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Abstract

We consider the one-sided exit problem for fractional Brownian motion (FBM), which is equivalent
to the question of the distribution of the lower tail of the maximum of FBM on the unit interval. We
improve the bounds given by Molchan (1999) and shed some light on the relation to the quantity
I studied there.

1 Introduction

This paper is concerned with the so-called one-sided exit problem for stochastic processes: If
(X (t))t≥0 is a real-valued stochastic process, we want to find the asymptotic rate of the following
probability:

F(T ) := P

�

sup
0≤t≤T

X (t)≤ 1

�

, when T →∞. (1)

This problem arises in a number of contexts, the most important of which is the relation to Burgers
equation with random initial data (see e.g. [2, 8]). Further applications concern pursuit problems,
relations to random polynomials, and random polymer models. We refer to [4] for more back-
ground information and links to further literature.
In the context of Gaussian process, there seem to be very few results concerning the asymptotic
rate of (1). The precise rate is known only for Brownian motion and integrated Brownian motion
and very few very particular Gaussian processes.
The aim of this paper is to study the rate in (1) for fractional Brownian motion. Fractional Brow-
nian motion (FBM) X is a centered Gaussian process with covariance

EX (t)X (s) =
1

2

�

|t|2H + |s|2H − |t − s|2H
�

, t, s ∈R,
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where 0 < H < 1 is the so-called Hurst parameter. It is well-known that FBM is self-similar with
index H and has stationary increments.
The question of the exit probability (1) for FBM has been investigated by Sinăı [10] and Molchan
([5, 6, 7]). The most precise result concerning the asymptotics in (1) for fractional Brownian
motion, [5], states that

T−(1−H) e−k
p

log T ≤ P
�

sup
0≤t≤T

X (t)≤ 1

�

≤ T−(1−H) e+k
p

log T , (2)

for some positive constant k and T large enough.
In the physics literature, this result is used in the sense of ≈ T−(1−H), disregarding the loss factors

e±k
p

log T . We stress that already proving (2) is highly non-trivial and that presently there is no
approach to obtain the precise order of this probability. We mention that, beyond the classical
results for such particular processes as Brownian motion or integrated Brownian motion, there is
no theory to obtain even the polynomial term. Due to this lack of theory, even for simple-looking
estimates rather involved calculations are needed, see e.g. (11) below.
In this paper, we give the following improvement of (2).

Theorem 1. There is a constant c = c(H)> 0 such that, for large enough T, we have

T−(1−H) (log T )−c ≤ P
�

sup
0≤t≤T

X (t)≤ 1

�

≤ T−(1−H) (log T )+c .

Before giving the proofs of the lower and upper bound in Sections 2 and 3, respectively, we will
give some comments.
Molchan [5] related the problem of finding the asymptotics of F to the quantity

I(T ) := E







 

∫ T

0

eX (u)du

!−1





; (3)

and he is even able to determine the strong asymptotic rate of I . However, when passing over

from I to F , the slowly varying terms e±k
p

log T appear. This is essentially due to a change of
measure argument: if g is a function in the reproducing kernel Hilbert space of X then the asymp-

totic rates for the exit problems of X + g and X , respectively, differ at most by e±k
p

log T , cf. [1],
Proposition 1.6.
A main goal of this paper is to shed more light on the relation between I and F . Heuristically, it
is clear that those paths of X that remain below 1 until T will drift to −∞ rather rapidly and thus
give a major contribution to I . Vice versa, those paths that do not remain below 1 until T will tend
to be near or above zero for a positive fraction of time and thus do not give much contribution to
I .
Our proofs will make an effort to understand this relation – beyond a heuristic level. The proof
of the lower bound in Theorem 1 is based on seeing I(T ) as an exponential integral. The proof
of the upper bound in Theorem 1 selects some paths in the expectation in (3) that give a relevant
contribution.
The constant c appearing in the theorem can be specified. For the lower bound one can choose
any c > 1/(2H), for the upper bound any c > 2/H − 1. However, we do not conjecture optimality
of either of the constants. In fact, our proofs make it plausible that even F(T )≈ T−(1−H).
Due to the self-similarity of fractional Brownian motion, our main result immediately translates
into a result for the lower tail of the maximum of fractional Brownian motion.
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Corollary 2. There is a constant c = c(H)> 0 such that, for small enough ε, we have

ε(1−H)/H | logε|−c ≤ P
�

X ∗1 ≤ ε
�

≤ ε(1−H)/H | logε|+c ,

where X ∗1 := sup0≤t≤1 X (t).

