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Abstract
We give new exponential inequalities for the spectral measure of random Wishart matrices. These
results give in particular useful bounds when these matrices have the form M = Y Y T , in the case
where Y is a p×n random matrix with independent enties (weaker conditions are also proposed),
and p and n are large.

1 Introduction

Recent literature has focused much interest on Wishart random matrices, that is matrices of the
form:

M =
1

n
Y Y T

where Y ∈ Rp×n is a rectangular p×n matrix with random centered entries, and both n and p ≤ n
tend to infinity: typically p = p(n), and p(n)/n tends to some limit.
M can be seen as the empirical covariance matrix of a random vector of dimension p sampled
n times, each sample being a column of Y . It is common in applications to have a number of
variables with a comparable order of magnitude with the number of observation samples; the
analysis of the asymptotic spectral distribution for such matrices appears now to be an important
issue, in particular for implementing significance test for eigenvalues (e.g. for principal component
analysis with p variables an n observations).
Our objective is to give new exponential inequalities concerning symmetric functions of the eigen-
values, i.e. the variables of the form

Z = g(λ1, ...λp)

where (λi)1≤i≤p is the set of eigenvalues of M . These inequalities will be upper bounds on

E
�

eZ−E[Z]
�
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and lead naturally to concentration bounds, i.e. bounds on P(|Z − E[Z]| ≥ x) for large values of
x .
Our contribution is to improve on the existent literature on the following points: (i) the function
g is a once or twice differentiable general function (i.e. not necessarily of the form (2) below), (ii)
the entries of Y are possibly dependent, (iii) they are not necessarily identically distributed and
(iv) the bound is instrumental when both p and n are large.

The columnise dependence is usually taken into account in essentially two different ways: either
one assumes that the columns of Y are i.i.d. but each column is a dependent vector, or that M can
be written, for some mixture matrix Q ∈ Rp×p

M =
1

n
QX X TQT (1)

where X ∈ Rp×n, p < n with independent entries; this means that the j-th observation vector
Y. j has the specific form QX . j . This second way is thus more restrictive; but it is natural from a
theoretical point of view since one obtains essentially the same results as in the case Q = Id (cf.
[1] Chapter 8). We shall consider both cases (Theorem 3 and Theorem 2), the first one is much
easier, but leads to much larger bounds when p is large.

We shall give now a brief evaluation of results in this context. From now on in this section we
assume for simplicity that Q = Id. In order to be more specific, and to be able to compare with
existing results, we shall stick in this introduction to the case where

g(λ1, ...λp) =
p
∑

k=1

ϕ(λk) (2)

although any V-statistics of (λ1, ...λp) can be considered. According to distributional limit-theorems
(e.g. Theorem 9.10 p.247 of [1]), the asymptotic variance of Z as n tends to infinity and p/n con-
verges to some limit y > 0 is a rather complicated function of y; this suggests that the best one
could hope in the independent case, and when p and n tend to infinity, would be something like

P(|Z − E[Z]| ≥ x)≤ exp
�

− f (p/n)x2
�

(3)

for some function f .
Guionnet and Zeitouni obtainned in [3] for the independent case (Corollary 1.81 (a), with Y = X ,
N = p, M = n)

P(|Z − E[Z]| ≥ x)≤ 4 exp
�

−x2/g2
�

(4)

for some reasonable constant g with order of magnitude g ∼ ξ2‖xϕ′(x2)‖∞ where

ξ= sup
i j
‖X i j‖∞

and under the assumption of convexity of the function x 7→ ϕ(x2). A similar result is also given
without this convexity assumption (Corollary 1.8 (b)), but a logarithmic Sobolev inequality is
required for the densities of the X i js.

1There is a misprint: Z has to be replaced by Z/(N +M) in the statement of the Corollary.
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We shall obtain here, in the independent case, the following particular consequence of Theorem 2
below (still with Q = Id):

E
�

exp (Z − E[Z])
�

≤ exp
�

64p

n
ξ4
�

‖ϕ′‖∞ +
p

n
ξ2‖ϕ′′‖∞

�2�

. (5)

This leads to

P(|Z − E[Z]| ≥ x)≤ 2 exp

�

−
n

p

x2

s2

�

, s = 16ξ2
�

‖ϕ′‖∞ +
p

n
ξ2‖ϕ′′‖∞

�

. (6)

In the case where n tends to infinity and p = cn, (4) gives, when it applies, a better bound than (6)
because it does not involve second derivatives of ϕ; when p� n Equation (6) is always sharper.
The amazing point is that this inequality is essentially a consequence of an extension by Boucheron,
Lugosi and Massart of the McDiarmid inequality, Theorem 1 below.
Equation (5) will be applied in a forthcoming article with Jian-Feng Yao and Jia-Qi Chen where ϕ
is an estimate of the limit spectral density of E[M]; it will be a key step to prove the validity of a
cross-validation procedure.

