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Abstract

Filter stability is a classical problem in the study of partially observed Markov
processes (POMP), also known as hidden Markov models (HMM). For a POMP, an
incorrectly initialized non-linear filter is said to be (asymptotically) stable if the filter
eventually corrects itself as more measurements are collected. Filter stability results in
the literature that provide rates of convergence typically rely on very restrictive mixing
conditions on the transition kernel and measurement kernel pair, and do not consider
their effects independently. In this paper, we introduce an alternative approach using
the Dobrushin coefficients associated with both the transition kernel as well as the
measurement channel. Such a joint study, which seems to have been unexplored,
leads to a concise analysis that can be applied to more general system models under
relaxed conditions: in particular, we show that if (1 − δ(T ))(2 − δ(Q)) < 1, where
δ(T ) and δ(Q) are the Dobrushin coefficients for the transition and the measurement
kernels, then the filter is exponentially stable. Our findings are also applicable for
controlled models.
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1 Introduction

In the study of partially observed Markov processes (POMP), also known as hidden
Markov models (HMM), we have a hidden state process that is developing over time
and an observer who sees noisy measurements of the state. The observer computes
conditional estimates of the state given their measurements to date sequentially through
a non-linear filtering equation. The filter is computed in a recursive fashion using a
Bayesian update, however this recursion is dependent on the observer’s prior (with
respect to the unobserved initial state) before he/she has made any measurements. If
the observer has the wrong prior, the filter they compute will not match the true filter
and we say the filter has been incorrectly initialized. Filter stability is concerned with
the merging of the true filter and the incorrectly initialized filter as the observer collects
more measurements. That is, even if the observer has the wrong prior for the system,
with enough measurements this mistake will be corrected asymptotically.

Asymptotic stability, where the filters merge as time goes on but at no specified rate,
may be problematic since one cannot guarantee sufficient merging for a fixed finite time.
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Exponential filter stability via Dobrushin coefficient

For many applications, it is desirable to attach a rate of merging for filter stability, so
that in finite time one can guarantee how “close” the false filter is to the true filter. As
we will note in the literature review, there are such stability results in the literature
however they rely on rather restrictive mixing conditions on the transition kernel.

In this paper, we propose a new sufficient condition for exponential stability using
Dobrushin coefficients associated with both the transition kernel as well as the measure-
ment channel. Such a joint study seems to have been unexplored and leads to concise
explicit conditions on filter stability which can be applied to general system models
under more relaxed conditions.

1.1 Notation and preliminaries

In the following, we will discuss the control-free model setup. The controlled case
will be considered in Section 4.

Let X ,Y be Polish (that is, complete, separable, metric) spaces equipped with their
Borel sigma fields B(X ) and B(Y). X will be called the state space, and Y the measure-
ment space.

Given a measurable space (X ,B(X )) we denote the space of probability measures
on this space as P(X ). We will denote random variables by capital letters and their
realizations with lower case letters. Further, we will express contiguous sets of random
variables such as Y0, Y1, · · · , Yn with a subscript Y[0,n] indicating the starting and ending
index of the collection. Infinite sequences Y0, Y1, · · · will be expressed as Y[0,∞). We then
define two probability kernels, the transition kernel T and the measurement kernel Q:

T : X → P(X ) Q : X → P(Y)

x 7→ T (dx′|x) x 7→ Q(dy|x)

where for a set A ∈ B(Y) we write Q(x,A) =
∫
A
Q(dy|x). For these kernel operators,

we can overload the notation to define them as mappings from a space of probability
measures to another space of probability measures as follows

T : P(X )→ P(X ) Q : P(X )→ P(Y)

π(dx) 7→
∫
X
T (dx′|x)π(dx) π(dx) 7→

∫
Y
Q(dy|x)π(dx)

In practice, the form of the kernel operator is clear via context if the input is a probability
measure or an element of the state space. Note that T and Q are time invariant kernels
in a POMP as we study.

