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Abstract

We consider a nonreversible finite Markov chain called Repeated Balls-into-Bins (RBB)
process. This process is a discrete time conservative interacting particle system with
parallel updates. Place initially in L bins rL balls, where r is a fixed positive constant.
At each time step a ball is removed from each non-empty bin. Then all these removed
balls are uniformly reassigned into bins. We prove that the mixing time of the RBB
process is of order L. Furthermore we show that if the initial configuration has o(L)

balls per site the equilibrium is attained in o(L) steps.
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1 Introduction

Consider L ∈ N bins where rL ∈ N balls are initially placed. At each discrete time
step a ball is taken from each non-empty bin and all the balls are uniformly reassigned
into bins. The occupation numbers of balls in bins is an ergodic discrete time finite
Markov chain, called the Repeated Balls-into-Bins process.

The RBB process arises naturally in different contexts. For example the balls in every
bin can model customers in a queue, which are served at discrete times. Each served
customer is then reassigned to a random queue. In this setting the RBB process is a
discrete time closed Jackson network [7, 9]. In the algorithmic context the balls are
tasks (or tokens) in a network of parallel CPU which are reassigned at every round. See
for example [1] for a deeper discussion.

In [3] and [4] we proved the propagation of chaos of the RBB process and studied some
equilibrium properties of the limiting nonlinear process. This system is a conservative
interacting particle system in discrete time with parallel updates. We will thus call the
balls particles and the bins sites. We can think of the RBB process as a zero-range
process [14] on the complete graph with constant jump rates and parallel updates.
However, because of the parallel updating, it is not reversible. For this reason its
invariant measure is still unknown and the standard techniques to study the convergence
rate to equilibrium cannot be used. The main result of this paper is Theorem 2.1 which
implies that the mixing time of the RBB process is of order L. This estimate is needed to
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Mixing time for the Repeated Balls into Bins dynamics

generate approximate samples of the invariant measure of the RBB process and calculate
the interesting statistical quantities of the process at equilibrium. The mixing time of
systems with parallel updating rules has been studied for Probabilistic Cellular Automata,
see for example [8] and [12]. However PCA models are reversible, non conservative, and
their invariant measure is usually known.

More precisely Theorem 2.1 states that if the system starts in a configuration with
o(L) particles per site the equilibrium is attained after o(L) steps, while if the system
starts in a configuration with O(L) particles per site the equilibrium is attained after
O(L) steps. This suggests that, as in the zero-range process with constant jump rates
(see [6]), the system separates into a slowly evolving phase of sites with O(L) particles
and a quickly evolving phase of sites with o(L) particles. Thus the slowly evolving phase
dissolves into the quickly evolving phase and the mixing time is essentially the time in
which it is completely dissolved.

To prove Theorem 2.1 we use the path coupling technique of Bubley and Dyer [2].
This technique has been successfully applied in [6] to estimate the mixing time of the
mean field zero range process, which is similar to the RBB process but has sequential
updating and a known reversible stationary measure. A remarkable feature of the
method used in [6] is that it does not require reversibility or explicit knowledge of the
invariant measure of the model. We use the same approach as [6] although the parallel
updating of the RBB process requires new ideas.

We briefly outline the strategy of the proof of Theorem 2.1. We show that, after a
thermalization time depending linearly on the maximum occupation number of the initial
state, the following happens. First the distribution of the site occupation number decays
exponentially. Second there is a coupling such that the distributions of two copies of
the RBB process started from two different configurations are close in total variation
distance. In particular we show that this distance can be estimated in terms of the
coalescing time of two RBB processes starting from configurations which differ only for
one particle.

The paper is organized as follows. In Section 2 we state the notations and Theo-
rem 2.1, in Section 3 we give its proof. Finally in the last two sections we prove the two
lemmata on which the proof of the main result relies.

2 Notations and main result

We denote by Z+ the set of non-negative integers, N := Z+ \ {0} and for L ∈ N
the configuration space Ω := ZL+. For any denumerable set S its cardinality, finite or
infinite, is denoted by |S| and for any n ∈ N we define [n] := {1, . . . , n}. Given η ∈ Ω let
‖η‖∞ := maxx∈[L] ηx. If µ and ν are two probability measures we denote by ‖µ− ν‖ their
total variation distance.

To keep notation simple, in the following the term constant means a number which
may depend only on r, where rL is the fixed number of particles.

