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Abstract

We compute the average characteristic polynomial of the Hermitised product ofM real
or complex non-Hermitian Wigner matrices of size N ×N with i.i.d. matrix elements,
and the average of the characteristic polynomial of a product of M such matrices
times the characteristic polynomial of the conjugate product matrix. Surprisingly,
the results agree with that of the product of M real or complex Ginibre matrices at
finite-N , which have i.i.d. Gaussian entries. For the latter the average characteristic
polynomial yields the orthogonal polynomial for the singular values of the product
matrix, whereas the product of the two characteristic polynomials involves the kernel
of complex eigenvalues. This extends the result of Forrester and Gamburd for one
characteristic polynomial of such a single random matrix and only depends on the
first two moments. In the limit M →∞ at fixed N we determine the locations of the
zeros of a single characteristic polynomial, rescaled as Lyapunov exponents by taking
the logarithm of the Mth root. The position of the jth zero agrees asymptotically
for large-j with the position of the jth Lyapunov exponent for products of Gaussian
random matrices, hinting at the universality of the latter.
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1 Introduction and main results

Characteristic polynomials represent one of the central building blocks when studying
the spectral statistics of random matrices. For example, in invariant ensembles the
Heine-formula directly relates the expectation value of a single characteristic polynomial
over a random matrix of size N ×N to the orthogonal polynomial of degree N . Invariant
ensembles represent determinantal point processes, and the corresponding kernel
of orthogonal polynomials follows from the expectation value of two characteristic
polynomials [31, 9] at finite-N . This statement extends to non-Hermitian ensembles as
well [6]. In applications of random matrices characteristic polynomials also play a key
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Characteristic polynomials of products of non-Hermitian Wigner matrices

role, e.g. in comparison to moments and correlations of the Riemann ζ-function [21, 23],
or in the theory of strong interactions in the presence of baryon chemical potential [27].

One of the central questions in random matrix theory is that of universality, that is
the independence of the distribution of matrix elements in asymptotic regimes such
as the limit of large matrix size. Two main classes of deformations of the classical
ensembles with independent Gaussian distribution of matrix elements exist: Wigner
ensembles, where the independence is kept and invariance is dropped, allowing for more
general distributions than Gaussian, and the invariant ensembles, where independence
is dropped while keeping invariance under orthogonal or unitary transformations. This
introduces a dependence among matrix elements, typically through a potential.

Given that invariant ensembles represent determinantal point processes at finite-
N , the knowledge of the kernel at finite-N allows a direct asymptotic analysis of the
marginals or k-point correlation functions of the matrix eigenvalues. Here, sophisticated
techniques as the Riemann-Hilbert method have been developed. The universality of
products and ratios of characteristic polynomials has been directly addressed as well,
yielding a generating functional for the kernel, both for invariant [16] and Hermitian
Wigner ensembles [17], see also [26, 1] for recent work using supersymmetry. We refer to
[28, 7] for most concise expressions for averages of products and ratios of characteristic
polynomials at finite-N , and to [18] for the supersymmetric perspective on that.

In (non-Hermitian) Wigner ensembles, however, such determinantal structures seem
to be completely absent at finite matrix size. In consequence powerful probabilistic
tools have been developed by several groups, in oder to prove universality in the
various scaling regimes, for Hermitian and non-Hermitian random matrices, cf. [12, 29],
respectively and references therein. How can we understand this broad universality?
Are there perhaps also objects that show a similar structure as for Gaussian ensembles
at finite-N? Indeed it was shown by Forrester and Gamburd [13], that the expectation
value of a single characteristic polynomial of Hermitian Wigner matrices of size N ×N
agrees with that of the corresponding Gaussian ensemble. It is given by the Hermite
polynomial for the Gaussian Unitary Ensemble (GUE) and by the Laguerre polynomial
for the complex Wishart ensemble (also called chiral GUE or Laguerre unitary ensemble).
The same polynomials are obtained for real symmetric Wigner matrices [13]. In this
short article we will extend the list of such examples of an exact agreement at finite-N
to products of M non-Hermitian Wigner matrices, both for singular values and complex
eigenvalues of the product matrix. Furthermore, given the combinatorial meaning of
averaged characteristic polynomials pointed out by Forrester and Gamburd in the above
examples for Hermitian Wigner matrices, we expect such interpretations to exist for our
examples as well.

