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Abstract

We provide a new perspective on Stein’s so-called density approach by introducing
a new operator and characterizing class which are valid for a much wider family
of probability distributions on the real line. We prove an elementary factorization
property of this operator and propose a new Stein identity which we use to derive
information inequalities in terms of what we call the generalized Fisher information
distance. We provide explicit bounds on the constants appearing in these inequalities
for several important cases. We conclude with a comparison between our results and
known results in the Gaussian case, hereby improving on several known inequalities
from the literature.
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1 Introduction

Charles Stein’s crafty exploitation of the characterization

X ∼ N (0, 1)⇐⇒ E [f ′(X)−Xf(X)] = 0 for all bounded f ∈ C1(R) (1.1)

has given birth to a “method” which is now an acclaimed tool both in applied and in
theoretical probability. The secret of the “method” lies in the structure of the operator
Tφf(x) := f ′(x) − xf(x) and in the flexibility in the choice of test functions f . For the
origins we refer the reader to [40, 38, 37]; for an overview of the more recent achieve-
ments in this field we refer to the monographs [28, 3, 4, 12] or the review articles
[27, 31].

Among the many ramifications and extensions that the method has known, so far
the connection with information theory has gone relatively unexplored. Indeed while
it has long been known that Stein identities such as (1.1) are related to information
theoretic tools and concepts (see, e.g., [20, 22, 14]), to the best of our knowledge the
only references to explore this connection upfront are [5] in the context of compound
Poisson approximation, and more recently [32, 33] for Poisson and Bernoulli approxima-
tion. In this paper and the companion paper [23] we extend Stein’s characterization of
the Gaussian (1.1) to a broad class of univariate distributions and, in doing so, provide
an adequate framework in which the connection with information distances becomes
transparent.
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Stein’s density approach and information inequalities

The structure of the present paper is as follows. In Section 2 we provide the new
perspective on the density approach from [39] which allows to extend this construction
to virtually any absolutely continuous probability distribution on the real line. In Section
3 we exploit the structure of our new operator to derive a family of Stein identities
through which the connection with information distances becomes evident. In Section
4 we compute bounds on the constants appearing in our inequalities; our method of
proof is, to the best of our knowledge, original. Finally in Section 5 we discuss specific
examples.

2 The density approach

Let G be the collection of positive real functions x 7→ p(x) such that (i) their support
Sp := {x ∈ R : p(x) (exists and) is positive} is an interval with closure S̄p = [a, b], for
some −∞ ≤ a < b ≤ ∞, (ii) they are differentiable (in the usual sense) at every point
in (a, b) with derivative x 7→ p′(x) := d

dyp(y)|y=x and (iii)
∫
Sp
p(y)dy = 1. Obviously, each

p ∈ G is the density (with respect to the Lebesgue measure) of an absolutely continuous
random variable. Throughout we adopt the convention

1

p(x)
=

{ 1
p(x) if x ∈ Sp
0 otherwise;

this implies, in particular, that p(x)/p(x) = ISp(x), the indicator function of the support
Sp. As final notation, for p ∈ G we write Ep[l(X)] :=

∫
Sp
l(x)p(x)dx.

With this setup in hand we are ready to provide the two main definitions of this
paper (namely, a class of functions and an operator) and to state and prove our first
main result (namely, a characterization).

Definition 2.1. To p ∈ G we associate (i) the collection F(p) of functions f : R→ R such
that the mapping x 7→ f(x)p(x) is differentiable on the interior of Sp and f(a+)p(a+) =

f(b−)p(b−) = 0, and (ii) the operator Tp : F(p)→ R? : f 7→ Tpf defined through

Tpf : R→ R : x 7→ Tpf(x) :=
1

p(x)

d

dy
(f(y)p(y))

∣∣∣∣
y=x

. (2.1)

We call F(p) the class of test functions associated with p, and Tp the Stein operator
associated with p.

Theorem 2.2. Let p, q ∈ G and let Q(b) =
∫ b
a
q(u)du. Then

∫ +∞
−∞ Tpf(y)q(y)dy = 0 for all

f ∈ F(p) if, and only if, q(x) = p(x)Q(b) for all x ∈ Sp.