A POMP is initialized with a state x0 ∈ X drawn from a prior measure µ on (X ,B(X )).
However, the state is not available at the observer, instead the observer sees the
sequence Yn ∼ Q(dy|Xn). That is, each Yn is a noisy measurement of the hidden random
variable Xn via the measurement channel Q. We then have for any set A ∈ B(X × Y),

P

(
(X0, Y0) ∈ A

)
=

∫
A

Q(dy|x)µ(dx) (1.1)

and the POMP updates via the transition kernel T : X → P(X )

P ((Xn, Yn) ∈ A|(X,Y )[0,n−1] = (x, y)[0,n−1]) =

∫
A

Q(dy|xn)T (dxn|xn−1) (1.2)

It follows that {(Xn, Yn)}∞n=0 itself is a Markov chain, and we will denote Pµ as the
probability measure on Ω = XZ+ × YZ+ , endowed with the product topology where
X0 ∼ µ (this of course means ω ∈ Ω is a sequence of states and measurements ω =
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Figure 1: Chain of Implications in POMP.

{(xi, yi)}∞i=0). A diagram of the flow of the POMP is seen in Figure 1. The nodes represent
random variables, and the arrows are labelled with the kernel that defines the conditional
measure between two random variables. That is, the distribution of Y1, conditioned
on the past events, is fully determined by the realization of X1 and the measurement
channel Q, and the distribution of X2, conditioned on the past events, is fully determined
by the realization of X1 and the transition kernel T .

Definition 1.1. We define the filter as the sequence of conditional probability measures

πµn(·) = Pµ(Xn ∈ ·|Y[0,n]) n ∈ {0, 1, 2, · · · } (1.3)

Calculating the filter realizations can be performed in a recursive manner. That is,
given the previous filter realization πµn ∈ P(X ) and a new observation yn+1 ∈ Y we can
compute the next filter realization πµn+1 via the filter update function φ : P(X ) × Y →
P(X ).

Often one assumes that there exists a dominating measure λ ∈ P(Y) and for every
x ∈ X , Q(dy|x) � λ. Note that “�” means absolute continuity, so that for any set
A ∈ B(Y) we have λ(A) = 0 =⇒ Q(x,A) = 0 ∀x ∈ A. Then we say Q is dominated
and there exists a Radon Nikodym derivative for Q(dy|x) with respect to λ(dy) for
each x, which is the conditional probability density function (pdf) or likelihood function
dQ
dλ (x, y) = g(x, y). Then we can define the Bayesian update operator

ψ :P(X )× Y → P(X ) ∪ {0}

(π(dx), y) 7→

{
g(x,y)π(dx)∫
X g(x,y)π(dx)

if
∫
X g(x, y)π(dx) > 0

0 else

We will later call Nµ(y) =
∫
X g(x, y)π(dx) the normalizing constant. If (X,Y ) ∼ Pµ

where Pµ((X,Y ) ∈ (A × B)) =
∫
B

∫
A
Q(dy|x)µ(dx) then Nµ(Y ) is non-zero with Pµ

probability 1. That is, the set B = {y|Nµ(y) = 0} has zero probability since

Pµ(Y ∈ B) =

∫
B

Pµ(dy) =

∫
B

∫
X
g(x, y)µ(dx)dy =

∫
B

Nµ(y)dy = 0

additionally, for any other prior with µ� ν, we also have that Nν(Y ) is non-zero with
Pµ probability 1. Thus inside of Pµ expectations we can consider Nµ(Y ) and Nν(Y ) as
being non-zero.

We can then explicitly write the filter update operator as the composition of the
Bayesian update operator with the transition kernel

πµn+1(dx) = φ(πµn, yn+1)(dx) = ψ(T (πµn), yn+1)(dx) =
g(x, yn+1)

∫
X T (dx|x′)πµn(dx′)∫

X g(x, yn+1)
∫
X T (dx|x′)πµn(dx′)

(1.4)

where (1.4) is often referred to as the filter update equation in the literature.
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Since the filter update is a recursive process, it is sensitive to the initial distribution
of X0 which is the starting point of the recursion. Suppose that an observer computes the
non-linear filter assuming that the initial prior is ν, when in reality the prior distribution
is µ. The observer receives the measurements and computes the filter πνn for each n, but
the measurement process is generated according to the true measure µ. The question
we are interested in is that of filter stability, namely, if we have two different initial
probability measures µ and ν, when do we have that the filter processes πµn and πνn merge
in some appropriate sense as n→∞?

Definition 1.2. For two probability measures P,Q we define the total variation norm as
‖P −Q‖TV = sup‖f‖∞≤1

∣∣∫ fdP − ∫ ddQ∣∣ where f is assumed measurable and bounded
with norm 1.