2 Lower bound

Before proving the lower bound in Theorem 1, we explain the main line of thought. It shows
that the quantity I is indeed a natural object in the study of one-sided exit probabilities (1), even
beyond FBM.
In the following, we use X ∗1 := supu∈[0,1] X (u) and u∗ a point in [0, 1] where X (u∗) = X ∗1.
The self-similarity of X implies that

I(T ) = E







 

∫ 1

0

eX (Tu)Tdu

!−1






= E







 

∫ 1

0

eT H X (u)Tdu

!−1






= E







 

∫ 1

0

e−T H (X (u∗)−X (u))Tdu

!−1

e−T H X ∗1






.

The path of the process X is Hölder continuous with Hölder exponent γ, for any γ < H. It is not
Hölder continuous with exponent H. However, suppose for a moment that |X (t)−X (s)| ∼ S|t−s|H
for |t − s| → 0. Then the above term behaves asymptotically as

I(T ) ≈ E







 

∫ u∗+ε

u∗−ε
e−T H S|u∗−u|H Tdu

!−1

e−T H X ∗1







≈ E





�
∫ ∞

−∞
e−S|x |H dx

�−1

e−T H X ∗1





=

�
∫ ∞

−∞
e−S|x |H dx

�−1

E
h

e−T H X ∗1
i

= cE
h

e−T H X ∗1
i

.

Now, via Tauberian theorems, the behaviour of latter quantity as T →∞ is related to the one-sided
exit problem P

�

X ∗1 ≤ ε
�

as ε → 0. Finally, the self-similarity of X brings us back to our original
problem.
Of course, fractional Brownian motion does not satisfy |X (t)− X (s)| ∼ S|t− s|H , so that the above
calculations are just heuristics. However, the idea can be turned into a formally correct proof of
the lower bound for F .

Proof of the lower bound in Theorem 1. Step 1: The crucial inequality.
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Let H/2 < γ < H. Fix a such that a > 2/H > 1/γ and γ < H − 1/a. Due to the stationarity of
increments, it is clear that fractional Brownian motion satisfies

(E|X (t)− X (s)|a)1/a = C(a)|t − s|H , t, s ≥ 0.

A close analysis of the constant C(a) shows that C(a)≤ ca1/2, as a→∞. Therefore, we have

E|X (t)− X (s)|a ≤ caasa|t − s|1+aH−1, t, s ∈ [0, 1], (4)

where s := 1/2 (for readability), c > 0, and aH − 1> 0.
By the well-known Kolmogorov theorem, this implies that X has Hölder continuous paths of order
γ. An extension of Kolmogorov’s theorem (see [9], Lemma 2.1) implies even more: namely, an
estimate for the modulus of Hölder continuity. Concretely, from (4) we can infer that, for any
0< ε ≤ 1,

|X (t)− X (s)| ≤ Sεγ, for all t, s ∈ [0,1] with |t − s| ≤ ε,

where S is a random variable with

ESa ≤
2a

(1− 2−γ)a
(cas)a

2(aH−1)−aγ − 1
≤

2a

(1− 2−H/2)a
(cas)a

2(aH−1)−aγ − 1
=

(das)a

2(aH−1)−aγ − 1
.

Let us now mimic the heuristics presented before the proof: For 0< ε ≤ 1,

I(T ) = E







 

∫ 1

0

e−T H (X ∗1−X (u))Tdu

!−1

e−T H X ∗1







≤ E







 

∫ (u∗+ε)∧1

(u∗−ε)∨0

e−T H (X (u∗)−X (u))Tdu

!−1

e−T H X ∗1







≤ E







 

∫ (u∗+ε)∧1

(u∗−ε)∨0

e−T H SεγTdu

!−1

e−T H X ∗1







= E
h

ε−1eT H SεγT−1e−T H X ∗1
i

.