Proof. If Q(b) = 0 the statement holds trivially. We now take Q(b) > 0. To see the
sufficiency, note that the hypotheses on f , p and q guarantee that∫ ∞

−∞
Tpf(y)q(y)dy = Q(b)

∫ b

a

d

du
(f(u)p(u))|u=ydy

= Q(b)
(
f(b−)p(b−)− f(a+)p(a+)

)
= 0.

To see the necessity, first note that the condition
∫
R
Tpf(y)q(y)dy = 0 implies that the

function y 7→ Tpf(y)q(y) be Lebesgue-integrable. Next define for z ∈ R the function

lz(u) := (I(a,z](u)− P (z))ISp(u)

with P (z) :=
∫ z
a
p(u)du, which satisfies∫ b

a

lz(u)p(u)du = 0.
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Stein’s density approach and information inequalities

Then the function

fpz (x) :=
1

p(x)

∫ x

a

lz(u)p(u)du

(
= − 1

p(x)

∫ b

x

lz(u)p(u)du

)

belongs to F(p) for all z and satisfies the equation

Tpfpz (x) = lz(x)

for all x ∈ Sp. For this choice of test function we then obtain∫ +∞

−∞
Tpfpz (y)q(y)dy =

∫ +∞

−∞
lz(y)q(y)dy = (Q(z)− P (z)Q(b))ISp(z),

with Q(z) :=
∫ z
a
q(u)du. Since this integral equals zero by hypothesis, it follows that

Q(z) = P (z)Q(b) for all z ∈ Sp, hence the claim holds.

The above is, in a sense, nothing more than a peculiar statement of what is often
referred to as a “Stein characterization”. Within the more conventional framework of
real random variables having absolutely continuous densities, Theorem 2.2 reads as
follows.

Corollary 2.3 (The density approach). Let X be an absolutely continuous random vari-
able with density p ∈ G. Let Y be another absolutely continuous random variable. Then
E [Tpf(Y )] = 0 for all f ∈ F(p) if, and only if, either P(Y ∈ Sp) = 0 or P(Y ∈ Sp) > 0 and

P (Y ≤ z |Y ∈ Sp) = P(X ≤ z)

for all z ∈ Sp.

Corollary 2.3 extends the density approach from [39] or [11, 12] to a much wider
class of distributions; it also contains the Stein characterizations for the Pearson given
in [34] and the more recent general characterizations studied in [15, 18]. There is, how-
ever, a significant shift operated between our “derivative of a product” operator (2.1)
and the standard way of writing these operators in the literature. Indeed, while one can
always distribute the derivative in (2.1) to obtain (at least formally) the expansion

Tpf(x) =

(
f ′(x) +

p′(x)

p(x)
f(x)

)
ISp(x), (2.2)

the latter requires f be differentiable on Sp in order to make sense. We do not require
this, neither do we require that each summand in (2.2) be well-defined on Sp nor do we
need to impose integrability conditions on f for Theorem 2.2 (and thus Corollary 2.3) to
hold! Rather, our definition of F(p) allows to identify a collection of minimal conditions
on the class of test functions f for the resulting operator Tp to be orthogonal to p w.r.t.
the Lebesgue measure, and thus characterize p.

Example 2.4. Take p = φ, the standard Gaussian. Then F(φ) is composed of all
real-valued functions f such that (i) x 7→ f(x)e−x

2/2 is differentiable on R and (ii)
limx→±∞ f(x)e−x

2/2 = 0. In particular F(φ) contains the collection of all differentiable
bounded functions and

Tφf(x) = f ′(x)− xf(x),

which is Stein’s well-known operator for characterizing the Gaussian (see, e.g., [37, 3,
12]). There are of course many other subclasses that can be of interest. For example
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the class F(φ) also contains the collection of functions f(x) = −f ′0(x) with f0 a twice
differentiable bounded function; for these we get

Tφf(x) = xf ′0(x)− f ′′0 (x),

the generator of an Ornstein-Uhlenbeck process, see [2, 19, 28]. The class F(φ) as
well contains the collection of functions of the form f(x) = Hn(x)f0(x) for Hn the n-th
Hermite polynomial and f0 any differentiable and bounded function. For these f we get

Tφf(x) = Hn(x)f ′0(x)−Hn+1(x)f0(x),

an operator already discussed in [17] (equation (38)).