Definition 1.3. A POMP is said to be exponentially stable in total variation in expectation
if there exists a coefficient 0 < α < 1 such that for any µ� ν we have

Eµ[‖πµn+1 − πνn+1‖TV ] ≤ αEµ[‖πµn − πνn‖TV ] n ∈ {0, 1, · · · }

Before we state our main result and supporting results, a brief literature review is
presented next. Our main results are presented in Section 3, with Theorem 3.6 providing
a sufficient condition for exponential stability of the filter. In Section 4, we explain how
these results can easily be applied to control models. A simple but useful application of
the new approach is presented in Section 5, and concluding remarks in Section 6.

2 Literature review

Filter stability is a very important subject, and consequently, one that has been
studied extensively. We refer the reader to [5, 12, 10, 6, 15, 9, 2, 7] for a comprehensive
review and a collection of different approaches. As discussed in [5], filter stability arises
via two separate mechanisms:

1. The transition kernel is in some sense sufficiently ergodic, forgetting the initial
measure and therefore passing this insensitivity (to incorrect initializations) on to
the filter process.

2. The measurement channel provides sufficient information about the underlying
state, allowing the filter to track the true state process.

For a review of the methods utilizing the second mechanism above involving observability
related aspects, we refer the refer to the very detailed literature reviews in [5] and [13].

Most of the literature has focused on the first of the two mechanisms noted above
by showing that the transition kernel T is sufficiently ergodic [5], forgetting the initial
measure as time goes on. By ergodicity, here we mean that the successive applications
of the transition kernel T brings any two different priors closer together through the
filter update equation with increasing time. To achieve this end, results in the literature
[1, 14, 10] and various relaxations as in [4] or [5, Theorems 2.1 and 2.2] utilize some
form of mixing, pseudo-mixing, or a similar condition on the transition kernel. A general
mixing condition is along the lines of the following:

Definition 2.1 ([10, Definition 3.2]). A kernel K : S1 → P(S2) is called mixing if there
exists a finite non-negative measure λ ∈ P(S2) and 0 < ε ≤ 1 such that ∀ A ∈ B(S2), s ∈ S1
ελ(A) ≤ K(s,A) ≤ 1

ελ(A)

Such a mixing condition is a very strong assumption on a kernel. For example, a
kernel on a finite probability space (which is a stochastic matrix) is mixing if and only
if each column of the matrix is fully zero or fully non-zero. For example the following
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For a kernel K : S1 → P(S2) with dominating measure λ and likelihood function

k(s2|s1), the kernel is mixing if and only if there exists two enveloping functions f1, f2 ∈
L1(λ) such that

0 < a ≤ f1(s2)

f2(s2)
≤ b <∞ ∀s2 ∈ S2

f1(s2) ≤ k(s2|s1) ≤ f2(s2) ∀s1 ∈ S1, s2 ∈ S2

For example, if K : R→ P(R) where K(dx′|x) ∼ N(f(x), σ) where ‖f‖∞ <∞ then K is
not a mixing kernel.

The approach taken in [10] utilizes the Hilbert metric to achieve stability.

Definition 2.2 ([10, Definition 3.1]). Two non-negative measures µ and ν on a measur-
able space (S,F) are called comparable if ∃ 0 < a ≤ b such that ∀A ∈ F , aµ(A) ≤ ν(A) ≤
bµ(A).

Definition 2.3 ([10, Definition 3.3]). Let µ, ν be two non-negative finite measures. We
define the Hilbert metric on such measures as

h(µ, ν) =


log

(
supA|ν(A)>0

µ(A)
ν(A)

infA|ν(A)>0
µ(A)
ν(A)

)
if µ, ν are comparable

0 if µ = ν = 0

∞ else

We see that the Hilbert metric is only meaningful when µ and ν are comparable.
Yet comparability implies mutual absolute continuity (i.e. µ � ν and ν � µ) and
therefore that the Radon Nikodym derivatives dµ

dν and dν
dµ exist, and furthermore, that

these derivatives are bounded from above and below away from zero. In this case,

we have that h(µ, ν) = log
(∥∥∥dµdν ∥∥∥∞ ∥∥∥ dνdµ∥∥∥∞) when the measures are comparable. The

Hilbert metric is a projective distance, meaning if we scale either of the measures by a
constant it will not change the Hilbert metric. This makes the metric very useful when
studying the Bayesian update operator ψ since the denominator in a Bayesian update is
a non-linear scaling operator, while the numerator is a linear operator.