We introduce an explicit construction for the RBB process which will be useful in the
sequel. If t ∈ N define U(t) := (U1(t), . . . , UL(t)), where U1(t), . . . , UL(t) are i.i.d. random
variables uniformly distributed on [L] and such that U(1), U(2), . . . are independent. The
RBB process is a discrete time irreducible finite Markov chain (η(t))t≥0 with values in Ω

and invariant measure ν. For any initial condition η(0) = η ∈ Ω, t ∈ Z+ and x ∈ [L] we
define recursively

ηx(t+ 1) := ηx(t)− 1{ηx(t)>0} +

L∑
y=1

1{ηy(t)>0}1{Uy(t+1)=x}, (2.1)
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and

Bx(t+ 1) :=

L∑
y=1

1{ηy(t)>0}1{Uy(t+1)=x}, w̄(t) :=
1

L

L∑
x=1

1{ηx(t)>0}. (2.2)

Note that, conditional on η(t), the random vector B(t + 1) := (B1(t + 1), . . . , BL(t + 1))

has Maxwell-Boltzmann distribution (see for example [4] §3.2) with Lw̄(t) particles and
L sites. Equation (2.1) is equivalent to

ηx(t+ 1) = ηx(t)− 1{ηx(t)>0} +Bx(t+ 1). (2.3)

To keep notation simple we use the standard convention (see e.g. [11]) to denote the
initial state of the processes with the same letter of the process, namely

Pη(η(t) = ξ) := P(η(t) = ξ|η(0) = η),

for any η, ξ ∈ Ω. We can now state our main result.

Theorem 2.1. Let (η(t))t≥0 be the RBB process. Then there is a positive constant c such
that for any ε ∈ (0, 1/2) and η ∈ Ω the (configuration) mixing times

tmix(η, ε) := inf
{
t ≥ 0: ‖Pη(η(t) ∈ ·)− ν‖ < ε

}
satisfy

tmix(η, ε) ≤ c
(
‖η‖∞ + (logL)c

)
,

for every L ∈ N such that L ≥ c/ε.
Remark 2.2. This result implies the correct bound on the mixing time

tmix(ε) := sup
η∈Ω

tmix(η, ε).

In fact by the diameter bound (see §7.1.2 in [10]) we know that tmix(ε) ≥ rL/2. By
Theorem 2.1 and the bound ‖η‖∞ ≤ rL we have that tmix(ε) ≤ c′L for some positive
constant c′. Thus tmix(ε) is of order L.

Note that Theorem 2.1 says more. If ‖η‖∞ = o(L) then tmix(η, ε) = o(L). This means
that when the system starts in a state with o(L) particles per site the equilibrium is
attained in a time negligible with respect to tmix(ε).

3 Proof of the main result

The proof of Theorem 2.1 is based on Lemmata 3.1 and 3.2. The first one states that,
after a thermalization time depending linearly on the initial state, the distribution of the
site occupation number of the RBB process decays exponentially.

Lemma 3.1. There are positive constants θ, κ, α such that

Eη
(
eθηx(t)

)
≤ κ

(
1 + eθ(ηx−αt)

)
, (3.1)

for all η ∈ Ω, x ∈ [L] and t ≥ 0. In particular, for any a ≥ 0

Pη
(
ηx(t) ≥ (ηx − αt) ∨ 0 + a

)
≤ 2κe−θa. (3.2)

The second lemma asserts that the distributions of two RBB processes started from
two different configurations, again after a thermalization time depending linearly on
them, are close in total variation distance.
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Lemma 3.2. There exists a positive constant c such that

‖Pη(η(t) ∈ ·)− Pξ(η(t) ∈ ·)‖ ≤ c

L

for any η, ξ ∈ Ω and t > c
(
‖η‖∞ ∨ ‖ξ‖∞ ∨ (logL)c

)
.

We can now prove Theorem 2.1.

Proof of Theorem 2.1. We denote by P tη := P(η(t) ∈ ·) the distribution of η(t) when
η(0) = η, then (see e.g. [10] Proposition 4.2)

2‖P tη − ν‖ =
∑
ζ

∣∣∣P tη({ζ})−
∑
ξ

ν({ξ})P tξ ({ζ})
∣∣∣

≤
∑
ζ

∑
ξ

ν({ξ})
∣∣P tη({ζ})− P tξ ({ζ})

∣∣ = 2
∑
ξ

ν({ξ})‖P tη − P tξ‖.
(3.3)

By Lemma 3.2 and equation (3.3) we have

‖P tη − ν‖ ≤
c

L
+ ν
({
ξ ∈ Ω: ‖ξ‖∞ > (logL)c

})
, (3.4)

for any t ≥ c
(
‖η‖∞ ∨ (logL)c

)
. Using sub-additivity, ergodicity of the RBB process and

Lemma 3.1, the last term of equation (3.4) can be bounded by

L∑
x=1

ν
({
ξ ∈ Ω: ξx > (logL)c

})
= lim
t→+∞

L∑
x=1

Pη
(
ηx(t) > (logL)c

)
= lim
t→+∞

L∑
x=1

Pη
(
ηx(t) > (ηx − αt) ∨ 0 + (logL)c

)
≤ 2Lκe−θ(logL)c ,

which, taking c ≥ 2, is smaller than a positive constant times L−2 and the result
follows.

The proofs of Lemmata 3.1 and 3.2 will be discussed in the next two sections.