Example 2.5. Take p = Exp the standard rate-one exponential distribution. Then
F(Exp) is composed of all real-valued functions f such that (i) x 7→ f(x)e−x is differ-
entiable on (0,+∞), (ii) f(0) = 0 and (iii) limx→+∞ f(x)e−x = 0. In particular F(Exp)

contains the collection of all differentiable bounded functions such that f(0) = 0 and

TExpf(x) = (f ′(x)− f(x)) I[0,∞)(x),

the operator usually associated to the exponential, see [25, 29, 39]. The class F(Exp)

also contains the collection of functions of the form f(x) = xf0(x) for f0 any differen-
tiable bounded function. For these f we get

TExpf(x) = (xf ′0(x) + (1− x)f0(x)) I[0,∞)(x),

an operator put to use in [10].

Example 2.6. Finally take p = Beta(α, β) the beta distribution with parameters (α, β) ∈
R+

0 × R
+
0 . Then F(Beta(α, β)) is composed of all real-valued functions f such that (i)

x 7→ f(x)xα−1(1−x)β−1 is differentiable on (0, 1), (ii) limx→0 f(x)xα−1(1−x)β−1 = 0 and
(iii) limx→1 f(x)xα−1(1−x)β−1 = 0. In particular F(Beta(α, β)) contains the collection of
functions of the form f(x) = (x(1−x))f0(x) with f0 any differentiable bounded function.
For these f we get

TBeta(α,β)f(x) = ((α(1− x)− βx) f0(x) + x(1− x)f ′0(x)) I[0,1](x),

an operator recently put to use in, e.g., [18, 15].

There are obviously many more distributions that can be tackled as in the previ-
ous examples (including the Pearson case from [34]), which we leave to the interested
reader.

3 Stein-type identities and the generalized Fisher information
distance

It has long been known that, in certain favorable circumstances, the properties of
the Fisher information or of the Shannon entropy can be used quite effectively to prove
information theoretic central limit theorems; the early references in this vein are [35,
7, 6, 24]. Convergence in information CLTs is generally studied in terms of information
(pseudo-)distances such as the Kullback-Leibler divergence between two densities p

and q, defined as

dKL(p||q) = Eq

[
log

(
q(X)

p(X)

)]
, (3.1)
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or the Fisher information distance

J (φ, q) = Eq

[(
X +

q′(X)

q(X)

)2
]

(3.2)

which measures deviation between any density q and the standard Gaussian φ. Though
they allow for extremely elegant proofs, convergence in the sense of (3.1) or (3.2) re-
sults in very strong statements. Indeed both (3.1) and (3.2) are known to dominate more
“traditional” probability metrics. More precisely we have, on the one hand, Pinsker’s
inequality

dTV(p, q) ≤ 1√
2

√
dKL(p||q), (3.3)

for dTV(p, q) the total variation distance between the laws p and q (see, e.g., [16, p.
429]), and, on the other hand,

dL1(φ, q) ≤
√

2
√
J (φ, q) (3.4)

for dL1(φ, q) the L1 distance between the laws φ and q (see [21, Lemma 1.6]). These
information inequalities show that convergence in the sense of (3.1) or (3.2) implies
convergence in total variation or in L1, for example. Note that one can further use
De Brujn’s identity on (3.3) to deduce that convergence in Fisher information is itself
stronger than convergence in relative entropy.

While Pinsker’s inequality (3.3) is valid irrespective of the choice of p and q (and
enjoys an extension to discrete random variables), both (3.2) and (3.4) are reserved for
Gaussian convergence. Now there exist extensions of the distance (3.2) to non-Gaussian
distributions (see [5] for the discrete case) which, as could be expected, have also been
shown to dominate the more traditional probability metrics. There is, however, no
general counterpart of Pinsker’s inequality for the Fisher information distance (3.2); at
least there exists, to the best of our knowledge, no inequality in the literature which
extends (3.4) to a general couple of densities p and q.

