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1 Introduction

The model of random interlacements was introduced by Sznitman in [8] on lattices
Zd (d ≥ 3) and defined on arbitrary transient graphs by Teixeira in [9]. The vacant
set of random interlacements has been an important example of percolation model
with strong, algebraically decaying correlations, see e.g. [3, 4, 5] for comprehensive
literature review. In this paper we study the vacant set of random interlacements on
infinite vertex-transitive amenable transient graphs.

Let G = (V,E) be a locally finite graph. G is vertex-transitive if for any x, y ∈ V

there exists a graph automorphism of G, which maps x to y. G is amenable if the vertex
isoperimetric constant κV (G), defined by

κV (G) = inf
{ |∂A|
|A|

: |A| <∞
}
,

is equal to 0, where ∂A = {x ∈ A : (x, y) ∈ E for some y /∈ A} is the (inner) vertex
boundary of A. G is transient if a simple random walk on G is transient.

Random interlacements on G is the range of a Poisson cloud of doubly-infinite random
walks on G, whose density is controlled by a parameter u > 0. We postpone its precise
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Uniqueness for the vacant set of random interlacements

definition to Section 2 and just mention here that the law of random interlacements
Iu—as a random subset of V—is uniquely characterized by the relations

P[Iu ∩K = ∅] = e−ucap(K), for every finite K ⊂ V, (1.1)

where cap(K) stands for the random walk capacity of K. The vacant set of random
interlacements at level u is defined as the complement of Iu:

Vu = V \ Iu.

Our main result concerns the number of infinite connected components of Vu.

Theorem 1.1. Let G be a vertex-transitive amenable transient graph. For any u > 0, the
number of infinite connected components in Vu is either a.s. equal to 0 or a.s. equal to 1.

The main challenge to prove uniqueness for the vacant set of random interlacements
is lack of the so-called finite energy property. It is not clear how to overcome this
difficulty using only the description of random interlacements by (1.1). In the previous
works [8, 10], the characterization of random interlacements as the range of a Poisson
cloud of random walks (see (2.7)) and careful rerouting of the random walks enabled to
overcome the obstruction, but the method was very sensitive to geometry of the ambient
graph. In particular, the result of Theorem 1.1 was obtained by Teixeira in [10] in the
case of Zd (d ≥ 3), but his proof uses the structure of Zd in a crucial way and cannot be
extended to general graphs. To explain the novelty of our approach, let us briefly discuss
the common strategy for the proof of uniqueness.

Let N be the number of infinite connected components in Vu. By ergodicity (see [11]
and Proposition 2.1), N is constant almost surely. If N = k a.s. for some 2 ≤ k <∞, then
there is a sufficiently large finite set K, which intersects all k infinite components with
positive probability. If one can change such configurations locally at “finite cost” to merge
all the infinite components into one, then one obtains N = 1 with positive probability
and arrives at a contradiction. If N =∞ a.s., the Burton-Keane argument [2] leads to
a contradiction by showing that there is a positive density of so-called trifurcations—
locations where an infinite component locally splits into at least 3 infinite components.
The existence of trifurcations is also proved by a local modification argument on the
paths that intersect a large finite set K. In previous works [8, 10], the behavior of the
random walk paths that visit K was modified inside K in order to assemble a desired
configuration in K, which is very sensitive to the local geometry of the ambient graph.
Our method is based on the connectedness of Iu (see [11] and Proposition 2.1); more
precisely, we reroute the random walks from the Poisson cloud that ever visit K locally
between their first and last visit to K through the random interlacement Iu outside of K,
see the proofs of Proposition 3.3 and Lemma 3.5. In [7], we use similar local modification
in the proof of uniqueness of the infinite connected component for the vacant set of
Brownian interlacements.

An immediate application of Theorem 1.1 is the continuity of the percolation function
θ(u)—the probability that the connected component of a given vertex in Vu is infinite—in
the supercritical phase of the vacant set of random interlacements. The proof follows a
by now standard argument of van den Berg and Keane [1] (see e.g. [10, Corollary 1.2]
for an application to the vacant set of random interlacements on Zd).