4 Exponential decay of the distribution of the site occupation
number

To prove Lemma 3.1 we need some preliminary results. The first one states that the
RBB process at time t is stochastically dominated by a Maxwell-Boltzmann distribution
with tL particles and L sites. This gives a bound on the number of particles per site of
the RBB process and it will be crucial because the Maxwell-Boltzmann distribution is
negatively associated (see e.g. [5]).

Lemma 4.1. The RBB process is monotone. Furthermore there exists a random vector
B̃(t) with Maxwell-Boltzmann distribution with tL particles and L sites such that:

ηx(t) ≤ (ηx(0)− t) ∨ 0 + B̃x(t). (4.1)

for any x ∈ [L].

Proof. The explicit construction of (η(t))t≥0 leading to equation (2.1) is a monotone
coupling. In fact if we start two copies (η(t))t≥0 and (η′(t))t≥0 of the RBB process which
use the same U(1), U(2), . . . , such that for some t ≥ 0 and ηx(t) ≤ η′x(t) ∀x ∈ [L] then, as
the function z 7→ (z − 1) ∧ 0 is increasing, by (2.1) we have ηx(t+ 1) ≤ η′x(t+ 1) ∀x ∈ [L].
This implies that the RBB process is monotone (see [11] Definition 2.3).
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To prove equation (4.1) we observe that, by iterating (2.1) we get for any t ≥ 0 and
x ∈ [L]

ηx(t) = ηx(0)−
t−1∑
s=0

1{ηx(s)>0} +

t−1∑
s=0

L∑
y=1

1{ηy(s)>0}1{Uy(s+1)=x}

≤ ηx(0)−
t−1∑
s=0

1{ηx(s)>0} +

t−1∑
s=0

L∑
y=1

1{Uy(s+1)=x}.

(4.2)

Define for any x ∈ [L]

B̃x(t) :=

t−1∑
s=0

L∑
y=1

1{Uy(s+1)=x}.

Because the random variables {Uy(s) : y ∈ [L], s ∈ N} are i.i.d. uniformly distributed
on [L] the random vector B̃(t) := (B̃1(t), . . . , B̃L(t)) has Maxwell-Boltzmann distribution
with tL particles and L sites. As the RBB dynamics defined by (2.1) removes at most one
particle for any site if ηx(0) > 0 then ηx(s) > 0 for any s ∈ {0, . . . , ηx(0)− 1}. Thus

ηx(t) ≤ ηx(0)−
ηx(0)∧t−1∑

s=0

1{ηx(s)>0} + B̃x(t) = ηx(0)− ηx(0) ∧ t+ B̃x(t)

= (ηx(0)− t) ∨ 0 + B̃x(t).

If ηx(0) = 0 then by (4.2) ηx(t) ≤ B̃x(t), so for any η ∈ Ω equation (4.1) holds.

The next result states that if we start the RBB process from any configuration, after a
fixed thermalization time, with high probability there are order L empty sites.

Lemma 4.2. Let (w̄(t))t≥0 defined in (2.2). There exists a constant ε0 ∈ (0, 1) such that
for any ε ∈ (0, ε0]

sup
η∈Ω

Pη(w̄(t) ≥ 1− ε) ≤ e−εL, (4.3)

for any t ≥ b2rc ∨ 1, L ≥ 2 and
∑
x ηx = rL.

Proof. Fix L ≥ 2. It is enough to show that (4.3) holds for t = b2rc ∨ 1. In fact, assuming
that it holds for tk := b2rc ∨ 1 + k where k ∈ Z+, then by the Markov property

Pη(w̄(tk + 1) > 1− ε) = Eη[Pη(1)(w̄(tk) > 1− ε)] ≤ sup
η
Pη(w̄(tk) ≥ 1− ε) ≤ e−εL,

and (4.3) follows for any t ≥ t0 = b2rc ∨ 1.

We prove (4.3) for t = t0. As the number of particles is rL, there exists V ⊆ [L] such
that |V | = bL/2c and ηx ≤ 2r for any x ∈ V . Then, because (ηx(0) − t0) ∨ 0 = 0 for any
x ∈ V , by (4.1) ηx(t0) ≤ B̃x(t0) := B̃x. The monotonicity of the function

Ω 3 ξ 7→
∑
x∈V

1{ξx>0} ∈ R

implies that

w̄(t0) ≤ 1

L

∑
x∈V

1{ηx(t0)>0} + 1− bL/2c
L

≤ 1

L

∑
x∈V

1{B̃x>0} + 1− bL/2c
L

.
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So for any ε ∈ (0, 1/3)

Pη(w̄(t0) > 1− ε) ≤ Pη
( 1

L

∑
x∈V

1{B̃x>0} >
bL/2c
L
− ε
)

= Pη

( 1

bL/2c
∑
x∈V

1{B̃x>0} > 1− Lε

bL/2c

)
≤ Pη

( 1

bL/2c
∑
x∈V

1{B̃x>0} > 1− 3ε
)
.