In this section we use the density approach outlined in Section 2 to construct Stein-
type identities which provide the required extension of (3.4). More precisely, we will
show that a wide family of probability metrics (including the Kolmogorov, the Wasser-
stein and the L1 distances) is dominated by the quantity

J (p, q) := Eq

[(
p′(X)

p(X)
− q′(X)

q(X)

)2
]
. (3.5)

Our bounds, moreover, contain an explicit constant which will be shown in Section 4
to be at worst as good as the best bounds in all known instances. In the spirit of [5]
we call (3.5) the generalized Fisher information distance between the densities p and q,
although here we slightly abuse of language since (3.5) rather defines a pseudo-distance
than a bona fide metric between probability density functions.

We start with an elementary statement which relates, for p 6= q, the Stein operators
Tp and Tq through the difference of their respective score functions p′

p and q′

q .

Lemma 3.1. Let p and q be probability density functions in G with respective supports
Sp and Sq. Let Sq ⊆ Sp and define

r(p, q)(x) :=

(
p′(x)

p(x)
− q′(x)

q(x)

)
ISp(x).

Suppose that F(p) ∩ F(q) 6= ∅. Then, for all f ∈ F(p) ∩ F(q), we have

Tpf(x) = Tqf(x) + f(x)r(p, q)(x) + Tpf(x)ISp\Sq (x),
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and therefore
Eq [Tpf(X)] = Eq [f(X)r(p, q)(X)] . (3.6)

Proof. Splitting Sp into Sq ∪ {Sp \ Sq}, we have

f(y)p(y) = f(y)q(y)p(y)/q(y)ISq (y) + f(y)p(y)ISp\Sq (y)

for any real-valued function f . At any x in the interior of Sp we thus can write

Tpf(x)

=

d
dy (f(y)q(y)p(y)/q(y))

∣∣∣
y=x

p(x)
ISq (x) + Tpf(x)ISp\Sq (x)

=

d
dy (f(y)q(y))

∣∣∣
y=x

p(x)

p(x)

q(x)
+ f(x)q(x)

d
dy (p(y)/q(y))

∣∣∣
y=x

p(x)
+ Tpf(x)ISp\Sq (x)

= Tqf(x) + f(x)
q(x)

p(x)

d

dy
(p(y)/q(y))

∣∣∣∣
y=x

+ Tpf(x)ISp\Sq (x).

The first claim readily follows by simplification, the second by taking expectations
under q which cancels the first term Tqf(x) (by definition) as well as the third term
Tpf(x)ISp\Sq (x) (since the supports do not coincide).

Remark 3.2. Our proof of Lemma 3.1 may seem circumvoluted; indeed a much eas-
ier proof is obtainable by writing Tp under the form (2.2). We nevertheless stick to
the “derivative of a product” structure of our operator because this dispenses us with
superfluous – and, in some cases, unwanted – differentiability conditions on the test
functions.

From identity (3.6) we deduce the following immediate result, which requires no
proof.

Lemma 3.3. Let p and q be probability density functions in G with respective supports
Sq ⊆ Sp. Let l be a real-valued function such that Ep[l(X)] and Eq[l(X)] exist; also
suppose that there exists f ∈ F(p) ∩ F(q) such that

Tpf(x) = (l(x)− Ep[l(X)])ISp(x); (3.7)

we denote this function fpl . Then

Eq[l(X)]− Ep[l(X)] = Eq[f
p
l (X)r(p, q)(X)]. (3.8)

The identity (3.8) belongs to the family of so-called “Stein-type identities” discussed
for instance in [17, 8, 1]. In order to be of use, such identities need to be valid over a
large class of test functions l. Now it is immediate to write out the solution fpl of the
so-called “Stein equation” (3.7) explicitly for any given p and l; it is therefore relatively
simple to identify under which conditions on l and q the requirement fpl ∈ F(q) is
verified (since fpl ∈ F(p) is anyway true).

Remark 3.4. For instance, for p = φ the standard Gaussian, one easily sees that
limx→±∞ fφl (x) = 0, hence, when Sq = Sφ = R, q only has to be (differentiable and)

bounded for fφl to belong to F(q). However, when Sq ⊂ R, then q has to satisfy, more-

over, the stronger condition of vanishing at the endpoints of its support Sq since fφl
needs not equal zero on any finite points in R.
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We shall see in the next section that the required conditions for fpl ∈ F(q) are sat-
isfied in many important cases by wide classes of functions l. The resulting flexibility
makes (3.8) a surprisingly powerful identity, as can be seen from our next result.