Theorem 2.4 ([10, Corollary 4.2]). Assume the measurement channel is dominated and
has a likelihood function. Let φ̄ represent the un-normalized filter update, φ̄(µ, y)(dx) =

g(x, y)T (µ)(dx), which is a kernel mapping to the space of non-negative finite measures
and not necessarily the space of probability measures. If φ̄ is a mixing Kernel with
coefficient ε > 0 ∀y ∈ Y then

‖πµn+m − πνn+m‖TV ≤
(

2

log(3)ε2

)(
1− ε2

1 + ε2

)m−1
‖πµn − πνn‖TV (2.1)

Note that if T is a mixing kernel with coefficient ε, then φ̄ is as well but this can also
be achieved without T begin mixing, see [10, Example 3.10]. However, requiring φ̄ to be
a mixing kernel is a very restrictive assumption. Often, such a condition is not applicable
for applications with a non-compact state space. We can also note that the exponential
coefficient 1−ε2

1+ε2 may be close to 1 for many reasonable values of ε� 1 and hence may
lead to a very slow rate of decay.

ECP 25 (2020), paper 53.
Page 5/13

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP333
http://www.imstat.org/ecp/


Exponential filter stability via Dobrushin coefficient

In short, most exponential stability results in the literature rely on the mixing condi-
tion which may be prohibitive for many applications, as noted in [3, Section 4.3.6] this is
not a desirable approach to filter stability. We would like to find an approach that does
not rely on this condition.

Instead of such a strong mixing condition, we will introduce a new approach based
on a joint contraction property of the Bayesian filter update and measurement
update steps through the Dobrushin coefficient: The only references, to our knowl-
edge, where the Dobrushin coefficient is utilized are [14] and [3, Section 4.3], however
a careful look at these contributions ultimate rely on mixing conditions [3, Assump-
tion 4.3.21, 4.3.24], and these do not consider the effect of the measurement channel to
refine the bounds. Our approach leads to a concise derivation through a direct approach
of the Dobrushin coefficients and leads to more relaxed characterizations as we take
into account the measurement updates as well.

3 Main result

Our approach is to study when the filter update operator φ is a contraction in
expectation, that is

Eµ[‖φ(πµn, yn+1)− φ(πνn, yn+1)‖TV ] ≤ α‖πµn − πνn‖TV

for some α < 1. We will go about this by studying the Dobrushin coefficients of T and Q.

Definition 3.1 ([8, Equation 1.16]). For a kernel operator K : S1 → P(S2) we define the
Dobrushin coefficient as:

δ(K) = inf

n∑
i=1

min(K(x,Ai),K(y,Ai)) (3.1)

where the infimum is over all x, y ∈ S1 and all partitions {Ai}ni=1 of S2.

Note this definition holds for continuous or finite/countable spaces S1 and S2 and 0 ≤
δ(K) ≤ 1 for any kernel operator. The Dobrushin coefficient is conceptually a measure
on how similar or different the different conditional measures K(ds2|s1),K(ds2|s′1) are
for different s1, s′1 (different conditionals). If the measures are similar, the coefficient is
close to 1 and if they are different, it is close to 0. Let us look at two examples

Example 3.2 (Finite Space Setup). Assume S1 and S2 are finite spaces, then K is a |S1|
by |S2| stochastic matrix. The Dobrushin coefficient is the minimum over any two rows
where we sum the minimum elements among those rows. If we have the matrix

K =

0 1
3

2
3

1
2

1
2 0

1
3

1
3

1
3


If we pick the first and second row, the sum of the minimum elements is 1

3 . If we pick
the first and third rows, it is 2

3 and the second and third rows it is 2
3 . Therefore the

Dobrushin coefficient is 1
3 .

Example 3.3 (Continuous Space Setup). Assume for simplicity S1 = S2 = R and the
dominating measure is the Lebesgue measure. Then we have a conditional pdf k(s2|s1).
For any choice of s1 and s′1, the minimizing partition is two sets: one set where k(s2|s1) >

k(s2|s′1) and it’s compliment. The result is then the area under the overlap of the two
pdf’s, and the Dobrushin coefficient is the minimum of this overlap area for any two
pdf’s. A demonstration for two pdf’s is provided in Figure 3.3, the overlap area is shaded
in gray.

