
ball model of hyperbolic space, horospheres are realized as Euclidean spheres tangent
to the boundary, see Figure 1. We denote by H the space of all horospheres in Hd. This
space admits a transitive action by the group of hyperbolic isometries and an invariant
measure for this action, which is unique up to a multiplicative constant and will be
denoted by Λ, see [8, 23].

Now, let ηd be a Poisson process on H with intensity measure Λ, see Figure 1 for a
simulation in the case d = 2. For R > 0, we consider the total surface area

SR,d :=
∑
H∈ηd

Hd−1(H ∩BdR)

of ηd within a hyperbolic ball BdR around an arbitrary but fixed point in Hd and having
hyperbolic radius R > 0. Here, Hd−1 stands for the (d − 1)-dimensional Hausdorff
measure with respect to the hyperbolic metric. In [13] it was proven that, for a fixed
spatial dimension d, the centred and normalized surface area satisfies a non-standard
central limit theorem. Namely, it converges in distribution, as R→∞ and after centering
and normalizing by the standard deviation, to a Gaussian random variable of variance
1
2 . The main result of the present note extends this in two directions: first, we provide
estimates on the rate of convergence. Second, our bounds depend explicitly on the
dimension, providing central limit theorems for Poisson horospheres in increasing spatial
dimensions. To measure the distance between two random variables X and Y we use
the Kolmogorov and Wasserstein metrics which are defined, respectively, by

dKol(X,Y ) := sup
t∈R
|P(X ≤ t)− P(Y ≤ t)|

and

dWass(X,Y ) := sup
h

∣∣E[h(X)]− E[h(Y )]
∣∣,
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where the latter supremum is taken over all Lipschitz functions h : R→ R with Lipschitz
constant at most one.

Our main result is the following quantitative non-standard central limit theorem.

Theorem 1.1. Let N 1
2

be a centred Gaussian random variable of variance 1
2 . Consider

the surface functional SR,d, for d ≥ 2 and R ≥ 1. Then there exists a universal constant
C > 0 such that for any choice • ∈ {Kol,Wass} one has

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ C ·

{
e−R/2 : R− log d ≤ 1,

1√
d (R−log d) + 1

d
√
R−log d : R− log d > 1.

Remark 1.2. (i) We first point out that in a fixed spatial dimension d ≥ 2, Theorem 1.1
implies the following bound:

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ CdR−1/2,

with a constant Cd depending only on d.
We note that the rate of convergence R−1/2 is the same in all dimensions. The
same convergence rate, in all dimensions, is observed in the central limit theorem
for the total surface area of Poisson hyperplanes in Euclidean space (see [16],
but the result is also a special case of (1.1) below). Let us remark that this
limiting behaviour is in sharp contrast with the cases of λ-geodesic hyperplanes
with λ < 1 (we recall that horospheres correspond to λ = 1). As described in
[13], in those cases the fluctuations of the surface functional are non-Gaussian in
every fixed dimension ≥ 4. The geometric distinction between the two cases is
that horospheres are intrinsically Euclidean, while the intrinsic geometry of other
λ-geodesic hyperplanes is hyperbolic.

(ii) The threshold between the two cases in Theorem 1.1 is somewhat arbitrary. The
constant 1 can be replaced by any positive number, at the cost of changing the
constant C in the theorem.

(iii) We note that the convergence rate in the first case of Theorem 1.1 is never better
than d−1/2 (and in particular, no better than in the second case). Indeed, by
assumption, eR ≤ e · d and hence e−R/2 converges to zero no faster than d−1/2.

(iv) In the high-dimensional regime, that is if d → ∞ and R = Rd is a sequence of
radii, we note that Theorem 1.1 implies a non-standard central limit theorem for
the surface functional as soon as Rd −−−→

d→∞
∞. For example, taking the radius as

R = Rd = α log d for α > 0, the theorem gives

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ C ·

{
d−α/2 : α ≤ 1

d−1/2(log d)−1 : α > 1.