Theorem 3.5. Let p and q be probability density functions in G with respective supports
Sq ⊆ Sp and such that F(p) ∩ F(q) 6= ∅. Let

dH(p, q) = sup
l∈H
|Eq[l(X)]− Ep[l(X)]| (3.9)

for some class of functions H. Suppose that for all l ∈ H the function fpl , as defined in
(3.7), exists and satisfies fpl ∈ F(p) ∩ F(q). Then

dH(p, q) ≤ κpH
√
J (p, q), (3.10)

where

κpH = sup
l∈H

√
Eq[(f

p
l (X))2] (3.11)

and
J (p, q) = Eq[(r(p, q)(X))2], (3.12)

the generalized Fisher information distance between the densities p and q.

This theorem implies that all probability metrics that can be written in the form (3.9)
are bounded by the generalized Fisher information distance J (p, q) (which, of course,
can be infinite for certain choices of p and q). Equation (3.10) thus represents the
announced extension of (3.4) to any couple of densities (p, q) and hence constitutes, in
a sense, a counterpart to Pinsker’s inequality (3.3) for the Fisher information distance.
We will see in Section 5 how this inequality reads for specific choices of H, p and q.

4 Bounding the constants

The constants κpH in (3.11) depend on both densities p and q and therefore, to be fair,
should be denoted κp,qH . Our notation is nevertheless justified because we always have

κpH ≤ sup
l∈H
‖fpl ‖∞, (4.1)

where the latter bounds (sometimes referred to as Stein factors or magic factors) do
not depend on q and have been computed for many choices of H and p. Consequently,
κpH is finite in many known cases – including, of course, that of a Gaussian target.

Example 4.1. Take p = φ, the standard Gaussian. Then, from (4.1), we get the bounds
(i) κpH ≤

√
π/2 for H the collection of Borel functions in [0, 1] (see [28, Theorem 3.3.1]);

(ii) κpH ≤
√

2π/4 for H the class of indicator functions for lower half-lines (see [28,
Theorem 3.4.2]); and (iii) κpH ≤

√
π/2 supl∈Hmin (‖l − Ep [l(X)] ‖∞, 2‖l′‖∞) for H the

class of absolutely continuous functions on R (see [13, Lemma 2.3]). See also [30, 28,
3, 12] for more examples.

Bounds such as (4.1) are sometimes too rough to be satisfactory. We now provide
an alternative bound for κpH which, remarkably, improves upon the best known bounds
even in well-trodden cases such as the Gaussian. We focus on target densities of the
form

p(x) = ce−d|x|
α

IS(x), α ≥ 1, (4.2)

with S a scale-invariant subset ofR (that is, eitherR or the open/closed positive/negative
real half lines), d > 0 some constant and c the appropriate normalizing constant. The
exponential, the Gaussian or the limit distribution for the Ising model on the complete
graph from [11] are all of the form (4.2). Of course, for S = R, (4.2) represents power
exponential densities.
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Theorem 4.2. Take p ∈ G as in (4.2) and q ∈ G such that Sq = S. Consider h : R → R

some Borel function with p-mean Ep [h(X)] = 0. Let fph be the unique bounded solution
of the Stein equation

Tpf(x) = h(x). (4.3)

Then √
Eq

[
(fph(X))

2
]
≤ ||h||∞

2
1
α

. (4.4)

Proof. Under the assumption that Ep[h(X)] = 0, the unique bounded solution of (4.3) is
given by

fph(x) =


1

p(x)

∫ x

−∞
h(y)p(y)dy if x ≤ 0,

−1

p(x)

∫ ∞
x

h(y)p(y)dy if x ≥ 0,

the function being, of course, put to 0 if x is outside the support of p. Then

Eq
[
(fph(X))2

]
=

∫ 0

−∞
q(x)

(
1

p(x)

∫ x

−∞
h(y)p(y)dy

)2

dx

+

∫ ∞
0

q(x)

(
1

p(x)

∫ ∞
x

h(y)p(y)dy

)2

dx

=: I− + I+,

where I− = 0 (resp., I+ = 0) if S̄ = R+ (resp., S̄ = R−).
We first tackle I−. Setting p(x) = ce−d|x|

