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Abstract

We prove that the scaling limit of the weakly self-avoiding walk on a d-dimensional
discrete torus is Brownian motion on the continuum torus if the length of the rescaled
walk is o(V 1/2) where V is the volume (number of points) of the torus and if d > 4.
We also prove that the diffusion constant of the resulting torus Brownian motion
is the same as the diffusion constant of the scaling limit of the usual weakly self-
avoiding walk on Zd. This provides further manifestation of the fact that the weakly
self-avoiding walk model on the torus does not feel that it is on the torus up until it
reaches about V 1/2 steps, which we believe is sharp.
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1 Introduction and results

1.1 Introduction

A self-avoiding walk (SAW) on any graph is a path on this graph that does not visit
any vertex more than once. Historically and still today, most of the research on this
topic focuses on the case where the graph is a lattice and especially the Euclidean
lattice Zd where the dimension d plays a key role in the behaviour of this model. In
dimension d > 4 the model is now very well understood following the introduction of the
lace-expansion by Brydges and Spencer in 1985 [5] in the context of the closely related
weakly self-avoiding walk (WSAW). Hara and Slade developed the lace-expansion to
prove that the usual self-avoiding walk model has mean-field behaviour in dimension
d ≥ 5 in the early 90’s [9, 11, 10] which means in short that the SAW behaves closely like
the simple random walk, sharing for example the same critical exponents. It was shown
in this context [11, 22] that the scaling limit of the SAW on Zd is Brownian motion with
some diffusion constant D > 1. The scaling limit is also believed to be Brownian motion
at the critical dimension dc = 4 but with extra log corrections to the rescaling factors
[6]. Relatively recent rigorous results in that direction have been obtained through
renormalization group arguments for the WSAW in [1, 2]. In lower dimensions the
picture is quite different. In two dimension, the scaling limit of the SAW is conjecturally
the so-called Schramm-Loewner Evolution with parameter κ = 8/3. And in fact this is
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The scaling limit of the weakly self-avoiding walk on a high-dimensional torus

known to be the case under the widely open assumption that the scaling limit exists
and is conformally invariant following the breakthrough work of Lawler, Schramm and
Werner [15]. In three dimensions there seems to be no good candidate as of today for
the scaling limit and the model more generally remains poorly understood even from the
physics standpoint.

Here we study the WSAW model where strictly SAW are assigned weight 1 and other
walks get penalized for intersecting and have a smaller but non-zero weight. A more
formal definition is given after. It is widely acknowledged even though conjectural that
the asymptotic behaviour of the WSAW and of the SAW are the same in all dimensions
and that both models lie in the same universality class. We are interested in the model
on a d-dimensional torus (a box with periodic boundary conditions) of sidelength r ≥ 3

where d > 4. It was pointed out and partly proven in [18] that the WSAW on the torus
behaves the same as its Zd counterpart provided that its length is less than rd/2 and that
this should be sharp. In this article we show that the scaling limit of the WSAW on the
torus is Brownian motion on the continuum torus if the walk that we rescale has length
much smaller than rd/2 and much larger than r2, which is possible only if d > 4. Our
main tool to prove the above is the lace expansion. Since its introduction in [5], the lace
expansion technology has been simplified and explained by several authors [16, 23, 4]
(to which we refer for further background) as well as applied to a broad range of models
(percolation, lattice trees and lattice animals, Ising, |ϕ|4, etc. [7, 8, 19, 20]) above their
critical dimensions.

1.2 Notation

We write f ∼ g to mean lim f/g = 1, and use the usual Landau notations o and O.
We also write for non-negative f and g that f � g if f/g = o(1) and f � g if g � f and
that f � g if both f/g = O(1) and g/f = O(1). For any vector u ∈ Rd, |u| denotes the
Euclidean norm of u. In what follows we repeatedly make use of the mention “β > 0

sufficiently small” which means that the variable β is strictly between 0 and some
β0(d) > 0 where β0 is allowed to depend on d only, and is not allowed to depend on n or
r. Constants in general are permitted to depend on d.

1.3 The weakly self-avoiding walk

An n-step walk on a graph G = (V,E) is a function ω : {0, 1, . . . , n} → V with
{ω(i− 1), ω(i)} ∈ E for 1 ≤ i ≤ n. For an n-step walk ω on G, for 0 ≤ s < t ≤ n and for
β ∈ [0, 1], we define

Ust(ω) =

{
−1 (ω(s) = ω(t))

0 (ω(s) 6= ω(t))
, K[0, n] =

∏
0≤s<t≤n

(1 + βUst(ω)) (1.1)

where we keep the dependency on ω and β implicit to simplify the notation.
We let Wn denote the set of n-step walks starting at 0 on Zd with usual nearest

neighbour edges. Given β ∈ [0, 1], we define the partition function cn = cn(β) by

cn =
∑
ω∈Wn

K[0, n]. (1.2)