In the case of independent columns only, recently Guntuboyina and Leeb obtainned the following
concentration inequality (Theorem 1 (ii) of [4]):

P(|Z − E[Z]| ≥ x)≤ 2 exp

�

−
2x2

nV 2

�

(7)

where V is the total variation of the function ϕ on R and it is assumed that ‖Yi j‖∞ ≤ 1 for all i, j.
This bound is never close to (3) but is essentially optimal in the context of independent columns
if p and n have the same order of magnitude (Example 3 in [4]). We provide here an estimate
which can be written as

E
�

exp (Z − E[Z])
�

≤ exp

�

16p2ξ4‖ϕ′‖2
∞

n

�

. (8)

This is a simple consequence of Theorem 3 below with a2 = pξ2 (since the entries are indepen-
dent). In the independent case, this improves on Corollary 1.8 of [3] only if p2 is significantly
smaller than n; it also improves on (7) if p� n since in this case p2/n� n. But it is hardly useful
for applications where p and n have the same order of magnitude.

2 Results

The following Theorem is a bounded difference inequality due to Boucheron-Lugosi-Massart [2]
(Theorem 2 with λ = 1,θ → 0); it looks like the McDiarmid inequality but the important differ-
ence here is that the infinity norm in (9) is outside the sum:

Theorem 1. Let Y = (Y1, ...Yn) be a zero-mean sequence of independent variables with values in some
measured space E. Let f be a measurable function on En with real values. Let Y ′ be an independent
copy of Y and set

Y k = (Y1, ..Yk−1, Y ′k , Yk+1...Yn).
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Then, with the notation x2
+ = x21x>0,

E[exp( f (Y )− E[ f (Y )])]≤ exp

 

‖E[
∑

k

( f (Y )− f (Y k))2+|Y ]‖∞

!

.

We shall use actually the weaker inequality:

E[exp( f (Y )− E[ f (Y )])]≤ exp

 

‖
∑

k

( f (Y )− f (Y k))2+‖∞

!

. (9)

Notations. In what follows ‖x‖ will stand for the Euclidean norm of the vector x and ‖M‖ will
stand for the matrix norm of M ∈ Rd×d :

‖M‖= sup
‖x‖=1

‖M x‖.

‖X‖p is the usual Lp-norm of the real random variable X . ei will stand for the i-th vector of the
canonical basis, and we set

M. j = Me j = (Mi j)1≤i≤d ∈ Rd

And similarly, Mi. is the i-th row of M , a row vector, a 1× d matrix. If u, v ∈ Rd , they will be
understood also as d × 1 matrix, in particular uT v = 〈u, v〉, and uvT is a d × d matrix.

Theorem 2. Let Q be a p× p deterministic matrix, X = (X i j), 1 ≤ i ≤ p, 1 ≤ j ≤ n be a matrix of
random independent entries, and set

M =
1

n
QX X TQT .

Let λ 7→ g(λ) be a twice differentiable symmetric function on Rp and define the random variable

Z = g(λ1, ...λp)

where (λ1, ...λp) is the vector of the eigenvalues of M. Then

E
�

eZ−E[Z]
�

≤ exp
�

64p

n
ξ4
�

γ1 +
p

n
ξ2γ2

�2�

. (10)

where

ξ= ‖Q‖ sup
i j
‖X i j‖∞ (11)

γ1 = sup
k,λ
|
∂ g

λk
(λ)| (12)

γ2 = sup
λ

‖∇2 g(λ)‖ (matrix norm). (13)

In particular, for any x > 0

P(|Z − E[Z]|> x)≤ 2exp
�

−
n

256p
x2 ξ−4

�

γ1 +
p

n
ξ2γ2

�−2�

. (14)
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The next theorem deals with matrices X with independent columns; since QX has again indepen-
dent columns, we assume here that Q = Id.

