Translator Disclaimer
1 December 2020 Linear independence result for p-adic L-values
Johannes Sprang
Duke Math. J. 169(18): 3439-3476 (1 December 2020). DOI: 10.1215/00127094-2020-0043

Abstract

The aim of this article is to provide an analogue of the Ball–Rivoal theorem for p-adic L-values of Dirichlet characters. More precisely, we prove, for a Dirichlet character χ and a number field K, the formula dimK(K+i=2s+1Lp(i,χω1i)K)(1ϵ)log(s)2[K:Q](1+log2). As a by-product, we establish an asymptotic linear independence result for the values of the p-adic Hurwitz zeta function.

Citation

Download Citation

Johannes Sprang. "Linear independence result for p-adic L-values." Duke Math. J. 169 (18) 3439 - 3476, 1 December 2020. https://doi.org/10.1215/00127094-2020-0043

Information

Received: 11 October 2018; Revised: 25 March 2020; Published: 1 December 2020
First available in Project Euclid: 1 December 2020

MathSciNet: MR4181030
Digital Object Identifier: 10.1215/00127094-2020-0043

Subjects:
Primary: 11J72
Secondary: 11F85, 11M06

Rights: Copyright © 2020 Duke University Press

JOURNAL ARTICLE
38 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.169 • No. 18 • 1 December 2020
Back to Top