Consider M independent Gaussian random matrices G1, . . . , GM of size N ×N . Each
matrix Gk has independent matrix elements g(k)i,j with identical normal distribution, with

zero mean and variance σ2
k > 0, E[g

(k)
i,j ] = 0 and E[g

(k)
i,j g

(l)
m,n] = δi,mδj,nδk,lσ

2
k. The squared

singular values of Gk are called Wishart ensembles, whereas the complex eigenvalues of
Gk are called Ginibre ensembles.

In [3] it was shown for complex matrices with unit variances σk = 1 that the squared
singular values of the product matrix G1 · · ·GM form a determinantal point process,
representing an example for a polynomial ensemble. The corresponding kernel of
biorthogonal functions was explicitly determined in [3] using Gram-Schmidt orthogonali-
sation1. As the Heine formula trivially extends to polynomial ensembles, the following
holds for the orthogonal polynomials:

E [det [xIN − (G1 · · ·GM )∗(G1 · · ·GM )]] = p
(M)
N (x), (1.1)

1It is not difficult to extend the proof in [3] to allow for arbitrary σ1, . . . , σM > 0.
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Characteristic polynomials of products of non-Hermitian Wigner matrices

where the polynomial p(M)
N of degree N is given by Eq. (40) [3]

p
(M)
N (x) = (−1)N (N !)M+1

N∑
k=0

(−x)k

(N − k)!(k!)M+1
. (1.2)

For M = 1 this relation is well known to hold for a single Wishart ensemble, where the
polynomial reduces to the Laguerre polynomial p(M=1)

N (x) = (−1)NN !LN (x), in monic
normalisation. We find that the same relation extends to the product of real or complex
independent non-Hermitian Wigner matrices, where we allow to choose a different
variance for each matrix.

Theorem 1.1. Let X1, . . . , XM be M independent non-Hermitian Wigner matrices of
size N × N such that the entries x

(k)
i,j of every matrix Xk are independent as well,

having arbitrary real or complex distributions with zero mean and variance σk > 0, i.e.,

E
[
x
(k)
i,j

]
= 0 and E[x

(k)
i,j x

(l)
m,n] = δi,mδj,nδk,lσ

2
k. Defining τM = σ1 · · ·σM , the expectation

values for the following characteristic polynomials read

E
[
det
[
xIN − (X1 · · ·XM )

∗
(X1 · · ·XM )

]]
= τ2NM p

(M)
N

(
x/τ2M

)
, (1.3)

E [det [xIN − (X∗1X1) . . . (X∗MXM )]] = τ2NM p
(M)
N

(
x/τ2M

)
. (1.4)

In particular, Eq. (1.3) agrees with the expression for the product of complex Ginibre
matrices (1.1). Based on bosonisation it was shown in [22] that the same result (1.3)
holds for products of real Ginibre matrices, treating all symmetry classes in a unified way.
Theorem 1.1 extends the result by Forrester and Gamburd for a single non-Hermitian
Wigner matrix M = 1, see [13, Prop. 12]. A similar result holds for a single real
symmetric or Hermitian Wigner matrix H with variance σ2, cf. [13, Prop. 11]

E [det [xIN −H]] = σN2−NHN (x/σ) , (1.5)

in terms of a Hermite polynomial HN (x) orthognal with respect to e−x
2

, in monic
normalisation. It is tempting to expect that Theorem 1.1 implies similar combinatorial
consequences as [13] for M = 1, in particular as the moment generating function of
products of random matrices relates to Fuss-Catalan numbers, see e.g. [24]. The fact that
the two equations in Theorem 1.1 agree extend the observed asymptotic commutativity
of (rectangular) matrices Gk for N →∞ described first in [10], and later on for finite-N
in [20] in a weak sense.

We turn to the complex eigenvalues and corresponding characteristic polynomials.
Due to independence of matrices and matrix elements, for both products of Ginibre
and non-Hermitian Wigner matrices the expectation value of a single characteristic
polynomial is trivial,

E [det [zIN − (G1 · · ·GM )]] = E [det [zIN − (X1 · · ·XM )]] = zN . (1.6)

