1996 On Rabinowitz alternative for the Laplace-Beltrami operator on $S^{n-1}$: continua that meet infinity
Sławomir Rybicki
Differential Integral Equations 9(6): 1267-1277 (1996). DOI: 10.57262/die/1367846900

Abstract

Let $\Lambda$ be the Laplace--Beltrami operator on $S^{n-1}$. The aim of this paper is to prove that any continuum of nontrivial solutions of the equation $-\Lambda u = f(u,\lambda),$ which bifurcate from the set of trivial solutions, is unbounded in $H^1(S^{n-1}) \times R$. As the main tool we use degree theory for $S^1$--equivariant, gradient operators defined in [15].

Citation

Download Citation

Sławomir Rybicki. "On Rabinowitz alternative for the Laplace-Beltrami operator on $S^{n-1}$: continua that meet infinity." Differential Integral Equations 9 (6) 1267 - 1277, 1996. https://doi.org/10.57262/die/1367846900

Information

Published: 1996
First available in Project Euclid: 6 May 2013

zbMATH: 0879.35020
MathSciNet: MR1409927
Digital Object Identifier: 10.57262/die/1367846900

Subjects:
Primary: 58E09
Secondary: 58G03

Rights: Copyright © 1996 Khayyam Publishing, Inc.

Vol.9 • No. 6 • 1996
Back to Top