Setting ε := (T HS)−1/γ ∧ 1 yields T HSεγ ≤ 1 and ε−1 ≤ (T HS)1/γ + 1. Thus,

I(T ) ≤ E
h

(T H/γS1/γ + 1)e1e−T H X ∗1
i

T−1

= e
�

E
h

T H/γS1/γe−T H X ∗1
i

+E
h

e−T H X ∗1
i�

T−1.

For simplicity, we set g(T ) := E
�

e−T H X ∗1
�

. Now we use Hölder’s inequality (1/p + 1/q = 1,
p, q > 1) in the first term to get

I(T )
e
≤ E

�

Sp/γ
�1/p

E
h

e−qT H X ∗1
i1/q

T−1+H/γ + T−1 g(T ).

Setting p/γ := a and using the estimate for the a-th moment of S (and q ≥ 1) we obtain:

I(T )
e
≤
�

(das)a

2(aH−1)−aγ − 1

�1/(aγ)

E
h

e−T H X ∗1
i1/q

T−1+H/γ + T−1 g(T ).



396 Electronic Communications in Probability

We rewrite this as follows:

k I(T )≤
as/γ

(2a(H−γ)−1 − 1)1/(aγ)
g(T )1−1/(aγ)T−1+H/γ + T−1 g(T ). (5)

Here k is some constant depending only on H; and this inequality holds for all T > 0, γ < H,
a > 2/H, and γ < H − 1/a.
Step 2: We use Molchan’s result for I(T ) to conclude.
Fix 0< δ < 1. We choose

a := log T · (log log T )−δ, γ := H − 2/a. (6)

Then, by (5), for T large enough,

k I(T ) ≤
as/γ

(22−1 − 1)1/(aγ)
g(T )1−1/(aγ)T−1+1+2/(aγ) + T−1 g(T )

= as/γg(T )1−1/(aγ)T 2/(aγ) + T−1 g(T )

≤ 2as/γg(T )1−1/(aγ)T 2/(aγ).

Rewriting the inequality we get

�

k′ I(T )a−s/γT−2/(aγ)
�1/(1−1/(aγ))

≤ g(T ).

We know from Molchan (Statement 1 in [5]) that I(T ) ≥ cT−(1−H) for T large enough. Then the
left-hand side becomes:

exp
�

(1+O(a−1))(log k′′ − (1−H) log T −
s

γ
log a−

2

aγ
log T

�

= exp
�

−(1−H) log T −
s

γ
log log T − o(log log T )

�

= exp
�

−(1−H) log T −
s

H
log log T + o(log log T )

�

= T−(1−H)(log T )−s/H+o(1).

The remainder of the proof is clear due to Tauberian theorems (see [3], Corollary 8.1.7):

T−(1−H)(log T )−s/H+o(1) ≤ g(T )

implies the asymptotic lower bound for F(T ). �

Remark 3. We remark that we have used few properties of fractional Brownian motion. In fact,
only (4) and the self-similarity is used, not even Gaussianity.

3 Upper bound

The main idea of the proof of the upper bound for F is to restrict the expectation in (3) to a set
of paths where the integral can be estimated. This shows from a different perspective that I has a
natural relation to F .
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In the proof we have to distinguish the cases of positively (H ≥ 1/2) and negatively (H < 1/2)
correlated increments. The latter case is more involved but contains the same main idea.
Proof of the upper bound in Theorem 1 for the case H ≥ 1/2. Let κ > 1 and define

φ(t) :=

¨

1 0≤ t < (κ log T )1/H ,

−κ log T (κ log T )1/H ≤ t ≤ T.

