1 April 2017 Functional calculus for generators of symmetric contraction semigroups
Andrea Carbonaro, Oliver Dragičević
Duke Math. J. 166(5): 937-974 (1 April 2017). DOI: 10.1215/00127094-3774526

Abstract

We prove that every generator of a symmetric contraction semigroup on a σ-finite measure space admits, for 1<p<, a Hörmander-type holomorphic functional calculus on Lp in the sector of angle ϕp=arcsin|12/p|. The obtained angle is optimal.

Citation

Download Citation

Andrea Carbonaro. Oliver Dragičević. "Functional calculus for generators of symmetric contraction semigroups." Duke Math. J. 166 (5) 937 - 974, 1 April 2017. https://doi.org/10.1215/00127094-3774526

Information

Received: 10 August 2015; Revised: 9 June 2016; Published: 1 April 2017
First available in Project Euclid: 20 December 2016

zbMATH: 06707166
MathSciNet: MR3626567
Digital Object Identifier: 10.1215/00127094-3774526

Subjects:
Primary: 42B15 , 47A60 , 47D03
Secondary: 42B25

Keywords: Bellman functions , functional calculus , Littlewood–Paley theory , maximal functions , spectral multipliers , symmetric contraction semigroups

Rights: Copyright © 2017 Duke University Press

Vol.166 • No. 5 • 1 April 2017
Back to Top