For products of independent complex respectively real Ginibre matrices it was shown in
[4] respectively [14] that the complex eigenvalues of the product matrix G1 · · ·GM form
a determinantal respectively Pfaffian point process, with a rotationally invariant weight
function. Thus the monomials zN are the orthogonal polynomials respectively the even
subset of skew orthogonal polynomials as well, albeit trivial ones. The determinantal
point process is of orthogonal polynomial type. Thus the kernel is given by a sum over
orthonormalised polynomials, containing nontrivial information about the weight through
their (squared) norms hk. A similar statement holds for the kernel of skew orthogonal
polynomials for complex eigenvalues of the Pfaffian point process [14].
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Characteristic polynomials of products of non-Hermitian Wigner matrices

In orthogonal polynomial ensembles it is known, both for real [31, 9] and complex
eigenvalues [6], that the kernel can be expressed by an averaged product of two charac-
teristic polynomials. The same holds true for the kernel of skew orthogonal polynomials
in Pfaffian process including the real Ginibre ensemble [5]. Combined with the result for
the kernel K(M)

N of products of M independent complex Ginibre matrices [4], extended
to non homogeneous variances in [2], we have the following statement

E [det [zIN −G1 · · ·GM ] det [wIN − (G1 · · ·GM )∗]] = τ2NM h
(M)
N K

(M)
N+1 (z/τM , w/τM ) , (1.7)

K
(M)
N+1(z, w) =

N∑
k=0

(zw)k

h
(M)
k

, h
(M)
k = π(k!)M . (1.8)

For products of M real Ginibre matrices the expectation value (1.7) yields precisely
the anti-symmetric kernel K(M),real

N+1 of skew orthogonal polynomials, via K(M),real
N+1 (z, w) =

(z − w)K
(M)
N+1(z, w), see [5, 14]. We will show that the same expectation value is obtained

for products of independent non-Hermitian Wigner matrices.

Theorem 1.2. Given M independent non-Hermitian Wigner matrices satisfying the
conditions in Theorem 1.1, the average of two characteristic polynomials with conjugate
matrices reads:

E
[
det [zIN − (X1 · · ·XM )] det

[
wIN − (X1 · · ·XM )

∗]]
= τ2NM h

(M)
N K

(M)
N+1 (z/τM , w/τM ) .

(1.9)

It is simple to understand why the above results do not easily extend to more products
of characteristic polynomials: In all averages (1.3), (1.4) and (1.9) every matrix Xk and
its adjoint X∗k appear exactly once. This also explains the absence of higher moments
of these matrices. In principle, the agreement between Gaussian and non-Hermitian
Wigner matrices at finite-N could thus be extended to the expectation of any polynomial
that shares this property. Let us emphasise that the proofs of Theorem 1.1 and 1.2
are purely algebraic and constructive. They directly yield the explicit combinatorial
result for non-Hermitian Wigner matrices, without recurring to independent calculations
for Gaussian matrix elements. For simplicity we have restricted ourselves to square
matrices, see e.g. [3] for the generalisation of (1.2) to products of rectangular complex
Gaussian matrices. We expect that this agreement holds for products of rectangular
non-Hermitian Wigner matrices as well.

Since the above identities between Gaussian and non-Hermitian Wigner ensembles
already hold for finite-N , the universality of these expectations in various large-N limits
is guaranteed. Let us emphasise, however, that this does not imply an identity for
all k-point singular value or complex eigenvalue correlation functions at finite-N , as
then (non-Hermitian) Wigner ensembles do not possess any determinantal or Pfaffian
structure. For singular values of complex matrices, the derivation of the kernel within
polynomial ensembles requires to evaluate the expected ratio of two characteristic
polynomials, see [11] for more details. While for complex eigenvalues (1.7) indeed
establishes the (skew-)kernel, the k-point correlation functions also depend on the
weight function multiplying this (skew-)kernel, which contributes non-trivially in the
large-N limit.

In order to derive a non-trivial universality statement for products of non-Hermitian
Wigner matrices based on the above findings, we consider a growing number of fac-
tors, choosing M → ∞, while keeping N fixed. Consider the zeros of the average
characteristic polynomial (1.3)

τ2NM p
(M)
N

(
x/τ2M

)
=

N∏
j=1

(x− zj), (1.10)
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denoted by zj = z
(M)
j in increasing order. These are all non-negative as is shown in [24].