The rest of the paper is organized as follows. Section 2 contains definition of random
interlacements point process as a Poisson point process on the space of doubly infinite
paths (see Section 2.3) as well as some useful sampling procedure for the paths that visit
a finite set (see (2.5) and (2.6)). The random interlacements at level u is defined in (2.7)
as the range of all paths from the interlacement point process. We prove Theorem 1.1 in
Section 3. A key ingredient for the proof is Proposition 3.1, in which we strengthen the

ECP 28 (2023), paper 55.
Page 2/9

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP564
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Uniqueness for the vacant set of random interlacements

result of Teixeira and Tykesson (see Proposition 2.1) about connectedness of random
interlacements.

2 Random interlacements

In this section we define random interlacements on G precisely. For further details
and proofs we refer the reader to [9].

Let W+ be the space of nearest neighbor paths w : N0 → V on G such that w(n)→∞
for n→∞1. We denote by Xn, n ≥ 0, the canonical process on W+ (i.e. Xn(w) = w(n))
and by W+ the sigma-algebra on W+ generated by the canonical process. Since G is
transient, the law of the simple random walk on G started from x ∈ V , denoted by Px, is
a probability measure on (W+,W+).

We write pn(x, x′) = Px[Xn = x′] for the n-step transition probability of the random
walk and g(x, x′) =

∑∞
n=0 pn(x, x′) for the respective Green function.

For a finite set K in V , we define the equilibrium measure of K by

eK(x) = Px
[
Xn /∈ K for all n ≥ 1

]
.

Note that eK is supported on ∂K. The total mass of eK is called the capacity of K and is
denoted by cap(K). Let LK = sup{n ≥ 0 : Xn ∈ K} be the last visit time in K. Then the
joint law of LK and XLK

(under Px) is given by

Px[LK = n,XLK
= y] = pn(x, y)eK(y). (2.1)

For x ∈ ∂K, we denote by PKx the law of the simple random walk starting from x and
conditioned on staying outside of K for all n ≥ 1. We denote by Pnx,y the random walk
bridge measure in time n ≥ 0 from x to y. Then

under Px, conditionally on LK = n and XLK
= y ∈ ∂K, the processes

(Xs)0≤s≤n and (XLK+s)s≥0 are independent and have laws Pnx,y resp. PKy .
(2.2)

2.1 Compatible measures on doubly-infinite paths

Let W be the space of doubly-infinite nearest neighbor paths w : Z→ V tending to
infinity at positive and negative infinite times. We denote by Xn, n ∈ Z, the canonical
process on W (i.e. Xn(w) = w(n)) and byW the sigma-algebra on W generated by the
canonical process. We denote the canonical time shift on W by θn, n ∈ Z. For a finite
set K ⊂ V , we define the first entrance time of w ∈ W in K as HK(w) = inf{n ∈ Z :

Xn(w) ∈ K}, and write

WK = {w ∈W ; HK(w) <∞}, W0
K = {w ∈W : HK(w) = 0}

for the sets of paths that ever visit K, resp., visit K for the first time at time 0.
Consider the following measure on W0

K :

QK
[
(X−n)n≥0 ∈ A, X0 = x, (X ′n)n′≥0 ∈ A′

]
= PKx [A] eK(x)Px[A′], A,A′ ∈ W+. (2.3)

The measures QK are compatible, in the sense that QK = θHK
◦
(
1WK

QK′
)
, for any finite

sets K and K ′ with K ⊆ K ′, see e.g. the proof of [9, Theorem 2.1]. Note that QK is a
finite measure with QK [W0

K ] = cap(K).
For K ⊆ V and w ∈WK , we define the last visit time of w in K by

LK(w) = sup{n ∈ Z : Xn(w) ∈ K}.
1w(n)→∞ if for any finite set K ⊂ V there exists nK such that w(n) /∈ K for all n ≥ nK .
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Uniqueness for the vacant set of random interlacements

By (2.1), (2.2) and (2.3), for any finite K and A,A′ ∈ W+,

QK
[
(X−s)s≥0 ∈ A, (Xs)0≤s≤LK

∈ ·, (XLK+s)s≥0 ∈ A′
]

=
∑

x,x′∈∂K

eK(x) eK(x′) g(x, x′)PKx [A]
( ∞∑
n=0

pn(x, x′)

g(x, x′)
Pnx,x′ [·]

)
PKx′ [A

′], (2.4)

where (Xs)0≤s≤LK
is viewed as a random element on the space Wfin of nearest neighbor

paths of finite duration. The identity (2.4) states that under QK , the pieces of the random
path before the first entrance time in K, after the last visit time in K, and between those
times are conditionally independent, given the locations of the first and last visits of the
path in K.