Theorem 3. Let X = (X i j), 1 ≤ i ≤ p, 1 ≤ j ≤ n be a matrix of random independent columns, and
set

M =
1

n
X X T

Let λ 7→ g(λ) be a differentiable symmetric function on Rp and define the random variable

Z = g(λ1, ...λp) (15)

where (λ1, ...λp) is the vector of the eigenvalues of M. Then

E
�

eZ−E[Z]
�

≤ exp

�

16a4γ2
1

n

�

(16)

where

γ1 = sup
λ

|
∂ g

∂ λ1
(λ)|

a = sup
j
‖
∑

i

X 2
i j‖

1/2
∞ .

In particular, for any x > 0

P(|Z − E[Z]|> x)≤ 2exp

�

−
nx2

64a4γ2
1

�

. (17)

3 Proof of theorem 2

Define the function on Rp×n

f (X ) = g(λ1, ...λp).

We have to estimate
∑

i j

( f (X )− f (X i j))2+

with the notations of Theorem 1. If we set

α= sup
i j
‖X i j‖∞,

the Taylor formula implies

| f (X )− f (X i j)| ≤2α

�

�

�

�

�

∂ f

∂ X i j
(X )

�

�

�

�

�

+ 2α2 sup
k,l,Y











∂ 2 f

∂ X 2
kl

(Y )











∞

= Ai j + B.
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We shall estimate these quantities with the help of Lemma 4 below, specifically Equations (24)
and(25), which give bounds for the derivatives of a function of the eigenvalues; the variable t is
here X i j . We have for any matrix P

Tr

�

P
∂M

∂ X i j

�

=
1

n

∂

∂ X i j
Tr(X TQT PQX ) =

1

n
(QT (P + PT )QX )i j . (18)

Equation (24) can be rewritten as

∂ f (X )
∂ X i j

=
2

n

p
∑

k=1

d−1
k

∂ g(λ)
∂ λk

(QT Pλk
QX )i j

where Pλk
is the orthogonal projection on the eigenspace of M corresponding to λk, and dk is the

dimension of this space. It happens that we can get a good bound for a partial Euclidean norm of
the gradient of f : set ( j is fixed)

gk =
∂ g(λ)
∂ λk

ξk = Pλk
QX . j = (Pλk

QX ). j

where A. j stands for the jth column of the matrix A. Notice that in case of eigenvalues of higher
multiplicities, some ξks are repeated, but if ξ j = ξk, λ j = λk, one has also g j = gk (by symmetry
of g); hence, denoting by K a set of indices such that

∑

k∈K Pλk
= Id,

n2

4

∑

i

�

∂ f (X )
∂ X i j

�2

=
∑

i

 

p
∑

k=1

gkd−1
k (Q

Tξk)i

!2

=
∑

i

 

∑

k∈K

gk(Q
Tξk)i

!2

=











QT

 

∑

k∈K

gkξk

!










2

≤‖Q‖2











∑

k∈K

gkξk











2

=‖Q‖2
∑

k∈K

g2
k‖ξk‖2 (orthogonality)

≤‖Q‖2γ2
1

∑

k∈K

‖ξk‖2

=γ2
1‖Q‖

2‖
∑

k∈K

ξk‖2 (orthogonality)

=γ2
1‖Q‖

2‖QX . j‖2

≤γ2
1‖Q‖

4‖X . j‖2

≤γ2
1‖Q‖

4α2p.
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For the estimation of the second derivatives we shall use again Lemma 4. Equation (25) can be
rewritten as

|
∂ 2 f

∂ X 2
i j

| ≤ γ2Tr(Ṁ2) + γ1

∑

k

|νk|.

where νk is the k-th eigenvalue of ∂
2 M
∂ X 2

i j
. Using now Equation (18) with P = Ṁ = PT

nTr(Ṁ2) =2(QT ṀQX )i j

=2 〈Qei , ṀQX e j〉

≤2‖Q‖2‖X e j‖‖Ṁ‖

≤2‖Q‖2(pα2)1/2Tr(Ṁ2)1/2

hence

Tr(Ṁ2)≤4pn−2‖Q‖4α2

and since

∂ 2M

∂ X 2
i j

=
2

n
Q.iQ

T
.i

the νk are all zero except for one 2n−1‖Q.i‖2 ≤ 2n−1‖Q‖2 and finally we get

|
∂ 2 f

∂ X 2
i j

| ≤
4p‖Q‖4α2

n2 γ2 +
2‖Q‖2

n
γ1.