The product in (1.1) discounts ω by a factor 1− β for each pair s, t with an intersection
ω(s) = ω(t). When β = 0, cn is simply the number of n-step walks and is thus equal
to (2d)n. For β = 1, cn is the number of n-step strictly self-avoiding walks. The case
β ∈ (0, 1) is the weakly self-avoiding walk. In particular, it is proved in [13] that for d > 4

with β > 0 sufficiently small

cn = Aµn(1 +O(βn−(d−4)/2)), (1.3)
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with A = 1 +O(β) and where µ = µ(β,Zd) is the WSAW connective constant of Zd.
There is a natural probability measure on Wn denoted Pβ,n that comes with the

WSAW model. If we let Eβ,n be its corresponding expectation, then it is defined by

Eβ,n f =
1

cn

∑
ω∈Wn

f(ω)K[0, n] (1.4)

for any bounded function f : Wn → R. We write ω ∼ β-WSAWn to mean that ω has law
Pβ,n. With this notation and when d > 4, it was proven in [5, 13] for small enough β > 0

and in [11] for β = 1, that the mean-square displacement defined by the left-hand side
of (1.5) satisfies

En,β |ω(n)|2 = Dn(1 +O(n−ε)) (1.5)

for any ε ∈ (0, 1/2) and where D = D(β) > 1 is called the diffusion constant of the WSAW.
It is also known (see [7, Theorem 1.6] and [16, Theorem 6.1.8]) that the scaling limit
of the strictly self-avoiding walk is Brownian motion for d > 4. In this case the (usual)
diffusion constant of the limiting Brownian motion is equal to D.

We are mostly interested in walks on a discrete torus Tdr = (Z/rZ)d for an integer
r ≥ 4 which will be taken to be large and even. The edge set is defined to be the set of
pairs of vertices x, y such that x and y differ exactly by 1 mod r in one of the d directions.
The volume of the torus is V = rd. We let WT

n denote the set of n-steps torus walks
starting at 0. In the same way as on Zd, we define torus quantities

cTn =
∑
ω∈WT

n

K[0, n], ETβ,n,r g =
1

cTn

∑
ω∈WT

n

g(ω)K[0, n], (1.6)

for any g : WT
n → R. We write ω ∼ β-WSAWT

n,r to mean that ω has law PTβ,n,r.

1.4 Main result

We introduce some notations before rescaling the walk and stating our main result.
Let Td = (R/Z)d, T > 0 and finite and define C00([0, T ],Td) be the space of continuous
functions from [0, T ] to Td. For a torus walk ω ∈ WT

n with n � V 1/2 and n/r2 ↑ T , we
define the mapping x(n) from WT

n to C00([0, T ],Td) which is the proper rescaling of the
torus walk by

x
(n)
k/r2(ω) =

ω(k)

r
for k ∈ {0, 1, · · · , n}, (1.7)

where we see ω(k)
r as an element of Td rather than r−1Tdr by a canonical embedding.

We then let x(n)t (ω) interpolate linearly between the above values up to t = n/r2 and
let xt = xn/r2 for t ∈ [n/r2, T ]. Finally we define all of the above to the case n/r2 ↑ ∞
(i.e. T = ∞) by working instead on C00([0,∞),Td), the space of continuous functions
from [0,∞) to Td and by letting the latter interpolation satisfy instead xt = xn/r2 for
t ∈ [n/r2,∞).

We define the stopped process BT = (Bt)0≤t≤T where B is an Rd-Brownian motion
defined on some probability space (Ω,A,P) satisfying E |B1|2 = D. So the diffusion
constant of all the Brownian motions appearing in what follows is taken equal to D which
is defined in (1.5). In the case T =∞, BT is simply B. Finally, we denote by BT mod 1

the process with values in Td obtained by taking all d coordinates of B modulo 1.
We defer the precise definition of convergence in law and continuity to Section 2.1.

Our main result is the following:

Theorem 1.1. Let d > 4 and β > 0 sufficiently small. If ω ∼ β-WSAWT
n,r with n = nr

satisfying n � V 1/2 and n/r2 ↑ T where T ∈ (0,∞] then X(n) = x(n)(ω) converges
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in law to a Brownian motion on the torus with diffusion constant D and length T . In
other words, for any continuous and bounded functional f on C00([0, T ],Td) (resp. on
C00([0,∞),Td) for T =∞) we have

ETβ,n,r f(X(n))→ E f(BT mod 1) as r →∞. (1.8)

Theorem 1.1 follows from the classical fact that the scaling limit of the strictly self-
avoiding walk is Brownian motion with diffusion constant D and from the following
more recent result proven in [18] which itself carries more technicality than the proof of
Theorem 1.1.

Theorem 1.2. For d > 4 and C0 > 0, if β > 0 is sufficiently small and if n ≤ C0V
1/2, then

cTn = Aµn
[
1 +O(β)

( 1

n(d−4)/2
+
n2

V

)]
, (1.9)

where A is the same constant as in (1.3) and the error term depends on C0 but not on
n, V, β. In particular cn ∼ cTn for n = o(V 1/2) going to infinity.

