Translator Disclaimer
2020 A quantitative McDiarmid’s inequality for geometrically ergodic Markov chains
Antoine Havet, Matthieu Lerasle, Eric Moulines, Elodie Vernet
Electron. Commun. Probab. 25: 1-11 (2020). DOI: 10.1214/20-ECP286

Abstract

We state and prove a quantitative version of the bounded difference inequality for geometrically ergodic Markov chains. Our proof uses the same martingale decomposition as [2] but, compared to this paper, the exact coupling argument is modified to fill a gap between the strongly aperiodic case and the general aperiodic case.

Citation

Download Citation

Antoine Havet. Matthieu Lerasle. Eric Moulines. Elodie Vernet. "A quantitative McDiarmid’s inequality for geometrically ergodic Markov chains." Electron. Commun. Probab. 25 1 - 11, 2020. https://doi.org/10.1214/20-ECP286

Information

Received: 5 July 2019; Accepted: 7 January 2020; Published: 2020
First available in Project Euclid: 10 February 2020

zbMATH: 1434.60174
MathSciNet: MR4069735
Digital Object Identifier: 10.1214/20-ECP286

Subjects:
Primary: 60E15, 60J05

JOURNAL ARTICLE
11 PAGES


SHARE
Back to Top