(4.4)

For λ > 0 we apply the exponential Chebyshev inequality (see [13] Chapter 1 §7) to get

Pη

( 1

bL/2c
∑
x∈V

1{B̃x>0} > 1− 3ε
)
≤ e−λ(1−3ε)bL/2cEη

( ∏
x∈V

eλ1{B̃x>0}

)
.

Because the Maxwell-Boltzmann distribution has the negative association property (see
[5] Lemma 4 and Theorem 14), we have that

Eη

( ∏
x∈V

eλ1{B̃x>0}

)
≤
∏
x∈V

Eη

(
eλ1{B̃x>0}

)
= Eη

(
eλ1{B̃1>0}

)bL/2c
,

where 1{B̃1>0} follows the Bernoulli distribution with parameter p := 1− (1− (1/L))t0L.
Thus by equation (4.4)

Pη(w̄(t0) > 1− ε) ≤ e−λ(1−3ε)bL/2c
(
eλp+ (1− p)

)bL/2c
.

By optimizing over the constant λ > 0 we obtain

Pη(w̄(t0) > 1− ε) ≤ e−I(ε)bL/2c,

where, for ε < (1/3)(1/4)t0 ,

I(ε) := max
λ>0

{
λ(1− 3ε)− log

[
1 + p(eλ − 1)

]}
,

and the maximum is achieved at the point

λ∗ := log
[ (1− 3ε)(1− p)

3εp

]
> 0.

By an explicit computation

lim
ε↓0

I(ε) = log(1/p) ≥ − log(1− (1/4)t0) := c > 0,

So by taking ε ≤ c/8 small enough and such that I(ε) ≥ c/2 ≥ 4ε the result follows.

Proof of Lemma 3.1. The second part of the statement follows from the first one as an
application of the exponential Chebyshev inequality. For the first one we will prove a
bound on the discrete time derivative of the left hand side of (3.1), (see (4.6) below).
Then the results follows from standard arguments. Let t0 = b2rc ∨ 1 then, by (4.1), for
any t ≤ t0 we have ηx(t) ≤ ηx(0) + B̃x(t), where B̃x(t) is a binomial random variable with
parameters tL and 1/L. Thus for any L ≥ 2, t ≤ t0 and λ > 0

Eη
[
eληx(t)

]
≤ eληx

(
1 +

eλ − 1

L

)t0L
≤ eληxet0(eλ−1). (4.5)

Let P be the transition matrix of (η(t))t≥0 and, for λ > 0, define the function ϕλ : Ω→ R

as ϕλ(η) := eληx . For t ≥ t0, the result follows if we can show that there are positive
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constants θ, γ and c such that (using the standard identification of functions with column
vectors)

P t0+1ϕθ − P t0ϕθ ≤ −γP t0ϕθ + c. (4.6)

In fact, if we apply P to both sides of (4.6) and iterate, we get

P t+1ϕθ ≤ (1− γ)P tϕθ + c (4.7)

for any t ≥ t0. Without loss of generality we assume γ ∈ (0, 1). Iterating (4.7) we get

P t+1ϕθ ≤ (1− γ)t−t0+1P t0ϕθ + c

t−t0∑
n=0

(1− γ)n ≤ (1− γ)t−t0+1P t0ϕθ +
c

γ

and

Eη
(
eθηx(t)

)
≤ (1− γ)t−t0 Eη

(
eθηx(t0)

)
+
c

γ
(4.8)

for any t > t0. By using (4.5), (4.8) and choosing the correct constants θ, κ and α

equation (3.1) follows.
To prove the bound (4.6) let ε0 be the constant in the statement of Lemma 4.2, and

define the events

E :=
{
w̄(t0) ≤ 1− ε0

}
and F :=

{
ηx(t0) > 0

}
.

Then

(P t0+1ϕλ)(η)− (P t0ϕλ)(η) = Eη

[
(Pϕλ)(η(t0))− ϕλ(η(t0))

]
= Eη

[
1E∩F

{
(Pϕλ)(η(t0))− ϕλ(η(t0))

}]
+ Eη

[
1(E∩F )c

{
(Pϕλ)(η(t0))− ϕλ(η(t0))

}]
.

(4.9)

Observe that

(Pϕλ)(η)− ϕλ(η) =
(
e−λ1{ηx>0}

(
1 +

eλ − 1

L

)Lw̄(η)

− 1
)
ϕλ(η), (4.10)

thus the first term on the right hand side of (4.9) can be bounded above by(
e−λ

(
1 +

eλ − 1

L

)L(1−ε0)

− 1
)
Eη
[
(1− 1(E∩F )c)ϕλ(η(t0))

]
. (4.11)

To bound the second one let λ̄ := log(1 + log 2) and choose λ ≤ λ̄ so that

e−λ1{ηx>0}
(

1 +
eλ − 1

L

)Lw̄(η)

− 1 ≤
(

1 +
eλ − 1

L

)L
− 1 ≤ 1.