Note that although the statement of Theorem 1.2 holds for n up to and of order
V 1/2, we state our scaling limit theorem only for walks of length n = o(V 1/2). This is a
manifestation of the fact that Theorem 1.2 essentially captures the correct behaviour
of cTn only for n = o(V 1/2) as we explain further in Section 1.5 and there is currently
no hope of adapting our proof to obtain a scaling limit for walks of length V 1/2 (this is
apparent in the proof of Lemma 2.4).

Since we are considering the WSAW rather than the usual (strictly) SAW, the results
in [16] do not apply directly but as we discuss below Lemma 2.7 it is elementary to adapt
them to the easier case of the WSAW.

In fact we shall only prove the case T =∞ which is the most interesting and from
which the proof can be easily adapted to cover the easier case T > 0 and finite. We
exclude the case T = 0 because then the rescaling in (1.7) is degenerate in the sense
that the torus is properly scaled whereas the rescaled walk shrinks to 0 as is noted in
Remark 2.5.

1.5 Discussion of the results and related problems

Different regimes of cTn . We refer to the regime of values of n for which the limiting
behaviour (such as the scaling limit) of the torus WSAW is the same as on Zd as the
subcritical regime or dilute phase. On the torus, it corresponds conjecturally to walks
having length o(V 1/2). On the other hand it would be interesting to determine what
the scaling limit of the walk is when its length is of order V 1/2 (critical regime) or
much larger than V 1/2 (supercritical regime or dense phase). The above conjectural
distinction of regimes: n � V 1/2, n � V 1/2 and n � V 1/2 has been first identified
for the simpler and solvable case of the SAW on the complete graph in [24] (see also
[18, 25] for progress on the torus and the hypercube). In order to establish a version of
Theorem 1.1 for the critical regime we would need at least to understand better how
cTn behaves when n � V 1/2. In this regime we do not expect cTn to be equivalent to cn
when n→∞ (although cn � cTn should hold). This prevents the proof contained in the
present article to apply directly in this case and is a manifestation of the fact that new
ideas are required to understand the critical regime as was already noted in [18, Remark
5.3]. A related open problem is thus to obtain good control of cTn for n � V 1/2 or of
χT(z) :=

∑
n≥0 c

T
nz

n for z ∈ [zc − σV −1/2, zc + σV −1/2] where σ > 0 is fixed but arbitrary,
which is the conjectural critical window.

Role of boundary conditions. Another interesting question lies in the determina-
tion of the role of boundary conditions for self-avoiding walk models on finite graphs. For
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free boundary condition, i.e. for the model on a large box without identifying opposite
sides, it seems reasonable to expect instead a distinction of regimes of the type n� r2,
n � r2 and n � r2 for the behaviour of the corresponding partition function of n-step
walks cFn. Putting aside the scaling limit, it would again be of considerable interest to
first elucidate the behaviour of cFn, but this is not currently known, even for the dilute
phase. We note that it is the role of the coming [17] to analyse and clarify the role of
boundary conditions for a version of the |ϕ|4 model for d ≥ 4, the latter being closely
related to the WSAW model. We refer to [18, Section 1.7] and [17, Section 1.5 and
Section 1.6] for further discussion and precise conjectures.

Related models. It is natural to ask whether Theorem 1.1 holds in the case of
the strictly self-avoiding walk (β = 1) for d > 4, in particular since the convergence
to Brownian motion is known in this case. We believe the answer is “Yes” in general
and moreover that the proof in the case where d > 4 is large enough could be obtained
with reasonable efforts: In order to apply our proof to SAW, one needs a version of
Theorem 1.2 for SAW where the O(β)-term is likely to be replaced by O((2d)−1) for large
enough d > 4, the so-called “small parameter” in the lace-expansion literature. Then, the
proof of Theorem 1.2 is based on diagrammatic estimates which should still hold in the
case of the SAW rather than WSAW provided that one can establish a near-critical decay
estimate for the SAW two-point function as in [25, Theorem 1.1]. This last estimate
is used repeatedly in [18] but is for now known only for WSAW and is thus the main
hindrance in pushing the analysis further.

Finally, we can also consider the related long-range self-avoiding walk which is shown
to converge in [12] to an α-stable process in general. Considering a torus counterpart of
this problem would also be of interest and remains open.