We wish to compare these zeros to the limiting Lyapunov exponents of the product
matrix (X1 · · ·XM )∗(X1 · · ·XM ). They are defined in terms of the ordered non-negative

eigenvalues (or squared singular values) λ(M)
1 , . . . , λ

(M)
N of the product matrix. We first

define the incremental Lyapunov exponents by the following re-scaled quantities

µ
(M)
j :=

1

2M
log
(
λ
(M)
j

)
, j = 1, . . . , N. (1.11)

The Lyapunov exponents are obtained in the almost sure limit

µj = lim
M→∞

µ
(M)
j , j = 1, . . . , N. (1.12)

We refer to [30] for the vast literature, including existence for Gaussian and other
random matrices. In the same scaling as in (1.11) we obtain the following for the zeros.

Theorem 1.3. For the ordered zeros z
(M)
j of the averaged characteristic polynomi-

als (1.3) of the product of M non-Hermitian Wigner matrices with variances σk > 0,
satisfying limM→∞ τ

1/M
M = σ > 0, it holds

lim
M→∞

1

2M
log z

(M)
j =

1

2
log(j) +

1

2
log(σ2), j = 1, . . . , N. (1.13)

In the case that all matrices Xj are real or complex Ginibre matrices, labelled by
β = 1, 2 respectively, the corresponding Lyapunov exponents are explicitly known [25, 15]

µj =
1

2
Ψ (βj/2) +

1

2
log
(
2σ2/β

)
, j = 1, . . . , N, (1.14)

where Ψ denotes the Digamma function. For large j, applying the standard large
argument asymptotic for the Digamma-function, we get

Ψ(j) = log(j) +O (1/j) . (1.15)

In consequence, for large orders j ≤ N , Lyapunov exponents and zeros of the averaged
characteristic polynomial (which is universal) agree up to an error O(1/j). This strongly
suggests that the jth Lyapunov exponents for products of non-Hermitian Wigner matrices
also become universal.

2 Finite-N identities for non-Hermitian Wigner and Ginibre ma-
trices

The proofs of Theorems 1.1 and 1.2 use the independence and simple linear algebra,
including the Cauchy-Binet formula. For convenience of notation, let us denote the set of
all subsets of {1, . . . , N} with exactly r elements by Kr,N . For K = {k1 < . . . < kr}, L =

{`1 < . . . < `r} ∈ Kr,N and a matrix X of size N × N we write the determinant of the
corresponding r × r sub-matrix as follows:

det

[
L

K X

]
= det

xk1,`1 . . . xk1,`r
...

. . .
...

xkr,`1 . . . xkr,`r

 = det[xi,j ]i∈K; j∈L. (2.1)

Thus the sub-matrix on the right-hand side is obtained from X by choosing the rows with
indices 1 ≤ k1 < . . . < kr ≤ N and then the columns with indices 1 ≤ `1 < . . . < `r ≤ N .
We begin by introducing the following Lemma about expectations of two determinants of
different sub-matrices of equal size of the same matrix and its adjoint.
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Lemma 2.1. For K, K̃, L, L̃ ∈ Kr,N and j = 1 . . . , N we have

E

[
det

[
K̃

K Xj

]
det

[
L

L̃ X∗j

]]
=

{
r!σ2r

j , if K = L and K̃ = L̃,

0 , else.
(2.2)

Moreover, it holds

Edet

[
L

K X∗jXj

]
=

{
N !

(N−r)! σ
2r
j , if K = L,

0 , else.
(2.3)

Proof. We have

E

[
det

[
K̃

K Xj

]
det

[
L

L̃ X∗j

]]
= E

[
det

[
K̃

K Xj

]
det

[
L̃

L Xj

]]

=
∑

π,σ∈Sr

sign(π) sign(σ) E

[
r∏

n=1

x
(j)

kn,π(k̃n)

r∏
m=1

x
(j)

`m,σ(˜̀m)

]
. (2.4)

First, we assume that K 6= L or K̃ 6= L̃. In writing both determinants as sums
according to Leibniz’ rule and expanding the product, every summand is a product of
entries of Xj without repetition. That means, due to K 6= L or K̃ 6= L̃ there will be at
least one mismatch in the first or second index pairs. Using the independence of all
entries, every summand vanishes in expectation, the second case in (2.2).

Now let us assume K = L and K̃ = L̃. In this case we can write (2.4) as

E

[
det

[
K̃

K Xj

]
det

[
K

K̃ X∗j

]]
=
∑
π∈Sr

E

[∣∣∣x(j)
k1,π(k̃1)

∣∣∣2] · · ·E [∣∣∣x(j)
kr,π(k̃r)

∣∣∣2] = r!σ2r
j ,

where we used that all summands with permutations π 6= σ vanish. This shows Eq. (2.2).
To see the second part Eq. (2.3), we write N = {1, . . . , N} and observe

Edet

[
L

K X∗jXj

]
= Edet

[(
N

K X∗j

)(
L

N Xj

)]
.