Hence, for any j
∑

i

( f (X )− f (X i j))2 ≤
∑

i

A2
i j + 2B

∑

i

Ai j + pB2

≤
∑

i

A2
i j + 2B

p
p(
∑

i

A2
i j)

1/2 + pB2

=((
∑

i

A2
i j)

1/2 + B
p

p)2

≤
�

4α2‖Q‖2pp

n
γ1 +

2α2

n

�

4p‖Q‖4α2γ2

n
+ 2‖Q‖2γ1

�

p
p

�2

=

�

8α2‖Q‖2pp

n
γ1 +

8pα4‖Q‖4γ2

n2

p
p

�2

=
64pα4‖Q‖4

n2

�

γ1 +
p

n
α2‖Q‖2γ2

�2

and Equation (10) follows.
Equation (14) is easily deduced from (10): let us recall that a random variable X such that for
any t > 0, and some a > 0, E[etX ] ≤ eat2

, satisfies for any x , P(X > x) ≤ e−x2/4a. In particular,
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application of (10) with the function t g(x) instead of g(x) leads to the required bound on the
Laplace transform and

P(|Z − E[Z]|> x)≤P(Z − E[Z]> x) + P(−Z − E[−Z]> x)

≤2exp
�

−x2 n

256p
ξ−4

�

γ1 +
p

n
ξ2γ2

�−2�

. (19)

4 Proof of theorem 3

Define the function on Rp×n

f (X ) = g(λ) = g(λ1, ...λp). (20)

We have to estimate
∑

j

( f (X )− f (X j))2+

with the notations of Theorem 1. Then the Taylor formula implies

| f (X )− f (X j)| ≤ sup
0≤t≤1

�

�

�

�

d

d t
f (X + t∆)

�

�

�

�

, ∆= X j − X

The matrix ∆ = X j − X vanishes except on its j-th column which is the vector δ, δi = X j
i j − X i j .

We shall estimate these quantities with the help of Lemma 4 of the appendix; with M(t) = 1
n
(X +

t∆)(X + t∆)T . We have

Ṁ =
1

n
(X∆T +∆X T + 2t∆∆T ) =

1

n
(δX T

. j + X . jδ
T + 2tδδT )

where X . j is the jth column of X . We set ḟ = d
d t

f (X + t∆). Equation (24) can be rewritten as

ḟ =
2

n

p
∑

k=1

∂ g(λ)
∂ λk

d−1
k 〈Pλk

δ, X . j + tδ〉

where λ= λ(t) is the set of eigenvalues of M(t); hence

| ḟ | ≤
2

n
γ1

∑

λ

‖Pλδ‖ ‖Pλ(X . j + tδ)‖

≤
2

n
γ1(
∑

λ

‖Pλδ‖2)1/2(
∑

λ

‖Pλ(X . j + tδ)‖2)1/2

=
2

n
γ1‖δ‖ ‖X . j + tδ‖

=
4

n
γ1a2

hence, for any j

| f (X )− f (X j)|2 ≤
16

n2 γ
2
1a4

and the result follows.
Equation (17) is easily deduced from (16) as before (cf. the arguments before Equation (19)).
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A Smoothness of eigenvalues of a parameter dependent sym-
metric matrix

The following lemma has been a key instrument for proving Theorems 2 and 3:

Lemma 4. Let t 7→ M(t) be a function of class C3p from some open interval I with values in the set
of real p× p symmetric matrices; there exists a twice differentiable parametrization of the eigenvalues
t 7→ Λ(t) = (λ1(t), ...λp(t)), and the following equations are satisfied for 1≤ k ≤ p and t ∈ I :

∑

j:λ j=λk

λ̇ j = Tr(Ṁ Pλk
) (21)

∑

j:λ j=λk

λ̈ j = Tr(M̈ Pλk
) + 2

∑

j:λ j 6=λk

d−1
j

λk −λ j
Tr(Ṁ Pλ j

Ṁ Pλk
) (22)

∑

j:λ j=λk

λ̇2
j = Tr(Ṁ Pλk

Ṁ Pλk
) (23)

where both sides are functions of the implicit variable t, Pλ is the orthogonal projection on the
eigenspace Eλ of the eigenvalue λ, dk is the dimension of Eλk