2 Scaling limit on the torus

2.1 Set-up

For any r ≥ 3, we recall that Tdr is the d-dimensional discrete r-torus, that is Tdr =

(Z/rZ)d. We let Td = (R/Z)d be the continuum torus. We will often see the discrete
r-torus and the continuum torus as [−r/2, r/2) ∩ Zd with addition modulo r and as
[−1/2, 1/2) with addition modulo 1 respectively. For x ∈ Td we denote by (x)1 (for x ∈ Tdr
we denote by (x)r respectively) the unique representative in the equivalence class of x
that is inside [− 1

2 ,
1
2 ) (inside [− r2 ,

r
2 ) respectively). This is useful to canonically embed Tdr

into Zd and Td in Rd. In the rest of the article we will mention convergence in law on
several metric spaces that we now define. We let

• C0(Rd) = (C00([0,∞),Rd), ‖ · ‖∞) be the metric space of continuous functions x from
[0,∞) to Rd with x(0) = 0 endowed with the topology of uniform convergence. By
abuse of notation we shall also denote by C0(Rd) the corresponding measurable
space with its associated Borel σ-algebra.

• C0(Td) = (C00([0,∞),Td), ‖ · ‖∞) is defined similarly with ‖x‖∞ = supt≥0 |(x(t))1|
and the corresponding topology and Borel σ-algebra.

We denote by⇒ the convergence in law (see [3, Chapter 1]) of probability measures on
any of the above metric spaces without distinction since it shall be clear from context
where the convergence holds.

In order to compare walks in Tdr and in Zd we introduce the lift ˆ̀ of a torus walk
which is to be thought of as the unwrapping to Zd of a walk on Tdr . The occurence of the
hat on top of the ` is to make explicit the distinction between the lift of walks and the lift
of processes which is introduced in Proposition 2.2.
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Definition 2.1 (The Zd-lift of torus walks). We define the lift ˆ̀ of a torus walk by the
operator

ˆ̀: WT
n →Wn (2.1)

ω 7→ ˆ̀[ω]

which to any ω ∈ WT
n associates the Zd-walk ˆ̀[ω] defined by ˆ̀[ω](0) = 0 and

ˆ̀[ω](k) = ˆ̀[ω](k − 1) + (ω(k)− ω(k − 1))r (1 ≤ k ≤ n). (2.2)

Due the nearest-neighbour constraint, when r ≥ 4 the map ˆ̀ is a bijection from
WT
n ontoWn.

This bijection has the following consequence that cTn in (1.6) can be rewritten as a
sum over Zd-walks where an intersection occurs if the walk visits two points that are
equal modulo r (in every coordinate). This gives

cTn =
∑
ω∈Wn

KT[0, n], where KT[0, n] =
∏

0≤s<t≤n

(1 + UTst(ω)) (2.3)

and with UTst defined by

UTst(ω) =

{
−1 (ω(s) = ω(t) mod r)

0 (ω(s) 6= ω(t) mod r).
(2.4)

Similarly, we extend in Proposition 2.2 the definition of the lift to the setting of
processes. This requires some additional yet elementary work which is why we make it a
proposition. The lift of processes is useful because it enables us to partially convert the
problem of the scaling limit on the torus to a similar problem on Zd where the theory is
already well developed.

Proposition 2.2 (The Rd-lift of torus processes). There exists a linear operator `

` : C0(Td)→ C0(Rd) (2.5)

x 7→ `[x]

which we call the lift of a process, which to any function x ∈ C0(Td) associates y = `[x]

the unique continuous Rd function (y(t))t≥0 starting at 0 such that x(t) = y(t) mod 1 for
all t ≥ 0. Furthermore, the lift ` of a torus process is a linear homeomorphism of C0(Td)

onto its range C0(Rd).

Proof. The proof consists in formalizing the obvious. By construction we shall show that
the lift of a torus process is well defined and is unique. We recall that (x)1 is the unique
element in the equivalence class of x that is inside [− 1

2 ,
1
2 )d. Let x ∈ C0(Td), we construct

y ∈ C0(Rd) as follows. Fix y(0) = x(0) = 0 and t0 = 0. Consider the sequence (tn) defined
by

tn+1 = inf{t > tn, |(x(t)− x(tn))1| = 1/8} (2.6)

and tn+1 =∞ if the above set is empty. One sees from the continuity of x that tn+1 > tn
and tn →∞ (or =∞ for some n). Then we set

y(t) = y(tn) + (x(t)− x(tn))1 (for t ∈ (tn, tn+1] and n ≥ 0) (2.7)

and define `[x] = y which is in C0(Rd) by construction. The fact x(t) = y(t) mod 1

is clearly satisfied and can be checked on (tn, tn+1] by induction on n. To show the
uniqueness suppose that y1, y2 ∈ C0(Rd) both satisfy x(t) = yi(t) mod 1 for all t ≥ 0
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and i = 1, 2. Then y1(t) − y2(t) = 0 mod 1 so that y1(t) − y2(t) = u(t) with u(t) ∈ Zd
and by continuity of both y1 and y2 and the fact that y1(0) = y2(0) = 0 this implies
that u = 0. The fact that the range of ` is C0(Rd) follows from the fact that for any
y ∈ C0(Rd), the canonical projection on the torus y mod 1 is an element of C0(Td)

which satisfies `[y mod 1] = y. This also settles the fact that `−1 is just the canonical
projection onto the torus. The continuity of `−1 is clear from the fact that it is a
projection. The linearity of ` then follows from the bijectivity of ` and the linearity of
the canonical projection. Note that for any ε > 0 with ε < 1/8 we have that ‖x‖∞ < ε

implies that `[x](t) = (x(t))1 for all t ≥ 0 and thus that ‖`[x]‖∞ < ε which proves the
continuity of `.