2.2 Random interlacement measure

We now define a suitable sigma-finite measure on doubly-infinite paths, whose re-
striction to every WK is QK .

Two paths w and w′ in W are called equivalent, if w′ = θn(w) for some n ∈ Z. The
quotient set of W modulo this equivalence relation is denoted by W∗. The canonical
projection π∗ : W→W∗ induces the sigma-algebraW∗ = {A ⊆W∗ : (π∗)−1(A) ∈ W} on
W∗. For a finite set K in V , we denote by W∗K the image of WK under π∗. Note that π∗

maps bijectively W0
K onto W∗K .

By [9, Theorem 2.1], there exists a unique sigma-finite measure ν on (W∗,W∗), whose
restriction to any W∗K coincides with QK , more precisely,

1W∗K ν = π∗ ◦QK , for any finite K ⊂ V .

Note that ν[W∗K ] = QK [WK ] = cap(K).

2.3 Random interlacement point process

Consider the space of point measures

Ω =
{
ω =

∑
i≥1

δ(w∗i ,ui) : ω
(
W∗K × [0, u]

)
<∞ for all finite K ⊂ V and u > 0

}
on W∗ ×R+, endowed with the sigma-algebra A generated by the evaluation maps

ω 7→ ω(E), E ∈ W∗ ⊗ B(R+),

and denote by P the Poisson point measure on W∗×R+ with intensity ν⊗du; the random
point measure with law P is called the random interlacement point process on G.

The random variable

NK,u = NK,u(ω) = ω
(
W∗K × [0, u]

)
,

which counts the number of trajectories with labels ≤ u (in ω) that visit K, has Poisson
distribution with parameter ucap(K).

For any finite K ⊂ V , given NK,u = n, the n trajectories of the random interlacement
point process that visit K and have labels ≤ u are independent random elements of W∗K
with the common distribution 1

cap(K)

(
π∗ ◦QK

)
, whose labels are independent uniformly

distributed on [0, u]. By (2.4), each of them can be sampled (independently) as follows:

• Sample the locations of the first entrance and last visit in K, (Xi, X
′
i), from the

distribution
1

cap(K)
g(x, x′) eK(x) eK(x′), x, x′ ∈ ∂K; (2.5)
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• Given Xi = xi and X ′i = x′i, sample independently random paths γi and γ′i in W+

and γ̃i in Wfin respectively from the distributions

PKxi
, PKx′i ,

∞∑
n=0

pn(x, x′)

g(x, x′)
Pnx,x′ [·]; (2.6)

• Let wi be the concatenation of the time reversal of γi, γ̃i and γ′i, so that wi(n) =

γi(−n) for n ≤ 0. (Note that wi is a random path in W0
K with the law 1

cap(K)QK .)

• To get the desired random element of W∗K × [0, u], we project wi onto W∗ and assign
it an independent label from the uniform distribution on [0, u].

For any u > 0, the random point measure ιu on W∗, defined by

ω =
∑
i≥1

δ(w∗i ,ui) 7→ ιu(ω) =
∑

i≥1:ui≤u

δw∗i ,

is called random interlacement point process on G at level u. Note that (under P) ιu is a
Poisson point process on W∗ with intensity uν.