Notice that on the left-hand side the sub-matrix of X∗jXj is of size r × r, whereas the
matrices multiplied on the right-hand side are of sizes r×N and N × r, respectively. For
a set of indices 1 ≤ ν1 < . . . < νr ≤ N we write V = {ν1, . . . , νr}, and an application of
the Cauchy-Binet formula gives

Edet

[
L

K X∗jXj

]
=

∑
1≤ν1<...<νr≤N

Edet

[(
V

K X∗j

)(
L

V Xj

)]
. (2.5)

By part one of the lemma, Eq. (2.2), we know that for every summand with set of indices
K,V , and V,L we obtain a non-vanishing contribution r!σ2r

j for K = L only, and thus

Edet

[
K

K X∗jXj

]
=

(
N

r

)
r!σ2r

j =
N !

(N − r)!
σ2r
j .

Now we can turn to the derivation of the explicit expression for the average of a
single characteristic polynomial.

Proof of Theorem 1.1. We start by deriving the expression given in the first statement
of Eq. (1.3). Therefore, we expand the characteristic polynomial into powers of x by
expressing the corresponding coefficients in terms of the principal minors

det [xIN −X∗M · · ·X∗1X1 · · ·XM ] =

N∑
ν=0

(−1)N−νxν
∑

K(1)∈KN−ν,N

det

[
K(1)

K(1) X∗M · · ·X∗1X1 · · ·XM

]
.
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The minors of the product on the right-hand side can be expanded by means of an
iterated application of the Cauchy-Binet formula (2.5). This way we obtain

det [xIN −X∗M · · ·X∗1X1 · · ·XM ]

=

N∑
ν=0

(−1)N−νxν
∑

K(1),...,K(2M)∈KN−ν,N

det

[
K(2)

K(1) X∗M

]
det

[
K(3)

K(2) X∗M−1

]

× · · · × det

[
K(2M)

K(2M−1) XM−1

]
det

[
K(1)

K(2M) XM

]
.

We reorder the factors in the product of the 2M determinants on the right-hand side by
pairing matrices X∗j and Xj and take the expectation to obtain

Edet [xIN −X∗M · · ·X∗1X1 · · ·XM ]

=

N∑
ν=0

(−1)N−νxν
∑

K(1),...,K(2M)∈KN−ν,N

E

[
det

[
K(2)

K(1) X∗M

]
det

[
K(1)

K(2M) XM

]]

× · · · × E
[
det

[
K(M+1)

K(M) X∗1

]
det

[
K(M+2)

K(M+1) X1

]]
,

where we also used the independence of the matrices in order to distribute the expecta-
tion over pairwise matching factors. Now we are able to apply Lemma 2.1. Thus, we
first see that a summand vanishes as soon as one of the conditions K(j) = K(2M+2−j),
j = 2, . . . ,M , is not satisfied. Evaluating the expectations explicitly we obtain

Edet [xIN −X∗M · · ·X∗1X1 · · ·XM ] =

N∑
ν=0

(−1)N−νxν
∑

K(1),...,K(M+1)∈KN−ν,N

((N − ν)!)
M
τ
2(N−ν)
M

=

N∑
ν=0

(−1)N−νxν
(

N

N − ν

)M+1

((N − ν)!)
M
τ
2(N−ν)
M ,

which now leads to the claimed expression.
To derive the second average characteristic polynomial in Eq. (1.4) we can proceed

analogously. We first expand the polynomial in terms of principal minors, which in turn
can be expanded by means of the Cauchy-Binet formula in the following way

E [det [xIN − (X∗1X1) . . . (X∗MXM )]]

=

N∑
ν=0

(−1)N−νxν
∑

K(1),...,K(M)∈KN−ν,N

E

[
det

[
K(2)

K(1) X∗1X1

]
. . . det

[
K(1)

K(M) X∗MXM

]]
.

We can use the independence of the matrices Xj again in order to distribute the expecta-
tions over the factors, and observe that by Lemma 2.1 we only have contributions from
index sets with K(1) = K(2) = · · · = K(M). Hence, we obtain

E [det [xIN − (X∗1X1) . . . (X∗MXM )]] =

N∑
ν=0

(−1)N−νxν
∑

K(1)∈KN−ν,N

(
N !