Thus the second term on the right hand side of (4.9) can be bounded above by

Eη
[
1(E∩F )cϕλ(η(t0))

]
.

Furthermore by (4.9) and the bound (4.11) we get

(P t0+1ϕ)(η)− (P t0ϕ)(η) ≤ E
[(

(1− βλ)1(E∩F )c + βλ
)
ϕ(η(t0))

]
,

where

βλ := e−λ
(

1 +
eλ − 1

L

)L(1−ε0)

− 1 ≤ 1
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for λ ≤ λ̄. Because 1(E∩F )c ≤ 1Ec + 1F c we obtain

(P t0+1ϕλ)(η)− (P t0ϕλ)(η)

≤ (1− βλ)
[
Eη(ϕλ(η(t0))1Ec) + Eη(ϕλ(η(t0))1F c)

]
+ βλ(P t0ϕλ)(η).

Using that ηx(t0) ≤ rL and Lemma 4.2 we get

Eη(ϕλ(η(t0))1Ec) ≤ eλrLPη(Ec) ≤ eλrLe−ε0L

and
Eη(ϕλ(η(t0))1F c) = Pη(F c) ≤ 1.

Thus taking λ < ε0/r

Eη(ϕλ(η(t0))1Ec) + Eη(ϕλ(η(t0))1F c) ≤ 2.

This implies that for any λ ≤ λ̄ ∧ (ε0/r)

(P t0+1ϕλ)(η)− (P t0ϕλ)(η) ≤ βλE
[
ϕλ(η(t0))

]
+ 2(1− βλ).

Observe that

βλ ≤ exp
{
− λ+ (1− ε0)(eλ − 1)

}
− 1 = exp

{
λ
[
(1− ε0)

eλ − 1

λ
− 1
]}
− 1

and as (eλ − 1)/λ ↓ 1 for λ ↓ 0 there is a positive small enough constant θ ≤ λ̄ ∧ (ε0/r)

such that (1− ε0)(eθ − 1)/θ ≤ 1− ε0/2. We define

−γ := βθ ≤ exp
{
− θε0

2

}
− 1 < 0,

so that (4.6) holds with γ = −βθ and c := 2(1 + γ).

5 Coalescing time

To prove Lemma 3.2 we use the path coupling technique. We reduce the problem
of bounding the total variation distance of the distributions of two copies of the RBB
process starting from different initial configurations to the problem of bounding the
coalescing time of two tagged particles coupled to the RBB process.

We construct an Ω× [L]× [L] valued process (χ(t))t≥0 := ((η(t), X(t), Y (t)))t≥0, such
that (η(t))t≥0 is an RBB process, and (X(t))t≥0, (Y (t))t≥0 are the positions of two new
particles as follows. Consider the RBB process (η(t))t≥0 with rL− 1 particles defined in
(2.1). For any t > 0 let U0(t) be a random variable uniformly distributed in [L] and such
that U0(1), U0(2), . . . are i.i.d. and independent of U(1), U(2), . . . . For x0, y0 ∈ [L] define
X(0) := x0, Y (0) := y0 and for any t ≥ 0

X(t+ 1) := X(t)1{ηX(t)>0} + U0(t+ 1)1{ηX(t)=0}

Y (t+ 1) := Y (t)1{ηY (t)>0} + U0(t+ 1)1{ηY (t)=0}.

That is the tagged balls move if and only if they are alone in their respective bins (after
which coalescence is guaranteed to occur). Notice that (χ(t))t≥0 is a time homogeneous
Markov chain and the Ω valued processes (ηX(t))t≥0 and (ηY (t))t≥0 defined for any
x ∈ [L] as

ηXx (t) := ηx(t) + 1{X(t)=x}

ηYx (t) := ηx(t) + 1{Y (t)=x},
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are two coupled copies of the RBB process with L sites and rL particles. The processes
(ηX(t))t≥0 and (ηY (t))t≥0 are equal except for the position of the two tagged particles
until they coalesce. Furthermore for any s ≤ t we have

{
X(s) = Y (s)

}
⊆
{
X(t) = Y (t)

}
;

thus if ηX(s) = ηY (s) for some s ≥ 0 then ηX(t) = ηY (t) for any t ≥ s. We denote by τ
the coalescing time of the two new particles, namely

τ := inf
{
t ≥ 0: X(t) = Y (t)

}
. (5.1)

The next result gives an upper bound on the coalescing time in terms of ‖η(0)‖∞.

Theorem 5.1. There is a positive constant c such that

Pχ
(
τ > κ(‖η‖∞ ∨ (logL)c)

)
≤ c

L2
,

for any χ = (η, x0, y0) ∈ Ω× [L]× [L].

As the proof of Theorem 5.1 needs some extra work we first use it to prove Lemma 3.2.