ECP 25 (2020), paper 53.
Page 6/13

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP333
http://www.imstat.org/ecp/


Exponential filter stability via Dobrushin coefficient

-10 -5 5 10

0.1

0.2

0.3

0.4

Figure 2: Example of Dobrushin coefficient calculation for dominated systems.

The Dobrushin coefficient provides a contraction coefficient for kernel operators in
total variation. For two probability measures π, π′ ∈ P(S1) [8]:

‖K(π)−K(π′)‖TV ≤ (1− δ(K))‖π − π′‖TV

As was discussed in Section 1.1, the filter update operator φ is a composition of the
transition kernel T and the Bayesian update operator ψ. The transition operator T is a
contraction mapping with coefficient (1− δ(T )), which potentially could be 1. Assume
that it is less than 1, then without the Bayes update the transition operator would bring
measures together with each successive application. However, the Bayes operator is in
general not a contraction, and can in fact increase the expected total variation distance
between posteriors compared to the priors.

Example 3.4. Consider as a simple example the priors and measurement kernel

µ = (0.05, 0.65, 0.3) ν = (0.2, 0.65, 0.15) Q =

0.1 0.3 0.6

0.5 0.3 0.2

0.9 0.1 0


the original total variation ‖µ− ν‖TV distance is 0.3, but the expected distance of the
posteriors is 0.3728.

We are therefore not guaranteed that the composition of the two operators T and ψ
is a contraction. However, if we have an upper bound on∫

X
∫
Y ‖ψ(µ, y)− ψ(ν, y)‖TVQ(dy|x)µ(dx)

‖µ− ν‖TV

then if δ(T ) is sufficiently large, the possible expansion property of ψ is dominated by
the contraction property of T and the composed operator φ is itself a contraction in
expectation.

Lemma 3.5. Consider a true prior µ and a false prior ν with µ � ν. Assume that the
measurement channel Q is dominated, then we have that∫

X

∫
Y
‖ψ(µ, y)− ψ(ν, y)‖TV ]Q(dy|x)µ(dx) ≤ (2− δ(Q))‖µ− ν‖TV

Proof. We will take a closer look at the operator ψ. For a general probability measure π
define the normalizing constant Nπ(y) =

∫
X g(x, y)π(dx). As discussed in the notation

section, Nµ(Y ) and Nν(Y ) are non-zero with Pµ probability 1, and thus we will simply
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consider them as non-zero for the remainder of this proof.

‖ψ(µ, y)− ψ(ν, y)‖TV = sup
‖f‖∞≤1

∣∣∣∣∫
X

f(x)g(x, y)

Nµ(y)
µ(dx)−

∫
X

f(x)g(x, y)

Nν(y)
ν(dx)

∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣∫
X

f(x)g(x, y)

Nµ(y)
µ(dx)±

∫
X

f(x)g(x, y)

Nµ(y)
ν(dx)−

∫
X

f(x)g(x, y)

Nν(y)
ν(dx)

∣∣∣∣
≤ sup
‖f‖∞≤1

1

Nµ(y)

∣∣∣∣∫
X

f(x)g(x, y)(µ− ν)(dx)

∣∣∣∣
+ sup
‖f‖∞≤1

∣∣∣∣ 1

Nµ(y)
− 1

Nν(y)

∣∣∣∣ ∣∣∣∣∫
X
f(x)g(x, y)ν(dx)

∣∣∣∣
≤ sup
‖f‖∞≤1

1

Nµ(y)

∣∣∣∣∫
X

f(x)g(x, y)

(
dµ

dν
(x)− 1

)
ν(dx)

∣∣∣∣+

∣∣∣∣Nν(y)−Nµ(y)

Nµ(y)Nν(y)

∣∣∣∣Nν(y)

≤
(

1

Nµ(y)

)(
|Nµ(y)−Nν(y)|+

∫
X

g(x, y)

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx)

)
taking the expectation of this expression∫

X

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TVQ(dy|x)µ(dx)

=

∫
X

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TV g(x, y)λ(dy)µ(dx)

=

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TV
(∫

X

g(x, y)µ(dx)

)
λ(dy)

=

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TVNµ(y)λ(dy)

≤
∫
Y

(
|Nµ(y)−Nν(y)|+

∫
X

g(x, y)

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx)

)
λ(dy)

≤
∫
Y
|Nµ(y)−Nν(y)|λ(dy) +

∫
Y

∫
X

g(x, y)