This above allows us to make the following definition. We let B be the usual Brownian
motion on Rd and define BT, the Brownian motion on the torus, by

BT = `−1(B) = B mod 1. (2.8)

2.2 Reduction of proof

In this section we reduce the proof of Theorem 1.1 to a convergence in law on Zd by
lifting the torus walks and their corresponding rescaled processes. We focus on the case
T =∞ which means that n/r2 ↑ ∞ because it is the most interesting one. The proof for
an arbitrary finite and positive T is completely analogous and requires no additional
effort and the case of T = 0 is settled in Remark 2.5. From now on B is a d-dimensional
Brownian motion on some probability space (Ω,A,P) satisfying E|B1|2 = D where we
recall that D is the diffusion constant defined in (1.5). We define BT as in (2.8). We
want to show that whenever ω ∼ β-WSAWT

n,r and X(n) = x(n)(ω) then for r2 � n� V 1/2

(X
(n)
t )t≥0 ⇒ (BTt )t≥0. We will do so by studying instead the lift of torus walks which is

equivalent from the following lemma.

Lemma 2.3 (Studying the lift of a process is enough). Let P, P1, P2, · · · be probability
measures on C0(Td). Then the following equivalence holds

Pn ⇒ P if and only if Pn ◦ `−1 ⇒ P ◦ `−1. (2.9)

Proof. This is an easy consequence of the mapping theorem (see [3, Theorem 2.7]) for
convergence in law together with the fact that ` is a homeomorphism from C0(Td) to
C0(Rd) by Proposition 2.2.

We define the corresponding Zd β-WSAW renormalized in a similar way as X except
that it is thus an Rd-process. In detail, for ω a walk in Wn we define the mapping y(n)

fromWn to C0(Rd) by

y
(n)
k/r2(ω) =

ω(k)

r
for k ∈ {0, · · · , n} (2.10)

and y
(n)
t interpolates linearly between these values and also y(n)t = y

(n)
n/r2 for t ≥ n/r2.

From (1.7) and (2.10) we see that y(n) is nothing else than

y(n) = ` ◦ x(n) ◦ ˆ̀−1. (2.11)

Lemma 2.4. Let β > 0 be small enough, n = o(V 1/2), ω ∼ β-WSAWn, ωT ∼ β-WSAWT
n,r

with X(n) = x(n)(ωT), Y (n) = y(n)(ω) and suppose that (Y
(n)
t )t≥0 ⇒ (Bt)t≥0. Then we

have (X
(n)
t )t≥0 ⇒ (BTt )t≥0.

ECP 28 (2023), paper 27.
Page 7/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP531
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


The scaling limit of the weakly self-avoiding walk on a high-dimensional torus

Proof. We let β > 0 be small enough and X, Y as in the statement of Lemma 2.4. By
assumption for any continuous bounded functional f on C0(Rd) we have that Eβ,n f(Y (n))

converges to Ef(B). We see from Lemma 2.3 that (X
(n)
t )t≥0 ⇒ (BTt )t≥0 if and only if

(`[X
(n)
· ](t))t≥0 ⇒ (Bt)t≥0. So it is enough to prove that the convergence in law holds

for Z(n) = `[X(n)] with limiting law that of a usual Rd-Brownian motion with diffusion
constant D. We use (1.1) and (2.3) to see that for any continuous and bounded functional
f on C0(Rd)

ETβ,n,rf(Z(n)) =
1

cTn

∑
ω∈Wn

f(` ◦ x(n) ◦ ˆ̀−1(ω))KT[0, n]

=
1

cTn

∑
ω∈Wn

f(y(n)(ω))KT[0, n] (2.12)

where the last line follows from (2.11). By definition of Eβ,nf(Y (n)) and letting En(f) :=

|ETβ,n,rf(Z(n))− cn
cTn
Eβ,nf(Y (n))| we have

|ETβ,n,rf(Z(n))− Ef(B)| ≤ En(f) +
∣∣1− cn/cTn ∣∣ Eβ,n|f(Y (n))|+ |Eβ,nf(Y (n))− Ef(B)|.

(2.13)

The third term in the right hand-side of (2.13) goes to zero by assumption. The second
term goes to zero as n (and thus r) goes to infinity using the boundedness of f and
the fact that cTn ∼ cn from Theorem 1.2 when n = o(V 1/2) and since β > 0 is taken
small enough. To control En(f) we simply note that since KT[0, n] ≤ K[0, n] we have

En(f) ≤ ‖f‖∞ cn−cTn
cTn

which goes to zero as r → ∞ by (1.3) and Theorem 1.2 since β is

sufficiently small and n→∞ with n = o(V 1/2).