2.4 Random interlacement

For any u > 0, the random interlacement at level u is defined as

Iu(ω) =
⋃

i≥1:ui≤u

range(w∗i ), ω =
∑
i≥1

δ(w∗i ,ui) ∈ Ω, (2.7)

where range(w∗) =
⋃
n∈Z w(n) for w∗ ∈W∗ and any w ∈ π−1(w∗). The complement of Iu

is called the vacant set (of random interlacement) at level u and is denoted by Vu.
Any random interlacement Iu is a measurable map from (Ω,A) to (Σ,F), where Σ is

the set of all subsets of V and F is the sigma-algebra on Σ generated by the π-system{
{F ∈ Σ : F ∩ K = ∅}, K ⊂ V finite

}
. The law of Iu on (Ω,A,P) is the probability

measure Qu on (Σ,F) uniquely determined by the identities

Qu
[
{F ∈ Σ : F ∩K = ∅}

]
= P[Iu ∩K = ∅] = e−u cap(K), K ⊂ V finite.

Finally, we recall some results from [11].

Proposition 2.1. Let G be a vertex-transitive amenable transient graph. Let Aut(G) be
the group of automorphisms on G. The following statements hold for every u > 0.

• ([11, (40)]) Aut(G) is a measure preserving ergodic flow on (Σ,F , Qu).

• ([11, Theorem 3.3]) Iu is connected almost surely.

3 Proof of Theorem 1.1

Let u > 0 be fixed and let N be the number of infinite connected components in Vu. By
Proposition 2.1, N is constant almost surely. We prove that N ∈ {0, 1} a.s. by ruling out
separately the two cases N = k for some 2 ≤ k <∞ (in Proposition 3.3) and N =∞ a.s.
(in Proposition 3.6). In Lemma 3.5, we prove that N =∞ a.s. implies a positive density
of trifurcations (see Definition 3.4). Our approach (in the proofs of Proposition 3.3 and
Lemma 3.5) is based on a novel local modification procedure to reroute random walk
paths that visit a finite set K through the random interlacements outside of K. A key
auxiliary result about a connectedness of random interlacements outside any finite set
K is given in Proposition 3.1. Some common notation that we use in the proofs are
collected in Section 3.1.
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3.1 Random interlacements outside finite set

In this section we introduce notation that we use in the proofs of Proposition 3.3 and
Lemma 3.5 and prove a result about connectedness of random interlacement outside
finite sets, which is key to justify local moditications in Proposition 3.3 and Lemma 3.5.

Let u > 0 and finite K ⊂ V be fixed.
Let ιu be a random interlacement point process at level u. We decompose ιu into the

point process ι′ of trajectories that visit K and ι′′ of trajectories that do not visit K. Note
that ι′ and ι′′ are independent.

Recall the sampling procedure for interlacement trajectories that visit K from Sec-
tion 2.4. Let NK be the number of trajectories in ι′. On the event {NK = n},

• let (Xi, X
′
i), 1 ≤ i ≤ n, be the locations of the first and last visits to K of the

interlacement trajectories ι′; and

• let (γi, γ̃i, γ
′
i), 1 ≤ i ≤ n, be the three fragments of the interlacement trajectories ι′,

respectively, the time reversal of the part before the first entrance in K, the part
between the first entrance and the last visit in K, and the part after the last visit
in K.

Given NK = n, (Xi, X
′
i), 1 ≤ i ≤ n, are i.i.d. with distribution (2.5), and given their

locations on ∂K, (γi, γ̃i, γ
′
i), 1 ≤ i ≤ n, are conditionally independent with law (2.6). We

define

IK,n =
⋃

w∗∈ι′′
range(w∗) ∪

n⋃
i=1

range(γi) ∪
n⋃
i=1

range(γ′i)

and VK,n = V \ IK,n. (Note that, given NK = n, Iu = IK,n ∪
⋃n
i=1 range(γ̃i).)

Proposition 3.1. For any u > 0, finite K ⊂ V and n ∈ N, given NK = n, IK,n is
connected almost surely.

Proof. Let A be the event that IK,NK
is connected. We prove that P[A] = 1.

For ω =
∑
i≥1 δ(w∗i ,ui) and 0 ≤ u′ < u′′, we denote by ιu

′,u′′ the random interlacement
point process with labels between u′ and u′′:

ιu
′,u′′ = ιu

′,u′′(ω) =
∑

i≥1:ui∈[u′,u′′]

δw∗i .