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx)λ(dy)

=

∫
Y

∣∣∣∣∫
X
g(x, y)(µ− ν)(dx)

∣∣∣∣λ(dy) +

∫
X

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ (∫
Y
g(x, y)λ(dy)

)
ν(dx)

Let us examine these two terms separately. For the second term, g(x, y) is a probability
density function for a fixed x, therefore it integrates to 1 over λ and we have∫

X

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ (∫
Y
g(x, y)λ(dy)

)
ν(dx) =

∫
X

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx) = ‖µ− ν‖TV

for the first term, define the sets

S+ = {y|
∫
X

g(x, y)(µ− ν)(dx) > 0} S− = {y|
∫
X

g(x, y)(µ− ν)(dx) ≤ 0}

then we have∫
Y

∣∣∣∣∫
X
g(x, y)(µ− ν)(dx)

∣∣∣∣λ(dy) =

∫
Y

(1S+(y)− 1S−(y))

∫
X
g(x, y)(µ− ν)(dx)λ(dy)

We then have that 1S+(y)− 1S−(y) is a measurable function of y with infinity norm equal
to 1, and in fact it achieves the supremum over all such functions. That is∫

Y
(1S+(y)− 1S−(y))

∫
X

g(x, y)(µ− ν)(dx)λ(dy)
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= sup
‖f‖∞≤1

∣∣∣∣∫
Y
f(y)

∫
X
g(x, y)(µ− ν)(dx)λ(dy)

∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣∫
X

∫
Y
f(y)g(x, y)λ(dy)(µ− ν)(dx)

∣∣∣∣
= ‖Q(µ)−Q(ν)‖TV ≤ (1− δ(Q))‖µ− ν‖TV

Indeed, if we consider Example 3.4, the Dobrushin coefficient of Q is 0.2, so our upper
bound is 1.8 while the ratio provided is 0.3726

0.3 = 1.24, less than our upper bound. More
important though is pairing the Bayes update with a sufficiently contractive transition
kernel.

Theorem 3.6. Assume that µ� ν and that the measurement channel Q is dominated.
Then we have

Eµ[‖πµn+1 − πνn+1‖TV ] ≤ (1− δ(T ))(2− δ(Q))Eµ[‖πµn − πνn‖TV ]

Proof.

Eµ[‖πµn+1 − πνn+1‖TV ] = Eµ[‖φ(πµn, yn+1)− φ(πνn, yn+1)‖TV ]

= Eµ[‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV ]

=

∫
Yn+2

‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV Pµ(dy[0,n+1])

=

∫
Yn+1

∫
Y
‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV Pµ(dyn+1|y[0,n])Pµ(dy[0,n])

now we condition on Xn+1 as a hidden variable to break the conditioning into two parts.∫
Yn+1

∫
X

∫
Y
‖ψ(T (πµn), yn+1)−ψ(T (πνn), yn+1)‖TV Pµ(dyn+1|xn+1, y[0,n])P

µ(dxn+1|y[0,n])Pµ(dy[0,n])

since Yn+1 is fully determined by Xn+1 we have that Pµ(dyn+1|xn+1, y[0,n]) =

Q(dyn+1|xn+1) and the measure Pµ(dxn+1|y[0,n]) = T (πµn)(dxn+1) is the filter put through
the transition kernel. We then have∫

Yn+1

(∫
X

∫
Y
‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TVQ(dyn+1|xn+1)T (π

µ
n)(dxn+1)

)
Pµ(dy[0,n])

Now consider the expression inside the brackets. T (πµn) is playing the role of a prior for
Xn+1 before the observation Yn+1 is made, and therefore this expression is exactly the
form of an expected Bayes update as studied in Lemma 3.5. We can apply the Dobrushin
bound on the Bayes update and we have:

≤ (2− δ(Q))

∫
Yn+1

‖T (πµn)− T (πνn)‖TV Pµ(dy[0,n])=(2− δ(Q))(1− δ(T ))Eµ[‖πµn − πνn‖TV ]

Corollary 3.7. Assume µ � ν and that the measurement channel is Q is dominated.
If we have α = (1 − δ(T ))(2 − δ(Q)) < 1 then the filter is exponentially stable in total
variation in expectation with coefficient α and