.
Let g be a twice differentiable symmetric function defined on some cube Q = (a, b)p containing the
eigenvalues of the matrices M(t), t ∈ I ; then the function

ϕ(t) = g(Λ(t))

is twice differentiable on I and for any t ∈ I

ϕ̇ =
∑

k

d−1
k

∂ g

∂ λk
(Λ)Tr(Ṁ Pλk

) (24)

|ϕ̈(t)| ≤ γTr(Ṁ2(t)) + sup
k

�

�

�

�

∂ g

∂ λk
(Λ(t))

�

�

�

�

∑

i

|νi(t)| (25)

where γ= supΛ∈Q ‖∇2 g(Λ)‖ (matrix norm), and νi(t) is the i-th eigenvalue of M̈(t).

Proof. The smoothness comes from the possibility of finding a twice differentiable parametrization
of the eigenvalues t 7→ (λ1(t), ...λp(t)) which is simply a consequence of the theorem of [5]; let
us recall the third statement of that theorem:

Consider a continuous curve of polynomials

P(t)(x) = x p + a1(t)x
p−1 + ...+ ap(t), t ∈ R.

If all ai are of class C3p then there is a twice differentiable parametrization x = (x l , . . . xp) :
R→ R of the roots of P.

It remains to prove Equations (21) to (25). We shall use below the notation
∑

λ for denoting a
sum over distinct eigenvalues, hence

∑

λ

Pλ = Id
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and for any function f :
∑

λ

f (λ) =
∑

k

d−1
k f (λk).

For any polynomial x 7→ f (x) one has

d

d t
Tr( f (M)) = Tr(Ṁ f ′(M)).

This comes simply from the fact that this is true for f (x) = xn, n> 0, since

d

d t
M n =

n
∑

k=1

M k−1Ṁ M n−k. (26)

Hence for any polynomial f , one has

d

d t
Tr( f (M)) = Tr(Ṁ f ′(M)) =

∑

λ

Tr(Ṁ Pλ) f
′(λ) (27)

and on the other hand

d

d t
Tr( f (M)) =

d

d t

∑

k

f (λk) =
∑

k

λ̇k f ′(λk). (28)

By choosing a polynomial f such that f ′(µ) is zero for any eigenvalue µ different from a specific
eigenvalue λk identification of (27) and (28) gives

∑

j:λ j=λk

λ̇ j = Tr(Ṁ Pλk
).

This is (21). For proving Equation (22), we shall first prove the following formula valid for any
polynomial x 7→ f (x):

d

d t
f (M) =

∑

λ

PλṀ Pλ f ′(λ) +
∑

λ 6=µ

f (µ)− f (λ)
µ−λ

PµṀ Pλ (29)

(we recall that in these sums, eigenvalues of higher multiplicities of M = M(t) are counted only
once). If indeed f (x) = xn, Equation (26) implies

d

d t
f (M) =

n
∑

k=1

∑

λ

∑

µ

λk−1µn−k PλṀ Pµ.

Now (29) is just a consequence of the following formula for λ 6= µ
n
∑

k=1

λk−1µn−k =
λn −µn

λ−µ
.

Similarly we have on the one hand

d2

d t2 Tr( f (M)) =
d2

d t2

∑

k

f (λk) =
∑

k

λ̈k f ′(λk) + (λ̇k)
2 f ′′(λk) (30)
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and on the other hand

d2

d t2 Tr( f (M)) =
d

d t
Tr(Ṁ f ′(M)) = Tr(M̈ f ′(M)) + Tr(Ṁ

d

d t
f ′(M)).

The first term is

Tr(M̈ f ′(M)) =
∑

λ

Tr(M̈ Pλ) f
′(λ) (31)

and the second term may be computed via the Equation (29)

Tr(Ṁ
d

d t
f ′(M)) =

∑

λ

Tr(Ṁ PλṀ Pλ) f
′′(λ) +

∑

λ 6=µ

f ′(µ)− f ′(λ)
µ−λ

Tr(Ṁ PµṀ Pλ) (32)

identifying the r.h.s. of (30) as the sum of the r.h.s. of (31) and (32) with a polynomial f such
that f ′′(λ) is zero for all eigenvalue λ of M(t) and f ′(λ) is zero for any eigenvalue λ with the
exception of a specific one λk for which f ′(λk) = 1, we get f ′(M) = Pλk