Proof of Lemma 3.2. Recall that P tη = Pη(η(t) ∈ ·) is the distribution of η(t) when η(0) =

η. We say that two configurations η, ξ ∈ Ω are adjacent if there are x, y ∈ [L] such that
ξx = ηx − 1, ξy = ηy + 1 and ξz = ηz for any z ∈ [L] \ {x, y}. We observe that for any
η, ξ ∈ Ω there is a sequence of adjacent configurations η := ζ0, ζ1, . . . , ζk := ξ, with k ≤ rL
and maxj∈[k] ‖ζj‖∞ ≤ ‖η‖∞ ∨ ‖ξ‖∞. By the triangle inequality

‖P tη − P tξ‖ ≤
k∑
j=1

‖P tζj−1
− P tζj‖. (5.2)

Thus we have to bound ‖P tζj−1
− P tζj‖ for two adjacent configurations. We can consider

a process (χ(t))t≥0, defined at the beginning of this section, starting from the initial
condition χj−1 such that ηX(0) = ζj−1 and ηY (0) = ζj . Then, if τ is the coalescing time
defined in (5.1), by Theorem 5.4 of [10] and Theorem 5.1, we have

‖P tζj−1
− P tζj‖ ≤ Pχj−1(τ > t) ≤ Pχj−1

(
τ > κ

(
(‖ζj−1‖∞ − 1) ∨ (logL)c

))
≤ c

L2

for any t ≥ κ
(
‖η‖∞ ∨ ‖ξ‖∞ ∨ (logL)c

)
≥ κ

(
(‖ζj−1‖∞ − 1) ∨ (logL)c

)
. Thus by (5.2) the

result follows.

The proof of Theorem 5.1 is based on Proposition 5.4 which derives from Lemmata
5.2 and 5.3. Lemma 5.2 states that the occupation number of the sites of the tagged
particles, for t large enough, is unlikely to be too high.

Lemma 5.2. There exist finite positive constants c1 and c2 such that if t̄ := c1‖η‖∞ and
ā = c2 log(1 + ‖η‖∞) then

Pχ(ηX(t̄)(t̄) ∨ ηY (t̄)(t̄) ≤ ā) ≥ 1

2

for any χ = (η, x0, y0) ∈ Ω× [L]× [L].

Proof. To prove this lemma we decouple the (possible) paths of the tagged particles
from the environment process (η(t))t≥0 to get (5.3). Then the result follows using the
exponential bound of Lemma 3.1.

For any t ≥ 0 we have

X(t), Y (t) ∈ {x0, y0} ∪
{
U0(1), . . . , U0(t)

}
:= U(t).
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Using a union bound, independence of U(t) and η(t), and a crude upper bound on |U(t)|
for any a > 0 we get

Pχ(ηX(t) ∨ ηY (t) > a) = Pχ(∃ z ∈ U(t) : ηz(t) > a) ≤ (2 + t) max
z∈[L]

Pχ(ηz(t) > a). (5.3)

Furthermore using (3.2) we have

Pχ(ηX(t) ∨ ηY (t) > a) ≤ (2 + t)2κ exp
{
− θ(a− (‖η‖∞ − αt) ∨ 0)

}
.

The result follows if one can choose a and t such that the last term in the above inequality
is less than 1/2. Taking c1 := b1/αc+ 1, t = t̄ := c1‖η‖∞ and c2 such that

a = ā := c2 log(1 + ‖η‖∞) ≥ 1

θ
log
[
4κ
(⌊r‖η‖∞

α

⌋
+ 3
)]
,

this happens.

The next lemma links the coalescing time with the starting site occupation numbers
of the tagged particles.

Lemma 5.3. There exists a positive constant c such that, for any L ≥ c and χ =

(η, x0, y0) ∈ Ω× [L]× [L],

Pχ(τ ≤ ηx0
∨ ηy0 + b2rc+ 1) ≥

(1

c

)ηx0∨ηy0+b2rc
.

Proof. Define t̄ := ηx0 ∨ ηy0 + b2rc and for any ξ ∈ Ω let W (ξ) := {x ∈ [L] : ξx = 0} be set
of the empty sites of the configuration ξ. As τ ≤ inf

{
t ≥ 0: ηX(t) = ηY (t) = 0

}
+ 1, we

have that for any ε > 0

{
τ ≤ t̄+ 1

}
⊇
{
B̃x0(t̄) = B̃y0(t̄) = 0

}
∩

t̄⋂
s=1

{
U0(s) ∈W (η(t̄)), |W (η(t̄))| > εL

}
.

The first event implies that at time t̄ the sites x0 and y0 may be occupied only by the
tagged particles and the second one implies at time t̄ the sites occupied by the tagged
particles, if different from x0 and y0, are empty. Thus Pχ(τ ≤ t̄ + 1) is bounded from
below by

Pχ
(
B̃x0

(t̄) = B̃y0(t̄) = 0
)
Pχ

( t̄⋂
s=1

{
U0(s) ∈W (η(t̄)), |W (η(t̄))| > εL}

∣∣∣B̃x0
(t̄) = B̃y0(t̄) = 0

)
.