Remark 2.5. Following a similar proof as above, it is easy to check that if ωT ∼ β-
WSAWT

n,r with n� r2 then any rescaling of ωT and Tdr converges to 0 in probability in
the sense that for every ε > 0

lim
n,r→∞
n�r2

PTβ,n,r(r
−1 sup

1≤k≤n
|ωT(k)| > ε) = 0. (2.14)

Indeed we have that for any ε > 0 and similarly as in the previous proof that

PTβ,n,r(r
−1 sup

1≤k≤n
|ωT(k)| > ε) ≤ PTβ,n,r(r−1 sup

1≤k≤n
|`[ωT](k)| > ε)

≤ Pβ,n(r−1 sup
1≤k≤n

|ω(k)| > ε)

= Pβ,n(n1/2r−1 sup
1≤k≤n

n−1/2|ω(k)| > ε) (2.15)

and the proof follows from the hypothesis that n � r2 and from the tightness of
(sup1≤k≤n n

−1/2|ω(k)|)n which is a consequence of the convergence in law of the Zd-
WSAW to Brownian motion on Zd when d > 4.

2.3 Proof of Theorem 1.1

In order to conclude the proof of the main theorem it is enough by Lemma 2.4 to show
that (Y

(n)
t )t≥0 ⇒ (Bt)t≥0. We thus need to show that our rescaled (see (2.10)) Zd-WSAW

converges to an infinite Brownian path. This latter fact is not known. Indeed, the original
Zd-scaling limit result presented in [16, Theorem 6.1.8] is different. It is shown there
that a length-n β-WSAW ω rescaled by

√
n converges in distribution to (Bt)0≤t≤1. This

last subsection thus gives a proof that (Y
(n)
t )t≥0 ⇒ (Bt)t≥0. To reduce the proof further
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we use [14, Proposition 16.6] which states that the convergence in law of continuous
random processes indexed by R+ and taking values in some general metric space holds
if and only if the convergence holds for the restrictions to any compact subset of R+.
In fact R+ could be replaced by much more general spaces but we do not need the full
generality of the proposition here. In our case [14, Proposition 16.6] means that it is
enough to prove the following proposition to conclude.

Proposition 2.6. Let β be small enough. For ω ∼ β-WSAWn on Zd and Y (n) = y(n)(ω)

and for any T ∈ (0,∞) we have (Y (n))0≤t≤T ⇒ (Bt)0≤t≤T , and the convergence in law
holds in the space C00([0, T ],Rd) instead of C00([0,∞),Rd).

We thus need to prove that for all T ∈ (0,∞), the subwalk starting from 0 of length
r2T of a length-n Zd-WSAW converges to Brownian motion once rescaled by r. As usual,
the proof has two steps, we need to show that the finite-dimensional distributions (fdd)
of Y (n) converge to those of a Brownian motion with diffusion constant D and then prove
tightness of the sequence of processes. The proof requires a small generalization of [16,
Chapter 6] that we explain in the next two subsections. Before doing so we introduce
the following notation which we use in both parts of the proof. We note that for ω ∈ Wn

Y
(n)
t (ω) = Y

(n)
tr (ω) + ϕr,n,t(ω), (2.16)

ϕr,n,t(ω) = (r2t− br2tc)(Y (n)
tr+r−2(ω)− Y (n)

tr (ω)) (2.17)

with tr = br2tc/r2 and where ϕr,n,t(ω) satisfies

|ϕr,n,t(ω)| ≤ 1

r
uniformly in ω, t, T. (2.18)

2.3.1 Finite-dimensional distributions

Note that we can equivalently determine the fdd of Yt by replacing in the computations
Yt by Ytr . Indeed this follows from (2.16), (2.18) together with the discussion along
[3, p.88–89]. Then, since the convergence of the fdd is implied by the convergence
of the characteristic function, the statement of convergence of the fdd takes the form
of Lemma 2.7. Also in the next lemma we let kn be any increasing sequence going to
infinity and satisfying Tkn ≤ n for n large enough. Here kn plays the role of r2 and is
typically� n for our purposes but the following lemma does not require this condition.

Lemma 2.7 (Finite-dimensional distributions of Y (n)
t (ω)). Let d > 4, β > 0 small enough

and T > 0. For any increasing sequence k = kn such that Tkn ≤ n for all n large enough
and kn →∞, and for any integer N ≥ 1, 0 = t0 < t1 < · · · < tN ≤ T and u1, · · · , uN ∈ Rd,
the following holds

lim
n→∞

Eβ,n exp
[
i

N∑
j=1

uj√
Dkn

·
(
ω(btjknc)−ω(btj−1knc)

)]
= exp

(
− 1

2d

N∑
j=1

|uj |2(tj − tj−1)
)
.