α

IS(x) and using Jensen’s inequality, we get

I− =

∫ 0

−∞
q(x)

(
ed|x|

α

∫ x

−∞
h(u)e−d|u|

α

du

)2

dx

≤
∫ 0

−∞
q(x)

(
ed|x|

α

∫ x

−∞
|h(u)|e−d|u|

α

du

)2

dx

≤
∫ 0

−∞
q(x)

(
e2d|x|

α

∫ x

−∞
h2(u)e−2d|u|

α

du

)
dx

=
1

21/α

∫ 0

−∞
q(x)

(
e2d|x|

α

∫ 21/αx

−∞
h2(u/21/α)e−d|u|

α

du

)
dx,

where the last equality follows from a simple change of variables. Applying Hölder’s
inequality we obtain

I− ≤ γ
1/2
q

21/α

√√√√∫ 0

−∞
q(x)

(
e2d|x|α

∫ 21/αx

−∞
h2(u/21/α)e−d|u|αdu

)2

dx =: I−1 ,

where γq = Pq(X < 0) :=
∫ 0

−∞ q(x)dx. Repeating the Jensen’s inequality-change of
variables-Hölder’s inequality scheme once more yields

I− ≤ I−1 ≤ I
−
2

with

I−2 =
γ

1
2+

1
4

q

2
1
α (1+ 1

2 )

∫ 0

−∞
q(x)

(
e4d|x|

α

∫ (21/α)2x

−∞
h4
(

u

(21/α)2

)
e−d|u|

α

du

)2

dx

 1
4

.
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Iterating this procedure m ∈ N times we deduce

I− ≤ I−1 ≤ . . . ≤ I−m

with I−m given by

γ
N(m)−1
q

2
1
αN(m)

∫ 0

−∞
q(x)

(
e2
md|x|α

∫ (21/α)mx

−∞
h2

m

(
u

(21/α)m

)
e−d|u|

α

du

)2

dx

 1
2m

,

where N(m) = 1 + 1
2 + 1

4 + . . .+ 1
2m . Bounding h2

m
(

u
(21/α)m

)
by (||h||∞)2

m

simplifies the

above into

(||h||∞)2γ
N(m)−1
q

2
1
αN(m)

∫ 0

−∞
q(x)

(
e2
md|x|α

∫ (21/α)mx

−∞
e−d|u|

α

du

)2

dx

 1
2m

.

Since the mapping y 7→ η(y) := ed|y|
α ∫ y
−∞ e−d|u|

α

du attains its maximal value at 0 for
α ≥ 1 (indeed,

η′(y) = 1− ed|y|
α

dα|y|α−1
∫ y

−∞
e−d|u|

α

du

≥ 1− ed|y|
α

∫ y

−∞
dα|u|α−1e−d|u|

α

du = 0,

hence η is monotone increasing), the interior of the parenthesis becomes∫ 0

−∞
q(x)

(
e2
md|x|α

∫ (21/α)mx

−∞
e−d|u|

α

du

)2

dx ≤
∫ 0

−∞
q(x)

1

c2
dx =

γq
c2
.

Note that here we have used, for any support S,
∫ 0

−∞ ce−d|u|
α

du ≤ 1. Elevated to the
power 1/(2m), this factor tends to 1 as m → ∞. Since we also have limm→∞N(m) = 2

we finally obtain

I− ≤ lim
m→∞

I−m ≤
(||h||∞)2

2
2
α

Pq(X < 0).

Similar manipulations allow to bound I+ by (||h||∞)2

2
2
α

Pq(X > 0). Combining both bounds

then allows us to conclude that√
Eq [(fph(X))2] ≤ ||h||∞

2
1
α

,

hence the claim holds.

This result of course holds true without worrying about fph ∈ F(q). However, in
order to make use of these bounds in the present context, the latter condition has to
be taken care of. For densities of the form (4.2), one easily sees that fph ∈ F(q) for all
(differentiable and) bounded densities q for α > 1, with the additional assumption, for
α = 1, that limx→±∞ q(x) = 0.