Clearly,

I(T ) = E







 

∫ T

0

eX (u) du

!−1






≥ E






1l{∀0≤t≤T :X (t)≤φ(t)} ·

 

∫ T

0

eX (u) du

!−1






≥ P
�

∀0≤ t ≤ T : X (t)≤ φ(t)
�

·

 

∫ T

0

eφ(u) du

!−1

≥ P
�

∀0≤ t ≤ T : X (t)≤ φ(t)
�

· (c log T )−1/H , (7)

for sufficiently large T , since (using κ > 1)
∫ T

0

eφ(u) du=

∫ (κ log T )1/H

0

e1 du+

∫ T

(κ log T )1/H
T−κdu≤ 2e(κ log T )1/H .

By Slepian’s inequality [11] and noting that EX (t)X (s)≥ 0, we have

P
�

∀0≤ t ≤ T : X (t)≤ φ(t)
�

≥ P



 sup
0≤t≤(κ log T )1/H

X (t)≤ 1



 ·P



 sup
(κ log T )1/H≤t≤T

X (t)≤−κ log T



 . (8)

The first factor in (8), by the lower bound in Theorem 1 (which was proved in Section 2), can be
estimated as follows:

P



 sup
0≤t≤(κ log T )1/H

X (t)≤ 1



≥
�

(κ log T )1/H
�−(1−H)+o(1)

. (9)

The second factor in (8) equals

P



 sup
1≤s≤T (κ log T )−1/H

X (s(κ log T )1/H)≤−κ log T





= P



 sup
1≤s≤T (κ log T )−1/H

(κ log T )X (s)≤−κ log T





= P



 sup
1≤s≤T (κ log T )−1/H

X (s)≤−1





≥ P

�

sup
1≤s≤T

X (s)≤−1

�

.
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Let H ≥ 1/2. Then the increments of FBM are positively correlated. Therefore, by Slepian’s lemma
(second step),

P

�

sup
1≤s≤T

X (s)≤−1

�

≥ P

�

sup
1≤s≤T

(X (s)− X (1))≤ 1, X (1)≤−2

�

≥ P

�

sup
1≤s≤T

(X (s)− X (1))≤ 1

�

·P [X (1)≤−2]

= P

�

sup
1≤s≤T

X (s− 1)≤ 1

�

· k.

≥ P

�

sup
0≤s≤T

X (s)≤ 1

�

· k. (10)

Putting these estimates together with Molchan’s result (Statement 1 in [5]) for I(T ) yields the
assertion:

c′T−(1−H) ≥ I(T )≥ P
�

sup
0≤s≤T

X (s)≤ 1

�

· k · (log T )−(1−H)/H+o(1)(c log T )−1/H . �

In the case H < 1/2, the proof is more involved, even though the main idea is the same. We start
with the following purely analytic fact.

Lemma 4. Let `(t) := 2(log log(tee))λ, t ≥ 1, with λ > 0. Let 0 < α ≤ 1. Then there is an
s0 = s0(α)≥ 1 such that, for all t ≥ s ≥ s0,

�

`(t)2 tα − `(t)(tα + 1− (t − 1)α) + 1
�1/α

≥
�

`(t)2 tα − `(t)`(s)(tα + sα − (t − s)α) + `(s)2sα
�1/α

+
�

`(s)2sα − `(s)(sα + 1− (s− 1)α) + 1
�1/α

.

The proof of this elementary lemma is given in the appendix.
We continue with an auxiliary lemma. In view of (10), this lemma highlights the difficulties for
H < 1/2.

Lemma 5. Let 0< H ≤ 1/2. Then there is an s0 = s0(H)≥ 1 and a constant k > 0 such that for any
K ∈R, as T →∞,

P

�

sup
s0≤t≤T

X (t)≤−K

�

≥ P



 sup
0≤t≤kT (log log T )1/(4H)

X (t)≤ 1



 (log T )−o(1). (11)

Proof. Let `(t) := 2(log log(tee))λ with λ := 1/4 and define

Y (t) := `(t)X (t)− X (1), t ≥ 1.