(2.19)

The proof follows from an adaptation (and application) of [16, Theorem 6.6.2] that
is given hereafter. While it is true that this theorem has been established for the SAW
rather than the WSAW, it readily adapts to the easier case of the WSAW. Furthermore,
the most technical part of the proof of the aforementioned result is the scaling limit of
the endpoint [16, Theorem 6.6.1] which was proven in the original article [5] this time
for the WSAW model and we shall therefore use [16, Theorem 6.6.2] in the case d > 4

and β > 0 small enough.

Proof of Lemma 2.7. Let d > 4, β > 0, T > 0 and k = kn such that Tkn ≤ n and kn →∞
and fix arbitrary N ≥ 1, 0 = t0 < t1 < · · · < tN ≤ T and u1, · · · , uN ∈ Rd. For any vector
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v we let v(k) := v/
√
Dk and introduce further

∆
(k)
j (ω) = ω(btjkc)− ω(btj−1kc) (2.20)

where the dependency on t is omitted for simplicity. Then (2.19) rewrites as

lim
n→∞

c−1n Mn(u, t) = exp
(
− 1

2d

N∑
j=1

|uj |2(tj − tj−1)
)

(2.21)

with

Mn(u, t) =
∑
ω∈Wn

exp
[
i

N∑
j=1

u
(n)
j ·∆(kn)

j (ω)
]
K[0, n].

In order to prove (2.21) we use a “KJK expansion” to decouple the two parts of the
walk before and after time bkntNc. For this we appeal to Lemma 5.2.5 in [16] where it is
shown that for any integer m ∈ [0, n]

K[0, n] =
∑
I3m

K[0, I1]J [I1, I2]K[I2, n] (2.22)

where the sum is over intervals I of the form [I1, I2] where either 0 ≤ I1 < m < I2 ≤ b or
I1 = I2 = m. We do not really need the definition of J [s, t] = J [s, t](ω) which can be found
in [5, 16, 23] but rather only need to know that it is an interaction term (like K[s, t]) that
only depends on ω between times s and t and satisfies

∞∑
n=0

nznc
∑
ω∈Wn

|J [0, n]| <∞ (2.23)

where zc = µ−1 as was originally proven in [5, Section 5]. We refer to [16, Theorem 6.2.9]
for a more concise and systematic treatment of this fact and other related diagrammatic
estimates. The input of (2.22) gives

Mn(u, t) =
∑

I3bkntc

∑
ω∈Wn

exp
[
i
N∑
j=1

u
(n)
j ·∆(kn)

j (ω)
]
K[0, I1]J [I1, I2]K[I2, n]. (2.24)

We split the walk ω into three pieces from times 0 to I1, from I1 to I2 and from I2 to n.
We denote these walks ω1, ω2 and ω3 respectively and see from the above decoupling
that

Mn(u, t) =
∑

I3bkntc

∑
ω1∈WI1

ω2∈WI2−I1

exp
[
i

N∑
j=1

u
(n)
j ·∆(kn)

j (ω1 ◦ ω2)
]
K[0, I1]J [0, I2 − I1]cn−I2

(2.25)

where ω1 ◦ ω2 is the the walk obtained by concatenation of ω1 and ω2. We show that the
main contribution to the above sum is given by those intervals I such that |I| = I2 − I1 ≤
bn where bn ultimately needs to satisfy bn = o(k

1/2
n ) and bn → ∞. Consider first the

case |I| ≤ bn (resp. |I| > bn) and denote by M≤(u, n) (resp M>(u, n)) the corresponding
sum restricted to this range of |I| such that Mn(u, t) = M≤n (u, t) + M>

n (u, t). In this
case for n large enough we have I1 > kntN−1 and I1 ∈ [kntN (1 − kn−1/2), kntN ] I1 ∈
[kntN (1−kn−1/2), kntN ] uniformly in I ≤ bn which implies that ∆

(kn)
j (ω1 ◦ω2) = ∆

(kn)
j (ω1)
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for all 1 ≤ j ≤ N − 1. By adding and substracting iu(n)N · ω1(I1) inside the exponential we
see that [16, Theorem 6.6.2] applies (with kn in place of n) for the sum over ω1 and gives

∑
ω1∈WI1

exp
[
i

N−1∑
j=1

u
(n)
j ·∆(kn)

j (ω1) + iu
(n)
N · (ω1(I1)− ω1(bkntN−1c))

]
K[0, I1]

= cI1 exp(− 1

2d

N∑
j=1

|uj |2(tj − tj−1))(1 + o(1))

(2.26)

and the o(1) goes to zero as n→∞ uniformly in |I| ≤ bn. For the sum over ω2 we note

that exp(iu
(n)
N · ω2(bkntNc − I1) = 1 + o(1) uniformly in |I| ≤ bn so that overall

M≤n (u, t) = (1 + o(1)) exp(− 1

2d

N∑
j=1

|uj |2(tj − tj−1))
∑

I3bkntc
|I|≤bn

cn−I2cI1
∑

ω2∈W|I|

J [0, I2 − I1].