and

∑

j:λ j=λk

λ̈ j = Tr(M̈ Pλk
) + 2

∑

µ

1µ6=λk

λk −µ
Tr(Ṁ PµṀ Pλk

)

and (22) is proved. Equation (23) is proved similarly by considering a polynomial f such that
f ′(λ) is zero for all eigenvalue λ of M(t) and f ′′(λ) is zero for any eigenvalue λwith the exception
of a specific one λk for which f ′′(λk) = 1.
We now prove Equation (24). For any smooth symmetric function f (x , y) of two real variables,
we have, if we denote by f1 and f2 the partial derivatives:

f1(x , y) = f2(y, x) (33)

f11(x , y) = f22(y, x) (34)

f12(x , y) = f12(y, x) (35)

which implies that on any point such that x = y , one has f1 = f2, and f11 = f22. Hence using (21),
the symmetry of g, and (33)

ϕ̇ =
∑

k

∂ g

∂ λk
(Λ)λ̇k

=
∑

k

∂ g

∂ λk
(Λ)d−1

k

∑

j:λ j=λk

λ̇ j

=
∑

k

d−1
k

∂ g

∂ λk
(Λ)Tr(Ṁ Pλk

).

It remains to prove (25). Setting gk =
∂ g
∂ λk

and gkl =
∂ 2 g

∂ λk∂ λl
:

ϕ̈(t) =
∑

k

λ̈k gk(Λ)+
∑

j,k

λ̇ jλ̇k g jk(Λ)

=
∑

k

d−1
k Tr(M̈ Pλk

)gk(Λ)+ 2
∑

j,k:λ j 6=λk

d−1
k d−1

j

gk(Λ)
λk −λ j

Tr(Ṁ Pλ j
Ṁ Pλk

) +
∑

j,k

λ̇ jλ̇k g jk(Λ)

=T1 + T2 + T3.
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For the estimation of the first term, we shall use the identity M̈ =
∑

i νiwiw
T
i where (w1, ...wp) is

an orthonormal basis of eigenvectors associated to (ν1, ...νp):

|T1| ≤ sup
k,Λ
|gk(Λ)|

∑

λ

|Tr(M̈ Pλ)|

≤ sup
k,Λ
|gk(Λ)|

∑

λ

|
∑

i

νi〈wi , Pλwi〉|

≤ sup
k,Λ
|gk(Λ)|

∑

i

∑

λ

|νi | ‖Pλwi‖2

= sup
k,Λ
|gk(Λ)|

∑

i

|νi |.

The second term is by symmetry

T2 =
∑

j,k:λ j 6=λk

d−1
k d−1

j

gk(Λ)− g j(Λ)

λk −λ j
Tr(Ṁ Pλ j

Ṁ Pλk
)

We need to notice the following: the relation (33) implies that the symmetric function f satisfies

f1(x , y)− f2(x , y) =
1

2
( f1(x , y)− f2(x , y)− f1(y, x) + f2(y, x)) (36)

and considering the function

u(t) = f1(x + tδ, y − tδ)− f2(x + tδ, y − tδ), δ = y − x

Equation (36) implies

2| f1(x , y)− f2(x , y)|=|u(0)− u(1)| ≤ sup
0≤t≤1

|u′(t)| ≤ |y − x | ‖ f11 − 2 f12 + f22‖∞.

Hence we have
�

�

�

�

�

gk − g j

λk −λ j

�

�

�

�

�

≤
1

2
‖g j j + gkk − 2g jk‖∞ =

1

2
sup
Λ∈Q
|〈e j − ek,∇2 g(Λ)(e j − ek)〉| ≤ γ.

Hence

|T2| ≤γ
∑

j,k:λ j 6=λk

d−1
k d−1

j |Tr(Ṁ Pλ j
Ṁ Pλk

)|

=γ
∑

λ 6=µ

|Tr(Ṁ PλṀ Pµ)|

=γ
∑

λ 6=µ

Tr((PλṀ Pµ)
T PλṀ Pµ)

=γ
∑

λ 6=µ

Tr(Ṁ PλṀ Pµ)

=γTr(Ṁ2)− γ
∑

λ

Tr(Ṁ PλṀ Pλ).

For T3 notice that using (23)

|T3| ≤γ
∑

k

λ̇2
k = γ

∑

λ

Tr(Ṁ PλṀ Pλ)

hence |T2|+ |T3| ≤ γTr(Ṁ2) and Equation (25) is proved.
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