Open Access
Translator Disclaimer
2013 Continuum percolation for Gibbs point processes
Kaspar Stucki
Author Affiliations +
Electron. Commun. Probab. 18: 1-10 (2013). DOI: 10.1214/ECP.v18-2837

Abstract

We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e., they do not percolate a.s. at low activity.

Citation

Download Citation

Kaspar Stucki. "Continuum percolation for Gibbs point processes." Electron. Commun. Probab. 18 1 - 10, 2013. https://doi.org/10.1214/ECP.v18-2837

Information

Accepted: 7 August 2013; Published: 2013
First available in Project Euclid: 7 June 2016

zbMATH: 1323.60132
MathSciNet: MR3091725
Digital Object Identifier: 10.1214/ECP.v18-2837

Subjects:
Primary: 60G55
Secondary: 60K35

JOURNAL ARTICLE
10 PAGES


SHARE
Back to Top