The idea of the proof is that (Y (t))t≥1 and X (1) are positively correlated (unlike (X (t)− X (1))t≥1
and X (1)); but Y (t) is essentially the same as `(t)X (t), at least for large t.
Note that, for t ≥ 1,

EY (t)X (1) = `(t)EX (t)X (1)−EX (1)2

= `(t)
1

2
(t2H + 1− (t − 1)2H)− 1≥ `(t)/2− 1≥ 0. (12)
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Furthermore, define the function f on [1,∞) by

EY (t)2 = `(t)2EX (t)2 − 2`(t)EX (t)X (1) +EX (1)2

= `(t)2 t2H − 2`(t)
1

2
(t2H + 1− (t − 1)2H) + 1

=: f (t)2H . (13)

Then f is increasing since f (t)2H is (as can be seen immediately by differentiating). In fact, for
some constant k > 0,

f (T )≤ k(log log T )1/(4H)T, as T →∞. (14)

The definition of f in (13) is such that

EY (t)2 = EX ( f (t))2, t ≥ 1.

Further, one checks that for some s0 = s0(H)≥ 1,

EY (t)Y (s)≥ EX ( f (t))X ( f (s)), t, s ≥ s0. (15)

Indeed, recall that this is equivalent to

E|Y (t)− Y (s)|2 ≤ E|X ( f (t))− X ( f (s))|2. (16)

Note that for t ≥ s (16) can be rewritten as

`(t)2 t2H − 2`(t)`(s)EX (t)X (s) + `(s)2s2H ≤ | f (t)− f (s)|2H .

However, this is the assertion of Lemma 4 with α= 2H ≤ 1.
Now we are ready for the main argument. We use Slepian’s lemma together with (12) and (15)
in (17) and (18), respectively, to get that

P

�

sup
s0≤t≤T

X (t)≤−K

�

= P
�

∀s0 ≤ t ≤ T : `(t)X (t)≤−`(t)K
�

≥ P

�

sup
s0≤t≤T

Y (t)≤ 1, X (1)≤−`(T )K − 1

�

≥ P

�

sup
s0≤t≤T

Y (t)≤ 1

�

·P [X (1)≤−`(T )K − 1] (17)

≥ P

�

sup
s0≤t≤T

X ( f (t))≤ 1

�

·P
�

X (1)≤−4(log log(Tee))1/4K
�

. (18)

The second term is of order (log T )−o(1). The first term (by (14)) can be estimated from below by

P



 sup
0≤t≤T k(log log T )1/(4H)

X (t)≤ 1



 . �

Now we can prove the upper bound for F also in the case H < 1/2.
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Proof of the upper bound in Theorem 1, case H < 1/2. Let s0 ≥ 1 be the constant from
Lemma 5. As in (7)-(9), we obtain

I(T )≥ P



 sup
(κ log T )1/H≤t≤T

X (t)≤−κ log T



 · (c log T )−(2−H)/H−o(1).

The first factor on the right-hand side equals:

P



 sup
s0≤s≤Ts0(κ log T )−1/H

X (ss−1
0 (κ log T )1/H)≤−κ log T





= P



 sup
s0≤s≤Ts0(κ log T )−1/H

s−1/H
0 (κ log T )X (s)≤−κ log T





= P



 sup
s0≤s≤Ts0(κ log T )−1/H

X (s)≤−s1/H
0





≥ P

�

sup
s0≤s≤T

X (s)≤−s1/H
0

�

.

Using Lemma 5, this shows

I(T )≥ P



 sup
0≤t≤T k(log log T )1/(4H)

X (t)≤ 1



 · (c log T )−(2−H)/H−o(1).

Putting these estimates together with Molchan’s result (Statement 1 in [5]) for I(T ) yields the
assertion. �

Remark 6. Let us comment on why it seems plausible that the lower bound could hold true
without logarithmic loss factors. If we choose

φ̃(t) := 1−κ log+ t :=

¨

1 0≤ t ≤ 1,

1−κ log t 1≤ t ≤ T

instead of φ in the proof, we obtain as in (7):

c T−(1−H) ≥ I(T )≥ P
�

sup
0≤t≤T

(X (t) + κ log+ t)≤ 1

�

· c′, (19)

with some constants c, c′ > 0. In view of [12], it seems plausible that the latter probability
has the same asymptotic rate (in the weak sense, but without additional logarithmic factors) as
P
�

sup0≤t≤T X (t)≤ 1
�

. However, at the moment there seems to be no way of proving this.