Example 4.3. Take p = φ, the standard Gaussian. Then, from (4.4),

κpH ≤
1√
2

sup
l∈H
‖l − Eφ [l(X)] ‖∞. (4.5)

Comparing with the bounds from Example 4.1 we see that (4.5) significantly improves
on the constants in cases (i) and (iii); it is slightly worse in case (ii).
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5 Applications

A wide variety of probability distances can be written under the form (3.9). For
instance the total variation distance is given by

dTV(p, q) = sup
A⊂R

∣∣∣∣∫
A

(p(x)− q(x))dx

∣∣∣∣ =
1

2
sup

h∈HB[−1,1]

|Ep [h(X)]− Eq [h(X)]|

with HB[−1,1] the class of Borel functions in [−1, 1], the Wasserstein distance is given by

dW(p, q) = sup
h∈HLip1

|Ep [h(X)]− Eq [h(X)]|

with HLip1 the class of Lipschitz-1 functions on R and the Kolmogorov distance is given
by

dKol(p, q) = sup
z∈R

∣∣∣∣∫ z

−∞
(p(x)− q(x))dx

∣∣∣∣ = sup
h∈HHL

|Ep [h(X)]− Eq [h(X)]|

with HHL the class of indicators of lower half lines. We refer to [16] for more examples
and for an interesting overview of the relationships between these probability metrics.

Specifying the class H in Theorem 3.5 allows to bound all such probability metrics
in terms of the generalized Fisher information distance (3.12). It remains to compute
the constant (3.11), which can be done for all p of the form (4.2) through (4.4). The
following result illustrates these computations in several important cases.

Corollary 5.1. Take p ∈ G as in (4.2) and q ∈ G such that Sq = S. For α > 1, suppose
that q is (differentiable and) bounded over S; for α = 1, assume moreover that q vanishes
at the infinite endpoint(s) of S. Then we have the following inequalities:

1.
dTV(p, q) ≤ 2−

1
α

√
J (p, q)

2.
dKol(p, q) ≤ 2−

1
α

√
J (p, q)

3.

dW(p, q) ≤
supl∈HLip1

||l − Ep[l(X)]||∞
2

1
α

√
J (p, q)

4.

dL1(p, q) =

∫
S

|p(x)− q(x)|dx ≤ 21−
1
α

√
J (p, q).

If, for all y ∈ S, q is such that the function fpl (x) = ed|x|
α

(I[y,b)(x) − P (x)), where P

denotes the cumulative distribution function associated with p, belongs to F(q), then

dsup(p, q) = sup
x∈R
|p(x)− q(x)| ≤

√
J (p, q).

Proof. The first three points follow immediately from the definition of the distances and
Theorems 3.5 and 4.2. To show the fourth, note that∫

S

|p(x)− q(x)|dx = Ep[l(X)]− Eq[l(X)]

for l(u) = I[p(u)≥q(u)] − I[q(u)≥p(u)] = 2I[p(u)≥q(u)] − 1. For the last case note that

dsup(p, q) := sup
y∈S
|p(y)− q(y)| = sup

y∈S
|Ep[ly(X)− Eq[ly(X)]|

for ly(x) = δ{x=y} the Dirac delta function in y ∈ S. The computation of the constant κpH
in this case requires a different approach from our Theorem 4.2. We defer this to the
Appendix.
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We conclude this section, and the paper, with explicit computations in the Gaussian
case p = φ, hence for the classical Fisher information distance. From here on we adopt
the more standard notations and write J (X) instead of J (φ, q), for X a random variable
with density q (which has support R). Immediate applications of the above yield∫

S

|φ(x)− q(x)| dx ≤
√

2
√
J (X),

which is the second inequality in [21, Lemma 1.6] (obtained by entirely different means).
Similarly we readily deduce

sup
x∈R
|φ(x)− q(x)| ≤

√
J (X);

this is a significant improvement on the constant in [21, 35].

Next further suppose that X has density q with mean µ and variance σ2. Take Z ∼ p
with p = φµ0,σ2

0
, the Gaussian with mean µ0 and variance σ2

0 . Then

J (X) = Eq

[(
q′(X)

q(X)
+
X − µ0

σ2
0

)2
]

= I(X) +
(µ− µ0)2

σ4
0

+
1

σ2
0

(
σ2

σ2
0

− 2

)
,

where I(X) = Eq
[
(q′(X)/q(X))2

]
is the Fisher information of the random variable X.