Note that ιu
′,u′′ is independent from ιu

′
(= ι0,u

′
) and has the same distribution as ιu

′′−u′ .
For ε > 0, we write the random interlacement point process ιu as the sum of indepen-

dent interlacement point processes ιu−ε + ιu−ε,u =: ι̂+ ι̌.
Let N̂K be the number of trajectories of ι̂ that visit K. Let X̂i, X̂

′
i ∈ ∂K, 1 ≤ i ≤ N̂K ,

be the locations of the first resp. last visit of these trajectories to K and let γ̂i and γ̂′i be
the time reversed past of the trajectories before the first visit in K resp. the future of the
trajectories after the last visit in K. By (2.6), given N̂K and {(X̂i, X̂

′
i), 1 ≤ i ≤ N̂K}, the

paths γ̂i and γ̂′i are all independent and distributed as simple random walks conditioned
on never returning to K; furthermore, they are independent from ι̌.

Since P[v ∈ ι̌] = c(ε) > 0, an independent simple random walk (with arbitrary starting
point) hits the range of ι̌ almost surely. Since simple random walk on G is transient, also
an independent simple random walk conditioned on never returning to K hits the range
of ι̌ almost surely. Thus, each γ̂i and γ̂′i hit the range of ι̌ almost surely. We denote this
event by Â.

Let G be the event that none of the trajectories from ι̌ visits K. Note that P[G] −−−→
ε→0

1.

Furthermore, since the trace of ι̌ is connected almost surely, Â ∩G ⊆ A. Thus, for every
ε ∈ (0, u), P[A] ≥ P[Â ∩G] = P[G], which gives P[A] = 1. The proof is completed.
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Remark 3.2. An immediate corollary from Proposition 3.1 is that for every u > 0 and
finite K ⊂ V , Iu \K contains exactly one infinite connected component almost surely.

3.2 Number of infinite components is 0, 1 or ∞
In this section we rule out the case N = k a.s. for some 2 ≤ k <∞.

Proposition 3.3. P[N = k] = 0 for all 2 ≤ k <∞.

Proof. Assume on the contrary that N = k a.s. for some 2 ≤ k <∞.
Fix a finite K ⊂ V such that int(K) = K \∂K is connected and intersects all k infinite

connected components of Vu with positive probability. Denote this event by EK .
Fix n such that the probability of event EK,n = EK ∩ {NK = n} is positive. On the

event EK,n, the infinite connected component of VK,n is unique and contains int(K).
By Proposition 3.1, IK,n is connected almost surely. Thus, every Xi is connected to

X ′i, for 1 ≤ i ≤ n, by a path in IK,n ∩K ′ for some large enough finite K ′ ⊇ K. Denote by
EK,n,K′ the event that EK,n occurs and every Xi is connected to X ′i, for 1 ≤ i ≤ n, inside
IK,n ∩K ′. Then EK,n,K′ is σ(NK , IK,n, {(Xi, X

′
i)}1≤i≤n)-measurable and P[EK,n,K′ ] > 0

for all large enough finite K ′ ⊂ V . Fix such K ′. There exists I ⊂ K ′ \ int(K) and
xi, x

′
i ∈ ∂K, for 1 ≤ i ≤ n, such that

P
[
EK,n,K′ , IK,n ∩K ′ = I, (Xi, X

′
i) = (xi, x

′
i) for all 1 ≤ i ≤ n

]
> 0.

Note that every xi is connected to x′i inside of I.
Let G be the event that every bridge γ̃i is a simple path in I from Xi to X ′i, for

1 ≤ i ≤ n. Then there exists c = c(n,K,K ′) > 0 such that

P
[
G |NK = n, IK,n ∩K ′ = I, (Xi, X

′
i) = (xi, x

′
i) for all 1 ≤ i ≤ n

]
≥ c > 0.

Hence

P
[
G, EK,n,K′ , IK,n ∩K ′ = I, (Xi, X

′
i) = (xi, x

′
i) for all 1 ≤ i ≤ n

]
> 0.

However, if this event occurs, then Vu = VK,n, which implies that Vu contains a unique
infinite connected component. Thus, we have shown that P[N = 1] > 0, which contradicts
the initial assumption. The proof is completed.