(5.4)
For the first term, as B̃(t̄) has Maxwell-Boltzmann distribution with t̄L particles and L
sites (see Lemma 4.1), we get

Pχ
(
B̃x0(t̄) = B̃y0(t̄) = 0

)
=
(

1− 2

L

)t̄L
≥
( 1

16

)t̄
, (5.5)

for any L ≥ 4. To bound the second factor in (5.4) we introduce an Ω× [L]× [L] valued
process (χ′(t))t≥0 := ((η′(t), X ′(t), Y ′(t)))t≥0 such that

Pχ
(
χ′(1) ∈ Γ1, . . . , χ

′(t) ∈ Γt
)

= Pχ
(
χ(1) ∈ Γ1, . . . , χ(t) ∈ Γt

∣∣B̃x0
(t̄) = B̃y0(t̄) = 0

)
for any t ≤ t̄ and Γ1, . . . ,Γt ⊆ Ω× [L]× [L]. The process (χ′(t))t≥0 for t ≤ t̄ has the same
distribution of (χ(t))t≥0 conditioned to B̃x0

(t̄) = B̃y0(t̄) = 0. More precisely χ′(0) := χ

and (η′(t))t≥0 is the Markov chain recursively defined by

η′x(t+ 1) := η′x(t)− 1{η′x(t)>0} +

L∑
y=1

1{η′y(t)>0}1{U ′y(t+1)=x}, x ∈ [L],
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where U ′(t) := (U ′1(t), . . . , U ′L(t)), U ′1(t), . . . , U ′L(t) are i.i.d. random variables uniformly
distributed on [L] \ {x0, y0} and such that U ′(1), U ′(2), . . . are independent and indepen-
dent of U0(1), U0(2), . . . . Furthermore (X ′(t))t≥0 and (Y ′(t))t≥0 are recursively defined
by

X ′(t+ 1) := X ′(t)1{ηX′(t)>0} + U0(t+ 1)1{ηX′(t)=0}

Y ′(t+ 1) := Y ′(t)1{ηY ′(t)>0} + U0(t+ 1)1{ηY ′(t)=0}.

Thus

Pχ

( t̄⋂
s=1

{
U0(s) ∈W (η(t̄)), |W (η(t̄))| > εL

}∣∣∣B̃x0
(t̄) = B̃y0(t̄) = 0

)
= Pχ

( t̄⋂
s=1

{
U0(s) ∈W (η′(t̄)), |W (η′(t̄))| > εL,

})
=
∑
w>εL

Pχ

( t̄⋂
s=1

{
U0(s) ∈W (η′(t̄))}

∣∣∣|W (η′(t̄))| = w
)
Pχ
(
|W (η′(t̄))| = w

)
.

By the independence of U0(1), . . . , U0(t̄), η′(t̄) we get

Pχ

( t̄⋂
s=1

{
U0(s) ∈W (η′(t̄))}

∣∣∣|W (η′(t̄))| = w
)

=
(w
L

)t̄
> εt̄.

for w > εL. Thus

Pχ

( t̄⋂
s=1

{
U0(s) ∈W (η′(t̄)), |W (η′(t̄))| > εL

})
≥ εt̄Pχ

(
|W (η′(t̄))| > εL

)
= εt̄

(
1− Pχ

( 1

L

L∑
x=1

1{η′x(t̄)>0} ≥ 1− ε
))
.

(5.6)

We claim that there exists a constant ε′0 ∈ (0, 1) such that for any ε ∈ (0, ε′0]

sup
η∈Ω

Pη

( 1

L

L∑
x=1

1{η′x(t)>0} ≥ 1− ε
)
≤ e−εL, (5.7)

for any t ≥ b2rc ∨ 1, L ≥ 4 and
∑
x ηx = rL− 1. This result is the analogue of Lemma 4.2

for the process (η′(t))t≥0 and can be proved along the same lines. We briefly sketch the
proof. As in the proof of Lemma 4.2 it is enough to prove (5.7) for t = t0 = b2rc ∨ 1 and
following the same arguments we can show that

Pη

( 1

L

L∑
x=1

1{η′x(t0)>0} > 1− ε
)
≤ Pη

( 1

bL/2c
∑
x∈V

1{B̃′x>0} > 1− 3ε
)
,

where (B̃′x)x∈[L]\{x0,y0} is Maxwell-Boltzmann distributed with t0L particles and L − 2

sites. Using again exponential Chebyshev inequality and negative association of Maxwell-
Boltzmann distribution we get for any λ > 0

Pη

( 1

L

L∑
x=1

1{η′x(t0)>0} > 1− ε
)
≤ e−λ(1−3ε)bL/2c

(
eλp′ + (1− p′)

)bL/2c−2

.
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where p′ = 1− (1− 1/(L− 2))t0L. The rest of the proof is exactly the same of Lemma 4.2
and (5.7) is proved. By inequalities (5.4), (5.5), (5.6) and (5.7) we get

P(τ ≤ t̄+ 1) ≥
( ε′0

16

)t̄
(1− e−ε

′
0L).

