15 November 2022 Eigenvalue asymptotics for the one-particle density matrix
Alexander V. Sobolev
Author Affiliations +
Duke Math. J. 171(17): 3481-3513 (15 November 2022). DOI: 10.1215/00127094-2022-0032

Abstract

The one-particle density matrix γ(x,y) for a bound state of an atom or molecule is one of the key objects in the quantum-mechanical approximation schemes. We prove the asymptotic formula λk(Ak)83, A0, as k, for the eigenvalues λk of the self-adjoint operator Γ0 with kernel γ(x,y).

Citation

Download Citation

Alexander V. Sobolev. "Eigenvalue asymptotics for the one-particle density matrix." Duke Math. J. 171 (17) 3481 - 3513, 15 November 2022. https://doi.org/10.1215/00127094-2022-0032

Information

Received: 22 March 2021; Revised: 17 October 2021; Published: 15 November 2022
First available in Project Euclid: 9 November 2022

MathSciNet: MR4510016
zbMATH: 1511.35118
Digital Object Identifier: 10.1215/00127094-2022-0032

Subjects:
Primary: 35J10
Secondary: 47G10 , 81Q10

Keywords: Eigenvalues , multiparticle Schrödinger operator , one-particle density matrix , Spectral asymptotics

Rights: Copyright © 2022 Duke University Press

Vol.171 • No. 17 • 15 November 2022
Back to Top