ν!

)M
τ
2(N−ν)
M

=

N∑
ν=0

(−1)N−νxν
(
N

ν

)(
N !

ν!

)M
τ
2(N−ν)
M ,

from which the second statement Eq. (1.4) follows.
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Let us turn to the average over two characteristic polynomials, related to the complex
eigenvalues of the product matrix.

Proof of Theorem 1.2. We first deal with one of the determinants in Eq. (1.9), i.e., we
have

det [zIN −X1 · · ·XM ] =

N∑
ν=0

(−1)N−νzν
∑

K(1)∈KN−ν,N

det

[
K(1)

K(1) X1 · · ·XM

]
.

The minors of the product on the right-hand side can be expanded by means of an
iterated application of the Cauchy-Binet formula (2.5). This way we obtain

det [zIN −X1 · · ·XM ]

=

N∑
ν=0

(−1)N−νzν
∑

K(1),...,K(M)∈KN−ν,N

det

[
K(2)

K(1) X1

]
det

[
K(3)

K(2) X2

]
· · · det

[
K(1)

K(M) XM

]

and similarly for det
[
wIN − (X1 · · ·XM )

∗]. We thus have for their average

E
[
det [zIN −X1 · · ·XM ] det

[
wIN − (X1 · · ·XM )

∗]]
=

N∑
ν,µ=0

(−1)ν+µzνwµ
∑

K(1),...,K(M)∈KN−ν,N

∑
L(1),...,L(M)∈KN−µ,N

E

[
det

[
K(2)

K(1) X1

]
det

[
L(1)

L(2) X∗1

]]
· · ·E

[
det

[
K(1)

K(M) XM

]
det

[
L(M)

L(1) X∗M

]]
,

using the independence of the matrices X1, . . . , XM . If ν 6= µ, then for every index

j = 1, . . . , N−1 we find that in one of the two matrices

[
K(j+1)

K(j) Xj

]
and

[
L(j)

L(j+1) X∗j

]
there are entries which do not appear in the other matrix. Thus, the expectation of
the determinant of these two matrices vanishes in this case, and using Lemma 2.1, we
obtain,

E
[
det [zIN −X1 · · ·XM ] det

[
wIN − (X1 · · ·XM )

∗]]
=

N∑
ν=0

(zw)ν
∑

K(1),...,K(M)∈KN−ν,N

((N − ν)!)
M

(σ1 · · ·σM )2(N−ν)

=

N∑
ν=0

(zw)ν ((N − ν)!)
M

(
N

N − ν

)M
τ
2(N−ν)
M .

3 Large-M asymptotic of the zeros and Lyapunov spectrum

For simplicity, we first study the case with unit variance σk = 1 for k = 1, . . . ,M .
We are interested in the behaviour for large M and fixed dimensions N of the suitably
rescaled zeros of (1.10)

1

2M
log
(
z
(M)
j

)
, j = 1, . . . , N, (3.1)

since in this rescaling the zeros correspond to the incremental Lyapunov exponents (1.11).
To this end, we study the behaviour of the quantities (z

(M)
j )

1
2M , j = 1, . . . , N , as M →∞.

In order to achieve this we consider the accordingly rescaled polynomials

P(M)
N (z) :=

N∑
k=0

(
N

k

)
(−1)k

(
z2k

k!

)M
, z ∈ C. (3.2)
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This rescaling introduces many additional zeros in the complex plane, however, this
happens in a regular way and later we will be interested in comparing the positive zeros
only to the incremental Lyapunov exponents.

First, we study the asymptotic behaviour of the polynomials P(M)
N (z) on the complex

plane staying away from the circular domains

Cj,ε :=
{
z ∈ C : j − ε < |z|2 < j + ε

}
, j = 1, . . . , N, (3.3)

for which we choose a fixed small ε > 0. In view of the facts that we have an analytically
convenient explicit expression of the polynomials P(M)

N and that the dimension N remains
fixed this can be done using elementary arguments.

Proposition 3.1. We have for fixed N and small ε > 0

P(M)
N (z) =

(
N

νz

)
(−1)νz

(
z2νz

(νz)!