Eµ[‖πµn − πνn‖TV ] ≤ (2− δ(Q)) (αn) ‖µ− ν‖TV

Furthermore, if δ(T ) > 1
2 then α < 1 and the POMP is exponentially stable regardless of

the measurement kernel Q.
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Proof. By recursive application of Theorem 3.6 we have

Eµ[‖πµn − πνn‖TV ] ≤ αnEµ[‖πµ0 − πν0‖TV ]

πµ0 is then the Bayesian update of µ under the first observation Y0, therefore we apply
Lemma 3.5 and we have

αnEµ[‖πµ0 − πν0‖TV ] = αnEµ[‖ψ(µ, y0)− ψ(ν, y0)‖TV ] ≤ (2− δ(Q))(αn)‖µ− ν‖TV

Finally, recall that for any kernel K we have 0 ≤ δ(K) ≤ 1 therefore if we have δ(T ) > 1
2

α = (1− δ(T ))(2− δ(Q)) <
1

2
(2− δ(Q)) ≤ 2

2
= 1

Remark 3.8. In [4, Equation 1.5] the authors provide a condition depending only on the
transition kernel that results in exponential filter stability. This condition is a weakening
of the typical mixing results in Definition 2.1, but still inherits similar issues about zero
probability entries. For example, in a finite state space the condition [4, Equation 1.5]
requires that at least one row of the transition matrix is non-zero, while typical mixing
requires all rows to be non-zero. In a continuous state space, the previously discussed
example K(dx′|x) ∼ N(f(x), σ) where ‖f‖∞ < ∞ would also violate [4, Equation 1.5].
The condition does not imply a non-zero Dobrushin coefficient nor it is implied by it, and
thus gives a complementary sufficient condition for exponential stability. Our condition,
by relying on both the transition kernel and the measurement kernel, provides a way to
determine filter stability when the transition kernel alone does not satisfy the mixing
condition or variants of it.

Remark 3.9. Our result result is sufficient, but certainly not necessary. In what seems
like a counter-intuitive result, this result prioritizes measurement channels Q that are
un-informative as opposed to those that are informative (see [13] for more discussion on
informative measurement channels). For example a completely independent observation
Y will have δ(Q) = 1 and direct observation will have δ(Q) = 0. However, the idea of our
result is that the mapping T is a contraction without any Bayes update. We then want a
measurement kernel Q that does not “change” this ergodic property, and a completely
independent observation will result in ψ(µ) = µ, and hence will not conflict with the
transition kernel T .

For example, consider a finite system and direct observation. That is y is an invertible
deterministic function of x, Y = h(X). Then we have

‖ψ(µ, y)− ψ(ν, y)‖ = sup
‖f‖∞≤1

∣∣∣∣∣∑
x∈X

f(x)g(x, y)

(
µ(x)

Nµ(x)
− ν(x)

Nν(y)

)∣∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣∣∑
x∈X

f(x)1h−1(y)(x)

(
µ(x)

µ(h−1(y))
− ν(x)

ν(h−1(y))

)∣∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣f(h−1(y))

(
µ(h−1(y))

µ(h−1(y))
− ν(h−1(y))

ν(h−1(y))

)∣∣∣∣ = 0

However, if we add and subtract µ(h−1(y))
ν(h−1(y)) in the first line and apply the triangle

inequality we instead have:(
1

µ(h−1(y))

)
sup
‖f‖∞≤1

∣∣f(h−1(y))(µ(h−1(y))− ν(h−1(y))
∣∣

+ |f(h−1(y))ν(h−1(y))|
∣∣∣∣µ(h−1(y))− ν(h−1(y))

ν(h−1(y))

∣∣∣∣
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=

(
1

µ(h−1(y))

) ∣∣(µ(h−1(y))− ν(h−1(y))
∣∣+
∣∣µ(h−1(y))− ν(h−1(y))

∣∣ 6= 0

this is the same approach taken in the proof of Lemma 3.5. We see that the triangle in-
equality results in a loose bound that ignores the informative nature of the measurement
channel, and thus Theorem 3.6 relies on the ergodic properties of the transition kernel
to achieve exponential filter stability and the measurement kernel to not interfere.

Remark 3.10. In some cases we are interested in almost sure statements about the path
wise convergence of the filter. Similar to [11, Theorem 2, Part 2], filter stability in a path-
wise sense follows from exponential stability in expectation via Markov inequality and
Borel Cantelli Lemma. Thus if the filter process is exponentially stable with coefficient
α < 1, for any ρ < 1

α we also have ρk‖πµn − πνn‖TV → 0 Pµ a.s.