General bounds are thus also obtainable from (3.10) in terms of

Ψ := Ψ(µ, µ0, σ, σ0) =
(µ− µ0)2

σ4
0

+
1

σ2
0

(
σ2

σ2
0

− 1

)
.

and the quantity

Γ(X) = I(X)− 1

σ2
0

,

referred to as the Cramér-Rao functional for q in [26]. In particular, we deduce from
Theorem 4.2 and the definition of the total variation distance that

dTV(φµ0,σ2
0
, q) ≤ 1√

2

√
Γ(X) + Ψ.

This is an improvement (in the constant) on [26, Lemma 3.1], and is also related to [9,
Corollary 1.1]. Similarly, taking H the collection of indicators for lower half lines we
can use (4.1) and the bounds from [13, Lemma 2.2] to deduce

dKol(φµ0,σ2
0
, q) ≤

√
2π

4
σ0
√

Γ(X) + Ψ.

Further specifying q = φµ1,σ2
1

we see that

σ0
√

Γ(X) + Ψ ≤
∣∣σ2

1 − σ2
0

∣∣
σ0σ1

+
|µ1 − µ0|

σ0
,

to be compared with [28, Proposition 3.6.1]. Lastly take Z ∼ φ the standard Gaussian

and X
d
= F (Z) for F some monotone increasing function on R such that f = F ′ is

defined everywhere. Then straightforward computations yield

I(X) = E

[(
ψf (Z) + Z

f(Z)

)2
]
,
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with ψf = (log f)′. In particular, if F is a random function of the form F (x) = Y x for
Y > 0 some random variable independent of Z, then simple conditioning shows that the
above becomes

I(X) = E

[
Z2

Y 2

]
= E

[
1

Y 2

]
,

so that

dTV(φ, qX) ≤ 1√
2

√
E

[
1

Y 2

]
− 1 + E(Y 2 − 1)

where qX refers to the density of X
d
= Y Z. This last inequality is to be compared with

[9, Lemma 4.1] and also [36].

A Bounds for the supremum norm

First note that, for ly(x) = δ{x=y}, the solution fply (x) of the Stein equation (3.7) is of
the form

1

p(x)

∫ x

a

(δ{z=y} − p(y))p(z)dz =
p(y)(I[y,b)(x)− P (x))

p(x)
.

For all densities q such that fply (x) ∈ F(q), Theorem 3.5 applies and yields

supy∈S |p(y)− q(y)| ≤ supy∈Sp(y)
√

Eq[(I[y,b)(X)− P (X))2/(p(X))2]
√
J (p, q),

where b is either 0 or +∞. We now prove that

supy∈Sp(y)
√

Eq[(I[y,b)(X)− P (X))2/(p(X))2] ≤ 1

for p(x) = c e−d|x|
α

and any density q satisfying the assumptions of the claim. To this
end note that straightforward manipulations lead to

Eq[
(
I[y,b)(X)− P (X)

)2
/(p(X))2]

=
1

c2

∫ b

a

q(x)e2d|x|
α

(I[y,b)(x)− P (x))2dx

=
1

c2

∫ y

a

q(x)e2d|x|
α

(P (x))2dx+
1

c2

∫ b

y

q(x)e2d|x|
α

(1− P (x))2dx

≤ 1

c2
e2d|y|

α

(P (y))2
∫ y

a

q(x)dx+
1

c2
e2d|y|

α

(1− P (y))2
∫ b

y

q(x)dx

=
1

c2
e2d|y|

α

(P (y))2 +
1

c2
e2d|y|

α

(1− 2P (y))Pq(X ≥ y),

where the inequality is due to the fact that e2d|x|
α

P (x) (resp., e2d|x|
α

(1−P (x))) is mono-
tone increasing (resp., decreasing) on (a, y) (resp., (y, b)); see the proof of Theorem 4.2.
This again directly leads to

Eq[
(
I[y,b)(X)− P (X)

)2
/(p(X))2]

≤ sup
y∈(a,b)

(
ce−d|y|

α

√
1

c2
e2d|y|α((P (y))2 + (1− 2P (y))Pq(X ≥ y)

)

= sup
y∈(a,b)

(√
(P (y))2 + (1− 2P (y))Pq(X ≥ y)

)
.

This last expression is equal to 1.
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