Translator Disclaimer
1 December 2008 On a question of Davenport and Lewis and new character sum bounds in finite fields
Mei-Chu Chang
Duke Math. J. 145(3): 409-442 (1 December 2008). DOI: 10.1215/00127094-2008-056

## Abstract

Let $\chi$ be a nontrivial multiplicative character of $\Bbb F_{p^n}$. We obtain the following results.

(1) Let $\varepsilon>0$ be given. If $B=\big\{ \sum _{j=1}^n x_j \omega_j \;: x_j \in [N_j+1, N_j+H_j]\cap \Bbb Z , j=1,\ldots, n %\text{ for all } j \big\}$ is a box satisfying ${\mathop\Pi\limits}_{j=1}^{n}H_j>p^{({2}/{5}+\varepsilon)n},$ then for $p>p(\varepsilon)$ we have, denoting $\chi$ a nontrivial multiplicative character, $$\Big| \sum_{x \in B} \chi(x) \Big| \ll_np^{-{\varepsilon^{2}}/4} |B|$$ unless $n$ is even, $\chi$ is principal on a subfield $F_2$ of size $p^{n/2}$, and $\max_\xi\!\!|B\cap \xi F_2| >p^{-\varepsilon}|B|$.

(2) Assume that $A, B \subset \Bbb F_p$ so that $$|A|> p^{(4/9)+\varepsilon},\qquad |B|> p^{(4/9)+\varepsilon},\qquad |B+B| \lt K|B|.$$ Then $$\Big|\sum_{x\in A, y\in B} \chi(x+y)\Big| \lt p^{-\tau}|A|\;|B|.$$

(3) Let $I\subset \Bbb F_p$ be an interval with $|I|=p^{\beta}$, and let $\mathcal D\subset \Bbb F_p$ be a $p^\beta$-spaced set with $|\mathcal D|=p^\sigma$. Assume that $2\beta+\sigma-{\beta\sigma}/{(1-\beta)}> 1/2+\delta$. Then for a nonprincipal multiplicative character $\chi$, $$\Big|\sum_{x\in I, y\in \mathcal D}\chi(x+y)\Big| \lt p^{-{\delta^2}/{12}}|I|\;\;|\mathcal D|.$$ We also slightly improve a result of Karacuba [K3]

## Citation

Mei-Chu Chang. "On a question of Davenport and Lewis and new character sum bounds in finite fields." Duke Math. J. 145 (3) 409 - 442, 1 December 2008. https://doi.org/10.1215/00127094-2008-056

## Information

Published: 1 December 2008
First available in Project Euclid: 15 December 2008

zbMATH: 1241.11137
MathSciNet: MR2462111
Digital Object Identifier: 10.1215/00127094-2008-056

Subjects:
Primary: 11L26 , 11L40
Secondary: 11A07 , 11B75