Translator Disclaimer
2014 Recurrence for vertex-reinforced random walks on $\mathbb{Z}$ with weak reinforcements.
Arvind Singh
Author Affiliations +
Electron. Commun. Probab. 19: 1-6 (2014). DOI: 10.1214/ECP.v19-3242

Abstract

We prove that any vertex-reinforced random walk on the integer lattice with non-decreasing reinforcement sequence $w$ satisfying $w(k) = o(k^{\alpha})$ for some $\alpha <1/2$ is recurrent. This improves on previous results of Volkov (2006) and Schapira (2012).

Citation

Download Citation

Arvind Singh. "Recurrence for vertex-reinforced random walks on $\mathbb{Z}$ with weak reinforcements.." Electron. Commun. Probab. 19 1 - 6, 2014. https://doi.org/10.1214/ECP.v19-3242

Information

Accepted: 3 March 2014; Published: 2014
First available in Project Euclid: 7 June 2016

zbMATH: 1317.60054
MathSciNet: MR3174832
Digital Object Identifier: 10.1214/ECP.v19-3242

Subjects:
Primary: 60K35

JOURNAL ARTICLE
6 PAGES


SHARE
Back to Top