Taking L large enough the result follows.

From the last two lemmata we can prove the next statement

Proposition 5.4. There is a positive constant β such that for any χ = (η, x0, y0) ∈
Ω× [L]× [L]

Pχ(τ ≤ β‖η‖∞) ≥ (1 + ‖η‖∞)−β .

Proof. Let t := c1‖η‖∞, a := c2 log(1 + ‖η‖∞) and h := ηx0
∨ ηy0 + b2rc+ 1, with c1 and c2

as in Lemma 5.2. Then by the Markov property

Pχ(τ ≤ t+ h) ≥ Pχ(τ ≤ t+ h, ηX(t) ∨ ηY (t) ≤ a)

= Eχ
[
1{ηX(t)∨ηY (t)≤a}Pχ(t)(τ ≤ h)

]
.

(5.8)

By Lemma 5.3 we have that

1{ηX(t)∨ηY (t)≤a}Pχ(t)(τ ≤ h) ≥ 1{ηX(t)∨ηY (t)≤a}

(1

c

)ηX(t)∨ηY (t)+b2rc

≥ 1{ηX(t)∨ηY (t)≤a}

(1

c

)a+b2rc
.

By plugging this bound into (5.8) and using Lemma 5.2 we get

Pχ(τ ≤ t+ h) ≥ 1

2

(1

c

)a+b2rc
=

1

2

(1

c

)b2rc 1

(1 + ‖η‖∞)c2 log c
.

From this the result follows.

We finally are in a position to prove Theorem 5.1

Proof of Theorem 5.1. Let a > 0 to be chosen later. To bound the tail distribution of τ
we consider first the case in which the tagged particles did not coalesce and ‖η(s)‖∞ ≤ a
for any s ≤ t. Then the case in which ‖η(s)‖∞ > a for some s ≤ t, see the first line of
(5.9). Finally we bound the probability of these events using Proposition 5.4.

Let β ≥ 1 such that the statement of Proposition 5.4 holds and let t > 0 and a ≥ 1 two
parameters we will adjust later. Consider the decreasing sequence of events E1, E2, . . .

defined by

tk := bt+ 2kaβc, k ∈ Z+, Fh−1 :=

h−1⋂
k=0

{
‖η(tk)‖∞ ≤ a

}
, Eh :=

{
τ > th

}
∩ Fh−1.

By the Markov property

Pχ(Eh+1) = Pχ(Eh+1 ∩ {τ > th}) = Eχ
[
1{τ>th}∩Fh Pχ(th)(τ > th+1 − th)

]
≤ Eχ

[
1{τ>th}∩Fh Pχ(th)(τ > 2aβ − 1)

]
≤ Eχ

[
1{τ>th}∩Fh Pχ(th)(τ > aβ)

]
.

As Fh implies ‖η(th)‖∞ ≤ a, by Proposition 5.4, we have Pχ(th)(τ > aβ) ≤ 1− (1 + a)−β

so that

Pχ(Eh+1) ≤ Pχ(Fh ∩ {τ > th})
(
1− (1 + a)−β

)
≤ Pχ(Eh) exp

{
− (1 + a)−β

}
.
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Iterating we get
Pχ(Eh) ≤ exp

{
− h(1 + a)−β

}
for any h ∈ N. We then have

Pχ(τ > th) = Pχ({τ > th} ∩ Fh) + Pχ({τ > th} ∩ F ch) ≤ Pχ(Eh) + Pχ(F ch)

≤ exp
{
− h(1 + a)−β

}
+ h sup

u≥t
Pχ(‖η(u)‖∞ > a). (5.9)

Observe that for any u > 0

Pχ(‖η(u)‖∞ > a) = Pχ(∃x ∈ [L] : ηx(u) > a) ≤ L sup
x∈[L]

Pχ(ηx(u) > a). (5.10)

Now we choose ū := ‖η‖∞/α, where α is the positive constant appearing in (3.2), so that
for any u ≥ ū and x ∈ [L] we have (ηx − αu) ∧ 0 = 0. By (3.2)

Pχ(ηx(u) > a) ≤ Pχ(ηx(u) ≥ a) ≤ 2κe−θa.

Plugging this bound into (5.10) we have

Pχ(‖η(u)‖∞ > a) ≤ 2κLe−θa

for any u ≥ ū. By (5.9) we get

Pχ(τ > th) ≤ exp
{
− h(1 + a)−β

}
+ 2κhLe−θa.

Taking h = b(logL)2+βc+ 1, a := (4/θ) logL and L large enough to have a ≥ 1, we have
that

Pχ(τ > th) ≤ exp
{
−
( logL

1 + 4
θ logL

)β
(logL)2

}
+

(logL)2+β

L3

≤ exp
{
−
(θ

4

)β
(logL)2

}
+

(logL)2+β

L3
= o(L−2).
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