Translator Disclaimer
1995 Energy decay for the wave equation with a nonlinear weak dissipation
Mitsuhiro Nakao
Differential Integral Equations 8(3): 681-688 (1995).

Abstract

We derive a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with a nonlinear dissipation $ \rho (u_{t}) $, where $ \rho (v) $ is a function like $ v/\sqrt{ 1+v^{2}}$. Since our dissipation is weak as $\vert u_{t}\vert $ tends to $ \infty $ we treat strong solutions rather than usual energy finite solutions.

Citation

Download Citation

Mitsuhiro Nakao. "Energy decay for the wave equation with a nonlinear weak dissipation." Differential Integral Equations 8 (3) 681 - 688, 1995.

Information

Published: 1995
First available in Project Euclid: 23 May 2013

zbMATH: 0848.35076
MathSciNet: MR1306584

Subjects:
Primary: 35L70
Secondary: 35B40

Rights: Copyright © 1995 Khayyam Publishing, Inc.

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.8 • No. 3 • 1995
Back to Top