4 Controlled case

Many applications of filtering involve controlled dynamics, where very few results
on filter stability have been reported. In the controlled environment considered, the
measurement channel Q is unchanged, however the transition kernel T (dx′|x, u) is
different for each applied control action u. In a controlled process, we must modify the
definition of the filter to be conditioned on both past measurements and control actions,
that is πµn(·) = Pµ(Xn ∈ ·|Y[0,n], U[0,n−1]). With knowledge of the past control actions
taken, the filter is still recursive in the following fashion:

πµn+1(dx) = φ(πµn, un, yn+1) =
g(x, yn+1)

∫
X T (dx|x′, un)πµn(dx′)∫

X g(x, yn+1)
∫
X T (dx|x′, un)πµn(dx′)

in the update the only difference is T (dx|x′, un) now depends on the past control action.
If we define δ̃(T ) = infu∈U δ(T (·|·, u)) then the result for a controlled model follows

immediately from the proof of Theorem 3.6.

Theorem 4.1. Assume µ� ν and that the measurement channel Q is dominated. If we
have α = (1− δ̃(T ))(2− δ(Q)) < 1 then the filter is exponentially stable with coefficient
α for any control policy.

Therefore, in order to guarantee exponential stability in a control environment we
first check the expansion coefficient of the Bayesian update operator (2− δ(Q)). Then,
we find the Dobrushin coefficient of T (·|·, u) for every different control action u. If under
each control action T (·|·, u) has a high enough Dobrushin coefficient, then for every
control action the filter update operator is a contraction in total variation in expectation.

It is important to emphasize that it then does not matter what control policy is
implemented, since each control action results in a transition kernel with a sufficiently
high Dobrushin coefficient, and thus we have uniform exponential stability over all
control policies.

5 An application

Consider a system where X = Y = R and the transition and measurement kernels
are defined by the functions

xn+1 = f(xn) +N(0, σ2
t ) yn = g(xn) +N(0, σ2

q )

that is an additive Gaussian system, but not necessarily a linear one. Assume the
functions f and g are measurable and bounded with norms f(x) ∈ [−t, t] and g(x) ∈ [−q, q].
We then have that

T (dxn+1|xn) ∼ N(f(xn), σ2
t ) Q(dyn|xn) ∼ N(f(xn), σ2

q )
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This is not a mixing system in the sense of the conditions required to be able to invoke
Hilbert metric based methods (see Definition 2.1), hence the previous results in the
literature would not apply. Furthermore, f and g are not necessarily well behaved
Lipschitz and invertible functions, hence the results of [7] do not apply either. For these
kernels we have that

δ(T ) = 2P (N(t, σ2
t ) < 0) δ(T ) = 2P (N(q, σ2

q ) < 0)

and this probability is fully determined by the ratio of the mean and standard deviation
of the Gaussian in question, σtt , and σq

q . The higher the ratio, the higher the Dobrushin
coefficient. In Table 1 we see a list of the ratio of the transition kernel and lowest possible
ratio of the measurement kernel such that (1− δ(T ))(2− δ(Q)) < 1. If the ratio of σq

q is
higher than the stated value, we will get exponential stability for the given transition
kernel. If σt

t > 1.5 then δ(T ) > 1
2 and we have exponential stability regardless of Q.

Table 1: Approximate minimum ratio of σq
q in order to achieve a contraction for low

values of the transition kernel ratio.
σt
t

1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3
σq
q

N/A 0.6 0.8 1.01 1.3 1.65 2.13 3.25 5.5 8.0 20.0 70.0 1000.0

δ(T ) 0.50 0.48 0.44 0.40 0.36 0.32 0.27 0.21 0.15 0.10 0.05 0.01 0.00

δ(Q) N/A 0.10 0.21 0.32 0.44 0.54 0.64 0.76 0.86 0.90 0.96 0.99 1.00

6 Conclusion

In this paper, we propose an alternative approach for exponential stability, where
our approach builds on utilizing the Dobrushin’s ergodic coefficients associated with
both the transition kernel as well as the measurement channel. Such a joint study seems
to have been unexplored in the literature, and leads to a concise analysis and simple
explicit conditions on filter stability which can be applied to more general system models,
including controlled stochastic models.
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