It is also natural to ask for sharp conditions on Rd which ensure that the centred
and normalized total surface area is asymptotically Gaussian. As noted above,
Rd → ∞ is sufficient, but for fixed R our bounds do not yield a central limit
theorem for the surface functional. We have to leave this as an open problem.

(v) The reader might be interested in a comparison with the Euclidean case, where
one considers the total surface area SR,d,e of a stationary and isotropic Poisson
process on the space of hyperplanes in Rd within a centred ball of radius R. In this
situation it holds that

d•

(SR,d,e − ESR,d,e√
VarSR,d,e

, N
)
≤ C d1/4R−1/2 (1.1)
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for some absolute constant C > 0 and where N denotes a standard Gaussian
random variable. Since we could not locate this result in the literature, we provide
an argument in Section 4. In particular, as d → ∞ we need that R grows faster
than

√
d in order to deduce from (1.1) a central limit theorem.

2 Proof of the main results

Before proving Theorem 1.1, we need to recall some preliminaries. First we need an
explicit description of the invariant measure Λ on the space H of horospheres. We fix an
origin o ∈ Hd and parametrize an element H ∈ H by the pair (s, u) ∈ R× Sd−1, where
s ∈ R is the signed distance from H to o (with s > 0 if o lies on the convex side of H, and
negative otherwise), and u ∈ Sd−1 is the unit vector (in the tangent space ToHd) along
the geodesic passing through o and intersecting H orthogonally, while pointing outside
of the convex side. The invariant measure is then defined by the relation∫

H
f(H) Λ(dH) =

∫
R

∫
Sd−1

f(H(s, u)) e−(d−1)s duds, (2.1)

where f : H → R is a non-negative measurable function and H(s, u) stands for the
unique element of H parametrized by (s, u) as just described. Here ds and du stand for
the Lebesgue measure on R and the normalized spherical Lebesgue measure on Sd−1,
respectively.

We will also need the following geometric computation of the volume of the inter-
section H(s) ∩BdR, where H(s) ⊂ Hd is a horosphere of signed distance s ∈ R from the
origin o. Observe that this notation is justified by rotational symmetry around o. In [13,
Proposition 4.1] it is proven that this intersection is empty for |s| ≥ R, and otherwise
satisfies

Hd−1(H(s) ∩BdR) = κd−1
[
2es(coshR− cosh s)

] d−1
2 , (2.2)

where for an integer ` ≥ 1 we write κ` for the volume of the `-dimensional Euclidean
unit ball.

We also mention some elementary properties of the Kolmogorov and Wasserstein
metric that will be useful for us. First, for any random variables X and Y , and any scalar
α > 0 one has

dWass(αX,αY ) = αdWass(X,Y ),

dKol(αX,αY ) = dKol(X,Y ).
(2.3)

Moreover, given independent random variables X and Y as well as another random
variable Z with density bounded by 1, one has

d•(X + Y, Z) ≤ d•(X,Z) + E|Y |. (2.4)

For the Wasserstein metric this follows at once from the triangle inequality and the fact
that the Wasserstein metric is bounded by the L1-metric (and, indeed, holds without the
independence and bounded density assumptions). For the Kolmogorov metric this is a
consequence of the following result.

Lemma 2.1. Let X and Y be two independent random variables, and let Z be another
random variable admitting a bounded density fZ . Then

dKol(X + Y,Z) ≤ dKol(X,Z) + ‖fZ‖∞ · E|Y |.

Proof. We write FW for the cumulative distribution function of the random variable W .
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For any t ∈ R one has, using independence in the second step,

|P(X + Y ≤ t)− P(Z ≤ t)| = |E [P(X ≤ t− Y |Y )]− P(Z ≤ t)|
≤ |E [FX(t− Y )− FZ(t− Y )] |+ |E[FZ(t)− FZ(t− Y )]|
≤ dKol(X,Z) + ‖fZ‖∞ · E|Y |.

Taking the supremum over t ∈ R yields the result.

Remark 2.2. As is evident from the proof, the assumption that Z has a density may be
removed, in which case the result takes the form

dKol(X + Y, Z) ≤ dKol(X,Z) + E[ωZ(|Y |)],

where ωZ denotes the modulus of continuity of FZ , that is, ωZ(ε) := supt∈RP(t < Z ≤
t+ ε).

A first step in the proof of our main result is to reduce the normal approximation
bound to the following integral estimate. Define

JR,d :=

∫ R

0

(
1− cosh s− 1

coshR− 1

)d−1
ds.

Proposition 2.3. The following bound holds true for all d ≥ 2 and R > 0 and any
• ∈ {Kol,Wass}:

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ c ·

(
1√
d JR,d

+
1

d
√
JR,d

)
(2.5)

for some universal constant c ∈ (0,∞).

Proof. In view of the representation (2.1) of the invariant measure Λ and the expres-
sion (2.2) for the intersection volume, we have that

SR,d =
∑
s∈ξ

fR(s), (2.6)

where ξ is an inhomogeneous Poisson process on R with density s 7→ e−(d−1)s, and the
function fR is defined by

fR(s) =

{
κd−1

[
2es(coshR− cosh s)

] d−1
2 : |s| ≤ R,

0 : else.
(2.7)

We decompose the random variable SR,d into a ‘positive’ and ‘negative’ part as follows:

SR,d = S+
R,d + S−R,d,

where
S+
R,d :=

∑
s∈ξ
s>0

fR(s) and S−R,d :=
∑
s∈ξ
s<0

fR(s).

Note that from the independence property of Poisson processes it follows that the random
variables S+

R,d and S−R,d are independent. We then have

SR,d − ESR,d√
VarSR,d

=
S+
R,d − ES

+
R,d√

VarSR,d
+
S−R,d − ES

−
R,d√

VarSR,d
.
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Observe that

VarS+
R,d = VarS−R,d =

1

2
VarSR,d, (2.8)

which follows from the evenness of the integrand in the variance representation

VarSR,d =

∫
R

f2R(s)e−(d−1)s ds = 2d−1κ2d−1

∫ R

−R
(coshR− cosh s)d−1 ds,

which in turn follows from the multivariate Mecke formula for Poisson processes [15,
Theorem 4.1], where we used (2.1) and (2.2). We deduce that

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ d•

S−R,d − ES−R,d√
VarS−R,d

, N

+ 2−
1
2 E

∣∣∣∣∣∣S
+
R,d − ES

+
R,d√

VarS+
R,d

∣∣∣∣∣∣ , (2.9)

where N is a standard Gaussian random variable, and where we have used (2.3) and (2.4)
together with the fact that 2−

1
2N has the same distribution as our target random variable

N 1
2
.
To control the first summand in (2.9), we apply the following normal approximation

bound, which is a special case of general bounds for so-called Poisson U -statistics, see
[14, Theorem 3.12 and Equation (3.9)] and [22, page 112]. Applied to S−R,d, it states that

d•

S−R,d − ES−R,d√
VarS−R,d

, N

 ≤ c•
√

cum4(S−R,d)

VarS−R,d
,

for some constants c• ∈ (0,∞), • ∈ {Kol,Wass} (explicitly, one can take cKol = 19 and
cWass = 2), where cum4(W ) = E

[
(W − EW )4

]
− 3 Var(W )2 denotes the fourth cumulant

of a random variable W . Noting that S+
R,d ≥ 0, the second summand in (2.9) is easily

bounded by

E|S+
R,d − ES

+
R,d|√

VarS+
R,d

≤
2ES+

R,d√
VarS+

R,d

.

This gives

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ c•

√
cum4(S−R,d)

VarS−R,d
+ 21/2

ES+
R,d√

VarS+
R,d

. (2.10)

If we denote further Cd := 2(d−1)/2κd−1 and define

I1(R) :=

∫ R

0

(coshR− cosh s)
d−1
2 e−

d−1
2 s ds,

I2(R) :=

∫ R

0

(coshR− cosh s)d−1 ds,

I3(R) :=

∫ R

0

(coshR− cosh s)2(d−1)e−(d−1)s ds,

then we compute, using (2.6) and (2.7), that

ES+
R,d = CdI1(R), Var(S±R,d) = C2

dI2(R), cum4(S−R,d) = C4
dI3(R).
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Here the expectation and variance are computed with the help of the multivariate Mecke
equation, and the fourth cumulant using [16, Corollary 1]. Plugging this into (2.10)
finally gives

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ c•

[√
I3(R)

I2(R)
+

I1(R)√
I2(R)

]
(2.11)

(since in both cases, c• > 21/2). Now we use the following trivial estimates for I1 and I3:

I1(R) ≤ (coshR− 1)
d−1
2 · 2

d− 1
,

I3(R) ≤ (coshR− 1)2(d−1) · 1

d− 1
.

Moreover, for I2 we write

I2(R) =

∫ R

0

(coshR− cosh s)d−1 ds

= (coshR− 1)d−1
∫ R

0

(
1− cosh s− 1

coshR− 1

)d−1
ds

= (coshR− 1)d−1JR,d.

Plugging all this back into (2.11) leads to the estimate

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ c•

(
1√

d− 1 JR,d
+

2

(d− 1)
√
JR,d

)
,

which clearly implies the bound (2.5) and completes the proof.

Our next task therefore is to estimate JR,d. This is achieved by the following result.

Lemma 2.4. There exists a constant C > 0 such that the following holds for any d ≥ 2

and R ≥ 1.

JR,d ≥ C ·

{
eR/2
√
d

: R− log d ≤ 1,

R− log d : R− log d > 1.

Remark 2.5. As in Theorem 1.1 (see Remark 1.2), the threshold 1 between the two
cases of Lemma 2.4 can be replaced by any positive number, in which case the constant
C may change as well.

We postpone the proof of Lemma 2.4 until Section 3, and first use it to deduce our
main result.

Proof of Theorem 1.1. The theorem follows upon combining Proposition 2.3 with the
integral estimate provided by Lemma 2.4. Indeed, in the case R− log d > 1, we obtain
immediately the bound asserted by the theorem. In the case R − log d ≤ 1, combining
Proposition 2.3 with the first case of Lemma 2.4 gives

d•

(
SR,d − ESR,d√

VarSR,d
, N1

2

)
≤ C

(
e−R/2 + d−3/4e−R/4

)
.

Since by assumption, eR ≤ e · d, the first term on the right-hand-side is dominant, leading
to the bound appearing in the corresponding case of the theorem.
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3 Bounding JR,d

Here we bound the integral JR,d, which we recall is given by

JR,d =

∫ R

0

(
1− cosh s− 1

coshR− 1

)d−1
ds.

Proof of Lemma 2.4. First we write, with the help of the hyperbolic identity coshx− 1 =

2 sinh2 x
2 ,

JR,d =

∫ R

0

(
1− sinh2(s/2)

sinh2(R/2)

)d−1
ds. (3.1)

Next we define

ρ = ρ(R, d) :=
sinh(R/2)√

d
.

Noting that by definition of ρ, s ≤ 2 arcsinh(ρ) implies sinh(s/2)
sinh(R/2) ≤

1√
d
, we estimates (3.1)

by

JR,d ≥
∫ 2 arcsinh(ρ)

0

(
1− 1

d

)d−1
ds ≥ 2

e
arcsinh(ρ). (3.2)

We now proceed with the two cases of the lemma separately.

1. Suppose first that R− log d ≤ 1. Note that this implies

ρ ≤ eR/2

2
√
d

=
1

2
exp

(
R− log d

2

)
≤ 1.