)M (
1 +O

(
qM
))
, M →∞, (3.4)

uniformly in z ∈ (C ∪ {∞}) \
(
∪Nj=1Cj,ε

)
, where q := qN,ε := N

N+ε ∈ (0, 1) and the index νz
is given by

νz :=

{
b|z|2c, |z|2 < N,

N, |z|2 > N.
(3.5)

Proof. We note that the sequence |z|
2k

k! , k = 0, . . . , N , is unimodal with a unique maximum
at 

0, if |z|2 < 1,

ν, if ν < |z|2 < ν + 1 for some ν ∈ {1, . . . , N − 1},
N, |z|2 > N.

This suggests to consider the index νz, so that this sequence strictly increases up to the
index νz, and strictly decreases afterwards.

First, let us consider |z|2 ≤ 1− ε, then we have

∣∣∣P(M)
N (z)− 1

∣∣∣ ≤ N∑
k=1

(
N

k

)(
|z|2k

k!

)M
≤ CN (1− ε)M = O

(
qM
)
,

as M → ∞, where CN is some positive constant depending on N only. Next, let us
consider the case ν + ε ≤ |z|2 ≤ ν + 1− ε for some ν ∈ {1, . . . , N − 1}. Then the sequence
|z|2k
k! , k = 0, . . . , N , attains its unique maximum at k = ν. Moreover, for k 6= ν we can

estimate the following quotients for k < ν by

(
N
k

) ( |z|2k
k!

)M
(
N
ν

) ( |z|2ν
ν!

)M =
(N − ν)!ν!

(N − k)!k!

(
ν!

k!

(
1

|z|2

)ν−k)M
≤ (N − ν)!ν!

(N − k)!k!

(
ν(ν − 1) · · · (k + 1)

(ν + ε)ν−k

)M

≤ (N − ν)!ν!

(N − k)!k!

(
N

N + ε

)M
= O

(
qM
)
,

as M →∞, and for k > ν in a similar way by

(N − ν)!ν!

(N − k)!k!

(
ν!

k!
|z|2(k−ν)

)M
≤ (N − ν)!ν!

(N − k)!k!

(
(ν + 1− ε)k−ν

k(k − 1) · · · (ν + 1)

)M
≤ (N − ν)!ν!

(N − k)!k!

(
N

N + ε

)M

ECP 26 (2021), paper 30.
Page 9/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP398
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Characteristic polynomials of products of non-Hermitian Wigner matrices

of O
(
qM
)

as M →∞, uniformly in ν + ε ≤ |z|2 ≤ ν + 1− ε. Hence, in this region we have

P(M)
N (z) =

(
N

ν

)
(−1)ν

(
z2ν

ν!

)M
+

N∑
k=0,k 6=ν

(
N

k

)
(−1)k

(
z2k

k!

)M

=

(
N

ν

)
(−1)ν

(
z2ν

ν!

)M 1 +

N∑
k=0,k 6=ν

(
N
k

)
(−1)k

(
z2k

k!

)M
(
N
ν

)
(−1)ν

(
z2ν

ν!

)M
 .

The sum can be estimated by∣∣∣∣∣∣∣
N∑

k=0,k 6=ν

(
N
k

)
(−1)k

(
z2k

k!

)M
(
N
ν

)
(−1)ν

(
z2ν

ν!

)M
∣∣∣∣∣∣∣ ≤

N∑
k=0,k 6=ν

(N − ν)!ν!

(N − k)!k!

(
N

N + ε

)M
= O

(
qM
)
,

as M →∞, uniformly in ν + ε ≤ |z|2 ≤ ν + 1− ε. Furthermore, if |z|2 ≥ N + ε (including
the point at infinity) we have∣∣∣∣∣∣∣

P(M)
N (z)(

N
N

)
(−1)N

(
z2N

N !

)M − 1

∣∣∣∣∣∣∣ ≤
N−1∑
k=0

(
N

k

)(
N !

k!

1

|z|2(N−k)

)M
≤
N−1∑
k=0

(
N

k

)(
N !

k!

1

(N + ε)N−k

)M
.

The right-hand side equals

N−1∑
k=0

(
N

k

)(
N(N − 1) · · · (k + 1)

(N + ε)N−k

)M
≤
N−1∑
k=0

(
N

k

)(
N

N + ε

)M
= O

(
qM
)
,

which we can estimate as M →∞, uniformly in |z|2 ≥ N+ε. Collecting these asymptotics
in all the regions gives the statement in (3.4).