3.3 Ruling out infinitely many infinite components

To rule out the possibility of infinitely many infinite connected components in Vu we
follow the classical Burton-Keane argument with a bit more general notion of trifurcation.
For x ∈ V , let B(x, t) be the ball of radius t centered in x and denote by Cx,t the connected
component of x in Vu ∩B(x, t).

Definition 3.4. Let t > 0. We say that x ∈ V is a t-trifurcation if there is an infinite
connected component C of the vacant set Vu, such that

(a) x ∈ C;
(b) C \ Cx,t contains at least 3 infinite connected components.

Lemma 3.5. Assume that N =∞ a.s. Then there exists t > 0, such that (for any x ∈ V )

P
[
x is a t-trifurcation

]
> 0.

Proof. The proof is very similar to the proof of Proposition 3.3.
Let x ∈ V . Fix a finite K ⊂ V such that int(K) = K \ ∂K is connected, contains x,

and intersects at least 3 infinite connected components of Vu with positive probability.
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Denote this event by EK . Fix n such that the probability of event EK,n = EK ∩{NK = n}
is positive.

Since the bridges γ̃i have finite range, if EK,n occurs, then VK,n \K ′ = Vu \K ′ for
all large enough finite K ′ ⊇ K; in particular, VK,n contains an infinite component C′,
such that int(K) ⊂ C′ and C′ \K ′ contains at least 3 infinite connected components. Let
EK,n,K′ be the event that

(a) NK = n;

(b) there is an infinite connected component C′ in VK,n, such that int(K) ⊂ C′ and
C′ \K ′ contains at least 3 infinite connected components;

(c) for all 1 ≤ i ≤ n, Xi is connected to X ′i in IK,n ∩K ′.

By Proposition 3.1, P[EK,n,K′ ] > 0 for all large enough finite K ′ ⊇ K. Now, exactly as
in the proof of Proposition 3.3—by rerouting the bridges γ̃i through IK,n—, we obtain
that P[EK,n,K′ , IK,n = Iu] > 0. Thus, with positive probability, Vu contains an infinite
connected component C, such that x ∈ C and C \K ′ contains at least 3 infinite connected
components. Call this event Fx,n,K′ . We claim that Fx,n,K′ implies that x is a t-trifurcation
for all t large enough.

Assume that Fx,n,K′ occurs and let {Ci}i∈I be all (≥ 3) the infinite connected compo-
nents of C \K ′. Choose t large enough, so that C ∩K ′ ⊆ Cx,t. Since Ci’s are not connected
in C \K ′, they are also not connected in C \Cx,t. Thus, C \Cx,t consists of at least 3 infinite
connected components. Hence x is a t-trifurcation.

Finally, since P[FK,n,K′ ] > 0, x is a t-trifurcation with positive probability for some t.
The proof is completed.

Proposition 3.6. P[N =∞] = 0.

Proof. Assume on the contrary that N =∞ a.s. and fix a t as in Lemma 3.5.
By arguing exactly as in the proof of [6, Theorem 2.4], we notice that for any finite

set of t-trifurcations T of an infinite connected component C such that Cx,t ∩ Cx′,t = ∅ for
all different x, x′ ∈ T , the set C \

⋃
x∈T Cx,t contains at least |T | + 2 infinite connected

components. Thus, an infinite component with j t-trifurcations in a finite set W , which
are pairwise at distance at least 2t+ 1 from each other, intersects ∂W ′ in at least j + 2

vertices, where W ′ =
⋃
w∈W B(w, t+ 1). Consequently, using the vertex-transitivity of G,

the total number T (W ) of t-trifurcations in W is at most |B(w, 2t+ 1)|(|∂W ′| − 2), which
is at most |B(w, 2t+ 1)| |B(w, t+ 1)| |∂W | =: c1|∂W |. On the other hand, by Lemma 3.5
and the vertex-transitivity of G, E[T (W )] = |W |P[x is t-trifurcation] = c2|W | for some
c2 > 0. We conclude that for any finite W ⊂ V ,

|∂W |
|W |

≥ c2
c1
> 0,

thus also the vertex isoperimetric constant κV (G) is positive. This contradicts with the
assumption that G is amentable. The proof is completed.
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