By concavity of the inverse hyperbolic sine on [0, 1] one has for ρ ∈ [0, 1] the lower
bound arcsinh(ρ) ≥ Ĉρ, with Ĉ = arcsinh(1). As R ≥ 1, this implies

arcsinh(ρ) ≥ Ĉ · sinh(R/2)√
d

≥ C · e
R/2

√
d

for some C > 0. Combined with (3.2) this implies the desired bound.

2. Consider now the case R− log d > 1. Using the logarithmic representation of the
inverse hyperbolic sine

arcsinh(x) = log
(
x+

√
x2 + 1

)
≥ log(2x),

we deduce that

arcsinh(ρ) ≥ log

(
eR/2 − e−R/2√

d

)
=
R− log d

2
+ log(1− e−R).

Finally, the assumption R− log d ≥ 1 gives

log(1− e−R) ≥ log

(
1− 1

2e

)
≥ −R− log d

4
,

which implies that

arcsinh(ρ) ≥ R− log d

4
.

Together with (3.2) this shows that JR,d ≥ C(R−log d), and completes the proof.
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4 The Euclidean case

Let ηd be a stationary and isotropic Poisson process on the space A(d, d− 1) of affine
hyperplanes in Rd with intensity 1. Its intensity measure Λe is then given by∫

A(d,d−1)
f(H) Λe(dH) =

∫
R

∫
Sd−1

f(He(s, u)) duds,

for a non-negative measurable function f : A(d, d − 1) → R, where He(s, u) stands for
the unique hyperplane in Rd with signed distance s from o and unit normal vector u. As
above, ds and du stand for the Lebesgue measure on R and the normalized spherical
Lebesgue measure on Sd−1, respectively. By

SR,d,e :=
∑
H∈ηd

Hd−1e (H ∩BdR,e)

we denote the total surface area induced by the hyperplanes of ηd within a centred
Euclidean ball BdR,e of radius R > 0, where the Hausdorff measure Hd−1e is understood
with respect to the Euclidean metric. Using, as above [14, Theorem 3.12 and Equation
(3.9)] and [22, page 112] we find that

d•

(SR,d,e − ESR,d,e√
VarSR,d,e

, N
)
≤ c•

√
cum4(SR,d,e)

VarSR,d,e
(4.1)

with a standard Gaussian random variable N . The variance and the fourth cumulant of
SR,d,e are given explicitly by

VarSR,d,e =

∫
He

Hd−1e (H ∩BdR,e)2 Λe(dH),

cum4(SR,d,e) =

∫
He

Hd−1e (H ∩BdR,e)4 Λe(dH).

Denoting by κd−1 the (d− 1)-volume of the (d− 1)-dimensional Euclidean unit ball, we
have that

VarSR,d,e = 2κ2d−1

∫ R

0

(R2 − s2)d−1 ds

= 2κ2d−1R
2d−1

∫ 1

0

(1− t2)d−1 dt

=
πd−

1
2 Γ(d)R2d−1

Γ(d2 + 1
2 )2Γ(d+ 1

2 )
,

where we applied the substitution s 7→ Rt. The same computation also leads to an explicit
expression for cum4(SR,d,e):

cum4(SR,d,e) = 2κ4d−1

∫ R

0

(R2 − s2)2(d−1) ds

= 2κ4d−1R
4d−3

∫ 1

0

(1− t2)2(d−1) dt

=
π2d− 3

2 Γ(2d− 1)R4d−3

Γ(d2 + 1
2 )4Γ(2d− 1

2 )
.

In conjunction with (4.1) this gives

d•

(SR,d,e − ESR,d,e√
VarSR,d,e

, N
)
≤ 2−1/4c•

Γ(d+ 1
2 )

Γ(d)

√
Γ(2d− 1)

Γ(2d− 1
2 )
R−1/2.
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Using the well-known asymptotics for quotients of gamma functions, as d→∞ we arrive
at

d•

(SR,d,e − ESR,d,e√
VarSR,d,e

, N
)
≤ C d1/4R−1/2

for some absolute constant C > 0.
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