Remark 7. Note that starting from (19) or (7), one immediately obtains Molchan’s result (2) by
the application of Proposition 1.6 in [1]. This represents a new and simple proof of the upper
bound in (2) for all 0< H < 1.
We remark that this argument works for any Gaussian process such that the function g(t) =
κ log+ t is bounded from above by some function from the RKHS of the process, cf. Proposition 1.6
in [1].

Acknowledgement: I would like to thank Michael Scheutzow (Berlin) for discussions on this
subject.
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where y := `(t)/`(s)≥ 1, z := t/s ≥ 1, and z ≥ y . In fact, one can show that

(yzα − y + 1)1/α − (y(z− 1)α − y + 1)1/α ≥ 1, ∀z ≥ y ≥ 1. (20)

Indeed, first one verifies that

y(zα − 1) + 1

y((z− 1)α − 1) + 1
≥

zα

(z− 1)α
, ∀z ≥ y ≥ 1, (21)

by observing that the left-hand side is increasing in y (note that the function is of the type y 7→
(ya+ 1)/(y b+ 1) with a ≥ b > 0). Now note that the left-hand side of (20) equals

(y(zα − 1) + 1)1/α
 

1−
�

y((z− 1)α − 1) + 1

y(zα − 1) + 1

�1/α
!

≥ (y(zα − 1) + 1)1/α
�

1−
z− 1

z

�

=
�

y(zα − 1) + 1

zα

�1/α

≥
�

(zα − 1) + 1

zα

�1/α

= 1,

where we used (21) in the first step. This shows (20).
Step 2: We show that there is an s0 = s0(α) such that for all t ≥ s ≥ s0

`(t)1/α(tα − 1)1/α − `(s)1/α(sα − 1)1/α ≥ (`(t)tα − `(t)sα + `(s)sα)1/α − `(s)1/αs.

To see this define the functions

h1(t) := `(t)1/α(tα − 1)1/α, h2(t) := (`(t)tα − `(t)sα + `(s)sα)1/α.

The assertion of Step 2 is that h1(t)− h1(s) ≥ h2(t)− h2(s). Since the functions h1, h2 are contin-
uously differentiable, it is sufficient to show that h′1(t)≥ h′2(t) for t ≥ s ≥ s0.
We calculate:

h′1(t) =
1

α
`(t)1/α−1`′(t)(tα − 1)1/α + `(t)1/α

1

α
(tα − 1)1/α−1αtα−1

and

h′2(t) =
1

α
(`(t)tα − `(t)sα + `(s)sα)1/α−1(`′(t)tα + `(t)αtα−1 − `′(t)sα).

In order to see h′1(t)≥ h′2(t) for t ≥ s ≥ s0 we will show that

`(t)1/α−1`′(t)(tα − 1)1/α ≥ (`(t)tα − `(t)sα + `(s)sα)1/α−1(`′(t)tα − `′(t)2) (22)

and

`(t)1/α(tα − 1)1/α−1αtα−1 ≥ (`(t)tα − `(t)sα + `(s)sα)1/α−1(`(t)αtα−1 − `′(t)(sα − 2)). (23)

Let us first show (22). First we note that it is nothing else but

(tα − 1)1/α ≥ (tα − sα +
`(s)
`(t)

sα)1/α−1(tα − 2)

Note that even
(tα − 1)1/α ≥ (tα + 0)1/α−1(tα − 2)
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holds for all t sufficiently large. This finishes (22).

Now we come to (23). Dividing by `(t)1/α, (23) reads as follows

(tα − 1)1/α−1αtα−1 ≥ (tα − sα(1−
`(s)
`(t)
))1/α−1(αtα−1 −

`′(t)
`(t)

(sα − 2)). (24)

Step 2a: If (log t)2 ≤ (sα − 2)/α then we even have

(tα − 1)1/α−1αtα−1 ≥ (tα − 0)1/α−1(αtα−1 −
`′(t)
`(t)

(sα − 2)),

i.e.