It follows from the asymptotic relation (3.4) that all zeros of P(M)
N for large values of

M accumulate near the circles around the origin with radii 1,
√

2, . . . ,
√
N .

Next, we show that every point of these circles indeed is a limit point of the zeros,
from which we can deduce that the zeros converge weakly to the uniform distribution on
the union of these circles. Due to the specific rescaling of the polynomials we have for
all integer values of `

P(M)
N

(
e
πi`
M z
)

= P(M)
N (z) .

Hence, it is sufficient to show that every point 1,
√

2, . . . ,
√
N is a limit point of the

zeros. To this end we study the behaviour of the polynomials P(M)
N in the neighbourhood

of these points.

Proposition 3.2. Let us consider a fixed ν ∈ {1, . . . , N} and a fixed N . Then we have for
some q ∈ (0, 1)

P(M)
N

(√
ν +

w

M

)
=

(
N

ν − 1

)
(−1)ν−1

((
ν + w

M

)ν−1
(ν − 1)!

)M
(3.6)

×
(

1− N + 1− ν
ν

(
1 +

w

νM

)M
+O

(
qM
))

,

as M →∞, uniformly in w on compact subsets of the complex plane.
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Proof. We have, using the explicit representation of P(M)
N ,

P(M)
N

(√
ν +

w

M

)
=

(
N

ν − 1

)
(−1)ν−1

(
(ν + w

M )ν−1

(ν − 1)!

)M

×

1− N + 1− ν
ν

(
1 +

w

νM

)M
+

∑
k=0..N,k 6=ν,ν−1

(
N
k

)
(−1)k

(
(ν+ w

M )
k

k!

)M
(
N
ν−1
)
(−1)ν−1

(
(ν+ w

M )ν−1

(ν−1)!

)M
 .

Using the same estimates as in the proof of the statement (3.4) it is not difficult to see
that the latter sum in fact is of order O

(
qM
)
, as M → ∞, uniformly in w on compact

subsets of C, which gives the statement in (3.6).

From the statement (3.6) we can infer that we have

P(M)
N

(√
ν +

w

M

)
=

(
N

ν − 1

)
(−1)ν−1

(
νν−1

(ν − 1)!

)M
ew(1− 1

ν )
(

1− N + 1− ν
ν

e
w
ν + o(1)

)
,

as M → ∞, uniformly in w on compact subsets of the complex plane. From this we
observe that, for large M , the rescaled polynomials P(M)

N

(√
ν + w

M

)
have exactly one

simple, real positive zero located approximately at the point

w = ν log

(
ν

N − ν + 1

)
.

This means that, for large M , the polynomials P(M)
N (z) have exactly one simple positive

zero in the neighbourhood of
√
ν located approximately at

√
ν

(
1 +

1

2M
log

ν

N + 1− ν

)
.

Altogether, this shows that the zeros of the polynomials P(M)
N (z) converge weakly, as

M →∞, to the uniform distribution on the union of the circles around the origin with
radii 1,

√
2, . . . ,

√
N .

For the zeros z(M)
j of the average characteristic polynomials p(M)

N in (1.2) this means

lim
M→∞

1

2M
log
(
z
(M)
j

)
=

1

2
log(j), j = 1, . . . , N.

The above analysis can be used to deal with the case of general variances. To this
end, we look at the rescaled polynomials (1.3)

Q
(M)
N (w) := P(M)

N

(
w

(σ1 · · ·σM )1/M

)
=

N∑
k=0

(
N

k

)
(−1)k

(σ2
1 · · ·σ2

M )k

(
w2k

k!

)M
, w ∈ C. (3.7)

Assuming the additional condition

lim
M→∞

(σ1 · · ·σM )
1
M = σ > 0,

or by simply setting σk = σ > 0 for all k, we immediately obtain the asymptotic behaviour
of Q(M)

N (w) in corresponding ring domains of the complex plane from the uniformity
of Proposition 3.1. Together with a statement analogous to Proposition 3.2 we infer
that the zeros of the polynomials Q(M)

N (w) converge weakly, as M →∞, to the uniform
distribution on the union of the circles around the origin with radii σ, σ

√
2, . . . , σ

√
N .

This means for the zeros w(M)
j of the average characteristic polynomials in (1.3) that

lim
M→∞

1

2M
log
(
w

(M)
j

)
=

1

2
log(j) + log(σ), j = 1, . . . , N. (3.8)

This proves the statement of Theorem 1.3.
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