(2.27)

By using (2.22) again and dividing both sides by cn this gives

c−1n M≤n (u, t) = exp(− 1

2d

N∑
j=1

|uj |2(tj − tj−1))(1 + o(1))

−O(1)
∑

I3bkntc
|I|>bn

cn−I2cI1
cn

∑
ω2∈W|I|

J [0, |I|]. (2.28)

Similarly for M>
n (u, t), but treating the exponential in the summand simply as a O(1), we

obtain directly by (2.22) that

c−1n M>
n (u, t) = O(1)

∑
I3bkntc
|I|>bn

cn−I2cI1
cn

∑
ω2∈W|I|

J [0, |I|]. (2.29)

By summing both contributions (2.28) and (2.29) we see that to conclude it is enough
to show that c−1n M>

n (u, t) → 0 as n → ∞. To see this we use the fact that cn = O(z−nc )

from (1.3) to obtain

c−1n M>
n (u, t) = O(1)

∑
I3bkntc
|I|>bn

z|I|c
∑

ω2∈W|I|

J [0, |I|]. (2.30)

Finally we see that |I| being fixed there are at most |I|+ 1 ways to choose I 3 bkntc so
that

c−1n M>
n (u, t) = O(1)

∞∑
|I|=bn+1

|I|z|I|c
∑

ω2∈W|I|

J [0, |I|]. (2.31)

The absolute bound (2.23) achieves the proof since bn → ∞ and the above sum is
convergent.

2.3.2 Tightness

We use the following criterion taken from [14, Corollary 16.9] and adapted to our
purposes to obtain tightness of random continuous processes under some moment
condition. The proof of (2.32) itself resembles that of [21] where the proof of tightness
for the ordinarily rescaled SAW originates. We note that the criterion used here is
slightly simpler than the one used in [21].
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Lemma 2.8 (Tightness of Y (n)(ω)). Let d > 4, β > 0 small enough, T > 0 and ω ∼ β-

WSAWn then the sequence (Y
(n)
t (ω))0≤t≤T is tight if there exists A > 0 such that for all

0 ≤ s < t ≤ T and uniformly in n

Eβ,n|Y (n)
t (ω)− Y (n)

s (ω)|2 ≤ A|s− t|. (2.32)

We now prove that (2.32) holds therefore completing the proof of Proposition 2.6 by
combining Lemma 2.7 and Lemma 2.8. Let 0 ≤ s < t ≤ T and suppose first that tr = sr
where we recall that for any real u, we let ur = br2uc/r2. Then we have by (2.16)–(2.18)
that for any walk ω ∈ Wn

|Y (n)
t (ω)− Y (n)

s (ω)| = (r2t− r2s)|Y (n)
tr+r−2(ω)− Y (n)

tr (ω)| ≤ r(t− s). (2.33)

and since tr = ts implies r ≤ |t − s|−1/2 the result follows with A = 1 by squaring the
above equation and taking the expectation on both sides.

Now we suppose that tr 6= sr, then by (2.16)–(2.18) again, we can write

|Y (n)
t (ω)− Y (n)

s (ω)| ≤ |Y (n)
tr (ω)− Y (n)

sr (ω)|+ 2

r
. (2.34)

Since tr 6= sr implies r ≥ |t− s|−1/2 we further obtain using (a+ b)2 ≤ 2(a2 + b2) that

Eβ,n|Y (n)
t (ω)− Y (n)

s (ω)|2 ≤ 2Eβ,n|Y (n)
tr (ω)− Y (n)

sr (ω)|2 + 8|t− s|. (2.35)

And thus to conclude with the proof of (2.32) we see that it is enough to show that

Eβ,n|Y (n)
tr (ω)− Y (n)

sr (ω)|2 ≤ A|t− s|. (2.36)

By definition the left-hand side of (2.36) is equal to

1

r2cn

∑
ω∈Wn

|ω(br2tc)− ω(br2sc)|2K[0, n]. (2.37)

Using the fact that K[0, n] ≤ K[0, br2sc]K[br2sc, br2tc]K[br2tc, n], decomposing ω into
three subwalks corresponding to these time intervals and using that (A may change from
line to line)

c−1n ≤ Ac−1br2scc
−1
br2tc−br2scc

−1
n−br2tc (2.38)

from [16, Theorem 6.1.1(a)] we get that (2.37) satisfies

1

r2cn

∑
ω∈Wn

|ω(br2tc)− ω(br2sc)|2K[0, n] ≤ A

r2
Ebr2tc−br2sc,β |ω(br2tc − br2sc)|2. (2.39)

which by the bound on the mean square displacement in (1.5) gets bounded further by
A|t− s| and thus achieves the proof.
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