((tα)1/α−1 − (tα − 1)1/α−1)αtα−1(tα)−1/α+1 `(t)
`′(t)

≤ (sα − 2).

This can be seen as follows. Note that the left-hand side of this inequality behaves asymptotically
as c(log t)(log log t). So, for those t with (log t)2 ≤ (sα − 2)/α the inequality holds.

Step 2b: On the other hand, if (log t)2 ≥ (sα − 2)/α then 2 log log t ≥ log((sα − 2)/α) ≥ cα log s.
Thus, `(t)≥ c′α(log s)λ and therefore

q := sα(1−
`(s)
`(t)
)≥ sα(1−

`(s)

c′α(log s)λ
)≥ 1,

for sufficiently large s. This shows that the inequality (24) is also satisfied:

(tα − 1)1/α−1(αtα−1 − 0)≥ (tα − q)1/α−1(αtα−1 −
`′(t)
`(t)

(sα − 2))).

Step 3: We show that there is an s0 = s0(α) such that for all t ≥ s ≥ s0

`(t)1/α(tα − 1)1/α − `(s)1/α(sα − 1)1/α − (`(t)(t − s)α − `(t)sα + `(s)sα)1/α ≥ 0.

This follows directly from Steps 1 and 2:

`(t)1/α(tα − 1)1/α − `(s)1/α(sα − 1)1/α ≥ (`(t)tα − `(t)sα + `(s)sα)1/α − `(s)1/αs

≥ (`(t)(t − s)α − `(t)sα + `(s)sα)1/α.

Step 4: We finally show the assertion. In the following calculation we use in the first, third, and
fourth step that

(x + z)1/α − (y + z)1/α ≥ x1/α − y1/α, ∀x ≥ y ≥ 0, z ≥ 0.
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Then we obtain:
�

`(t)2 tα − `(t)(tα + 1− (t − 1)α) + 1
�1/α

−
�

`(s)2sα − `(s)(sα + 1− (s− 1)α) + 1
�1/α

−
�

`(t)2 tα − `(t)`(s)(tα + sα − (t − s)α) + `(s)2sα
�1/α

≥
�

`(t)2 tα − `(t)
�1/α

−
�

`(s)2sα − `(s)(sα + 1− (s− 1)α) + `(t)(tα − (t − 1)α)
�1/α

−
�

`(t)2 tα − `(t)`(s)(tα + sα − (t − s)α) + `(s)2sα
�1/α

≥
�

`(t)2 tα − `(t)
�1/α

−
�

`(s)2sα − `(s)
�1/α

−
�

`(t)2 tα − `(t)`(s)(tα + sα − (t − s)α) + `(s)2sα
�1/α

≥ (`(t)`(s)tα − `(t))1/α

−
�

`(s)2sα − `(s)
�1/α

−
�

−`(t)`(s)sα + `(t)`(s)(t − s)α + `(s)2sα
�1/α

≥ (`(t)`(s)tα − `(t)`(s))1/α

−
�

`(s)2sα − `(s) + `(t)− `(t)`(s)
�1/α

−
�

−`(t)`(s)sα + `(t)`(s)(t − s)α + `(s)2sα
�1/α

≥ (`(t)`(s)tα − `(t)`(s))1/α

−
�

`(s)2sα − `(s)2
�1/α

−
�

−`(t)`(s)sα + `(t)`(s)(t − s)α + `(s)2sα
�1/α

,

since z := −`(t)(tα − (t − 1)α) + 1 ≥ 0 (first step), `(s)(sα − (s − 1)α)− `(t)(tα − (t − 1)α) ≥ 0
(second step), z := `(t)2 tα − `(t)`(s)tα ≥ 0 (third step), z := `(t)`(s)− `(t) ≥ 0 (fourth step),
and −`(s) + `(t)− `(t)`(s)≤−`(s)2 (fifth step).
Now, the term can be divided by `(s)1/α; and it thus remains to be seen that

`(t)1/α(tα − 1)1/α − `(s)1/α(sα − 1)1/α − (`(t)(t − s)α − `(t)sα + `(s)sα)1/α ≥ 0.

However, this is exactly what was asserted in Step 3. �


