Translator Disclaimer
15 November 2020 The Burnside problem for Diffω(S2)
Sebastián Hurtado, Alejandro Kocsard, Federico Rodríguez-Hertz
Duke Math. J. 169(17): 3261-3290 (15 November 2020). DOI: 10.1215/00127094-2020-0028

Abstract

A group G is periodic of bounded exponent if there exists kN such that every element of G has order at most k. We show that every finitely generated periodic group of bounded exponent G<Diffω(S2) is finite, where Diffω(S2) denotes the group of diffeomorphisms of S2 that preserve an area form ω.

Citation

Download Citation

Sebastián Hurtado. Alejandro Kocsard. Federico Rodríguez-Hertz. "The Burnside problem for Diffω(S2)." Duke Math. J. 169 (17) 3261 - 3290, 15 November 2020. https://doi.org/10.1215/00127094-2020-0028

Information

Received: 10 April 2019; Revised: 6 March 2020; Published: 15 November 2020
First available in Project Euclid: 12 November 2020

MathSciNet: MR4173155
Digital Object Identifier: 10.1215/00127094-2020-0028

Subjects:
Primary: 37A05
Secondary: ‎37B05‎

Keywords: group actions on manifolds , surface dynamics , transformation groups

Rights: Copyright © 2020 Duke University Press

JOURNAL ARTICLE
30 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.169 • No. 17 • 15 November 2020
Back to Top